Journal of Computing and Information Technology - CIT 3, 1995, 3, 157—-168

A Formalism and

157

a Verification Method
for Bus-Based Systems

Felice Balarin
Cadence Berkeley Laboratories, Berkeley, USA

Bus-based systems consist of many similar components
which communicate through a fixed channel. We pro-
pose a formal model for such systems, using finite-state
automata to model behavior of components, and logic
formulas to model bus arbitration. For this purpose, we
define the indexed propositional logic, show that it has a
small model property, and use that property to construct
an abstraction of bus-based systems which does not
depend on the actual number of components. We show
that the proposed formalism can be used to model buses
at various levels of abstraction.

Keywords: formal verification, automata, iterative ar-
rays, abstraction

1. Introduction

Verification is an important component of any
design methodology. A design error that is dis-
covered late in the design process can signifi-
cantly increase the cost of a project. A design
error discovered after a system is put in use
is usually even costlier, either in the form of
expensive product recalls and customer dissat-
isfaction, or in the worst case, in form of failure
of life-critical systems such as flight controllers.

Presently, simulation is the prevailing method
for verifying digital systems. But as technology
advances and systems become more complex,
verification by simulation is becoming increas-
ingly insufficient. An illustrative example was
reported by Chen, Yamazaki and Fujita [12]. A
data-switching chip (assumed to be correct by
the designers) was exhibiting incorrect behav-
ior, but only sporadically, and only after several
seconds of operation at 156MHz. Simulating

such long input patterns is clearly very expen-
sive, and the probability of selecting one that
exhibits faulty behavior is quite low. However,
by using a formal verification tool Chen et al.
were able to identify the fault. The tool also
generated a short (50 cycles) input pattern that
exhibits the fault.

In the future, simulation is likely to remain
an important verification method, but it is also
likely that it will be more and more supple-
mented by formal verification methods. Formal
verification is particularly effective in early de-
sign phases, when the system is described at a
high level of abstraction, hence is less complex
than later refinements, and must satisfy proper-
ties that are typically simple and easy to specify
formally.

The phrase “formal verification” is broadly used
to indicate any technique where one, with a
rigor of a mathematical proof, establishes (or
disproves) a satisfaction relation between a de-
sign and a specification. Formal verification
paradigms vary with a choice of formalisms
for the design and specification, and a choice
of a satisfaction relation (see [17] for a com-
prehensive survey and exhaustive list of refer-
ences). The basic tradeoff is between expres-
siveness and efficiency. On one side of the spec-
trum are general theorem proving techniques
(e.g. [9, 15, 2]), which are very expressive, but
are provably hard, and can be only partially au-
tomated. On the other side are finite-state tech-
niques that suffer from somewhat limited ex-
pressiveness, but can be completely automated,
and precisely for that reason have attracted sig-
nificant interest recently.

158

F. Balarin: Verifying Bus-Based Systems

1.1. Formal verification of finite-state sys-
tems

Two dominating approaches to automatic ver-
ification of finite-state systems have emerged:
model checking based on temporal logics, and
language containment based on automata the-
ory. In the model checking approach a system
is verified if it represents a model of a given
formula in some temporal logic. Most of the
logics proposed for specification and verifica-
tion of finite-state systems can be classified as
either branching time or linear time temporal
logics (see [14] for excellent survey). The pre-
cise formulation of the model checking problem
is somewhat different for each class.

Models of branching time temporal logics are
trees, but their subformulas reason about paths
in a tree. Typically, a subformula may postulate
that another formula holds in every (or some)
state along a path. A formula is then closed by
existentially (or universally) quantifying over
paths. In other words, a formula is true of the
tree rooted in a state, if the subformula is true on
some (or all) paths from that state. With every
finité-state system we associate an infinite tree
with the initial state as its root, and children of
every state being its possible next states. A sys-
tem is verified, if a formula is true of the asso-
ciated tree. The first efficient automatic model
checking procedure for any temporal logic was
given Clarke, Emerson and Sistla [13] for the
branching time logic CTL, which still remains
the most widely used logic in verification. For
example, verification systems SMV [25], and
HSIS [4] are based on it.

Formulas of linear time temporal logics reason
about paths, and the system is verified if the
formula is true for ‘all paths from the initial
states. The use of linear time temporal log-
ics for specification and verification of finite-
state systems dates back to late seventies and
early eighties when in a trail-blazing contribu-
tion Pnueli and Manna [27, 24] use such a logic
to specify many interesting properties of com-
puter programs. Linear time temporal logics
are still an interesting research topic, but their
inherent complexity [32] has limited their use in
practice.

Linear temporal logics are closely related to an-
other popular verification paradigm known as
language containment [33, 23]. Here, systems

are model as automata, and the language ac-
cepted by an automaton is assumed to be its be-
havior. In other words, the behavior of a finite
state system is a set of input-output sequences
that can be observed from the outside. The
verification problem is to check whether every
sequence in the language is acceptable, i.e. we
need to check that the language of a system is
contained in the language consisting of all ac-
ceptable sequences. That language is specified
by another automaton, so the verification prob-
lem reduces to checking language containment
between two automata.

For example, assume that the system being de-
signed is a traffic light controller. The language
of the system consists of all possible sequences
of lights generated by the controller. There may
be more than one such sequence if the system is
designed to adapt to the traffic flow. One prop-
erty we may want to check is that at no times
the light is green in both directions. To verify
this property we first construct an automaton
whose language contains all sequences except
those where lights are green in both directions
at some point in time (incidentally, this is a very
simple, two-state automaton), and then check if
the language of the system is contained in the
language of this automaton.

Model checking and language containment are
not as different as they may appear at first. In-
deed, model checking of linear temporal logics
can be reduced to language containment [34,
33]. First, we construct an automaton that
accepts all the sequences that satisfy the for-
mula. Then, we check whether the language
of that automaton contains the language of the
system. Similarly, one can use automata on
trees to formulate automata-theoretic approach
to branching-time model checking [§].

1.2. Problems with formal verification

Even though the verification of finite-state sys-
tems can be completely automated, it is still not
widely used in practice, mainly due to issues re-
lated to specification of correct behavior, design
methodology, and complexity of the associated
algorithms.

Before using a formal verification tool, a user
must first specify acceptable behaviors (in case

F. Balarin: Verifying Bus-Based Systems

159

of language containment, the acceptable behav-
iors are represented by alanguage, and in case of
model checking, it is represented by a formula).
In the worst case, specifying acceptable behav-
iors is as hard and as error-prone as actually
designing a system. Fortunately, specification
is often much simpler than design for at least
the following reasons:

e It is often possible to express what a sys-
tem must do (a specification) much more
concisely than how it is doing it (a design).

e Acceptable behaviors can usually be spec-
ified as a list of properties that a system
must satisfy. Even though properties are
typically simple, designing a system that
satisfies all of them is not.

To reduce the possibility of errors, the proper-

ties must not only be simple, but also expressed |

in a way that is natural to designers and consis-
tent with other system documentation. Unfor-
tunately, neither finite-state automata, nor CTL
formulas satisfy these conditions. A promising
approach to this problem is to develop transla-
tors that provide formal interpretation (in terms
of automata or temporal logic formulas) of
specification methods used by designers, such
as HDL annotations [26, 3, 6] or timing dia-
grams [30].

Anotherissue that has to be addressed before au-
tomatic formal verification is widely accepted is
the development of a verification based design
methodology. This includes engineering issues
like providing a common design representation
to be used by synthesis, simulation and veri-
fication tools, theoretical issues like identify-
ing properties that are preserved under a given
set of synthesis operations, as well as organiza-
tional issues such as deciding at which points
in the design cycle simulation or verification
tools should be used to optimize the overall de-
sign process. Some of these issues have been
addressed in the literature [4, 6, 23|, but many
practical questions have yet to be resolved.

Last but not least, a formal verification method
can be successful only if accompanied with
claborate complexity management techniques.
At first glance, it might seem that complexity is
not a significant issue because algorithms poly-
nomial in the number of states exist both for

CTL model checking and for language contain-
ment. However, the problem is that in practice,
systems to be verified are never specified by ex-
plicitly enumerating all states. Typically, they
are specified as a composition of several com-
ponents which are specified either as software
(a program in some language), or as hardware
(combinational logic plus latches). In this case,
the number of states can be exponential in the
size of the description, and in fact both CTL
model checking and language containment of
systems consisting of interacting components
are PSPACE-complete [5]. This is the well
known state explosion problem.

Attacking the state explosion problem is the fo-
cus of a wide range of research. Two approaches
dominate: symbolic computation where one
tries to manipulate a large number of states ef-
ficiently by representing sets of states symboli-
cally (rather than by enumeration), and simplifi-
cation where one argues about the correctness of
complex systems by verifying their simplified
versions. Those two approaches are indepen-
dent, and in fact, several researcher have pro-
posed methods that combine both approaches.

By far the most widely used approach to sym-
bolic computation is to represent sets of states
with their characteristic functions. If states are
encoded with binary variables, then the charac-
teristic function of a set is just a Boolean func-
tion, and is typically represented by a binary
decision diagram (BDD) [10]. This approach
is successful because in many practical cases
large sets of states have quite small BDD rep-
resentations, and thus it is possible to manipu-
late sets of states that are too large to enumerate
with existing computing resources. BDD-based
algorithms (and verification systems) are avail-
able both for model checking [25] and language
containment [4]. The success of BDD-based ap-
proaches have made them almost synonymous
to symbolic computation. Still, not all symbolic
approaches are BDD-based. For example, in
the verification of real-time and hybrid systems,
sets of linear inequalities are used to represent
convex polyhedra bounded by them [19, 1].

Recent advancements in symbolic computation
techniques have significantly increased the ca-
pabilities of automatic formal verification, but
simplifications are still necessary to handle most
real-life systems. We make a distinction be-
tween two kinds of simplifications: exact and

160

F. Balarin: Verifying Bus-Based Systems

conservative. Exact simplifications (or reduc-
tions) preserve all aspects of system behavior,
therefore the original system is verified if and
only if the simplified system is. They can be
applied to virtually any verification formalism,
but it is often hard to find an exact simplification
of reasonable size. '

On the other hand, conservative simplification
(or abstractions) preserve enough behavior of
a system to guarantee that the original system
is verified if the simplified system is. However,
if the simplified system is not verified, the orig-
inal system might or might not satisfy the re-
quired property. Conservative approximations
can often lead to much larger savings than ex-
act simplifications, but they exist only for some
formalisms. In particular, if the set of proper-
ties expressible in a formalism is closed under
complementation (i.e. if for every property P
there exists a property P such that a system S
satisfies P if and only if it does not satisfy P),
then every abstraction is also a reduction. To
see this, assume towards a contradiction that S’
is an abstraction but not a reduction of a sys-
tem §, i.e. assume that there exists a property
P such that S satisfies P but S’ does not. This
implies that S’ satisfies P even though S does
not, contradicting the assumption that S’ is an
abstraction of S.

Most of branching time temporal logics (in-
cluding CTL) are closed under complementa-
tion, hence they allow only exact simplification.
However, if the logic is restricted to universal
path quantifiers (and of course no negation),
then conservative simplifications are possible.
Roughly speaking, any system with more paths
is an abstraction of the original system. For ex-
ample, Grumberg and Long [16] have studied
such a restriction of CTL (called ACTL), and
showed that one system is an abstraction of an-
other, if the so-called simulation relation holds
between them.

The language containment (hence also model
checking of linear time temporal logics) clearly
allows conservative approximations: an au-
tomaton is an abstraction if its language con-
tains the language of the original system. But
that means that checking whether one system
is an abstraction of the other is just another
instance of the original verification problem
(and hence just as hard). Still, a careful use

of abstractions can be beneficial. For exam-
ple, one might check abstractions of (usually
small) components, and deduce from that an
abstraction of the (usually large) complete sys-
tem. These and other strategies for simplifica-
tion of communicating automata were studied
by Kurshan [21, 23].

1.3. Bus-based systems

Another approach to managing the complex-
ity of verification is to define a procedure, and
prove (usually manually) once and for all, that
it always generates abstraction. In this paper
we define such a procedure for a class of sys-
tems called bus-based systems. In general, sys-
tems consisting of many identical components
are called networks or iterative systems. If, in
addition, all the communication data is avail-
able to all the components, and the width of
the communication path does not change with
the number of components, such networks are
called bus-based.

Typically, iterative arrays are designed to work
correctly regardless of the actual number of
components. For example, mutual exclusion al-
gorithm, token passing and bus protocols should
all work for any number of participating pro-
cesses. Ideally, an abstraction of such a system
should not depend on the actual number of com-
ponents. Such an abstraction is called a network
invariant. Once an invariant of manageable size
is found it allows: :

e verification of a large system with a fixed
number of components; and at the same
time also

e verification of the entire class of systems
with the same structure but with different
number of components.

A network invariant is generally a conservative
approximation. If an invariant happens to be
an exact approximation, we say that it is tight.
If a tight invariant is verified, then so is every
system in the class, but if a tight invariant is not
verified, then there exists at least one system in
the class which exhibits undesirable behavior.

F. Balarin: Verifying Bus-Based Systems

161

1.4. Contributions and related work

In this paper, we propose a new formalism to
model bus-based systems, based on use of au-
tomata to model basic components, and the use
of logic formulas to model bus arbitration. For
this purpose, we define a logic called indexed
propositional logic (IPL). We show that IPL
has a small model property, and use that prop-
erty to construct size-independent abstraction of
bus-based systems. We show that the proposed
formalism can be used to model buses at various
levels of abstraction.

Although iterative systems have been studied
for a long time (18], only recently there has
been a significant interest in the formal veri-
fication of such systems. Browne, Clarke and
Griimberg [11], and Shtadler and Grimberg [31]
have studied conditions under which the sat-
isfaction of formulas of certain temporal log-
ics is independent of the size of the system.
In [31] the conditions seem to be quite re-
strictive, while in [11] the conditions cannot
in general be checked automatically. Wolper
and Lovinfosse [35] have studied formal veri-
fication of iterative systems generated by inter-
connecting identical processes in certain regular
fashion. They also present some decidability re-
sults for related problems. Kurshan and McMil-
lan [22] present slightly more general results
which can be applied both to process algebra
and automata-based approaches. In both cases,
automatic tools are used only to verify that a fi-
nite state system suggested by the user is indeed
an invariant. Automatic invariant generation is
considered in [7, 28, 29], but the proposed pro-
cedure may not always terminate.

Our work is unique, because it provides for auto-
matic generation of a network invariant in finite
time. Unfortunately, the invariant is not tight,
in the sense that it is possible for the gener-
ated invariant not to satisfy some property, even
though all the instances do. However, this is the
best we can hope for, because a tight finite-sate
invariant does not always exist (see Theorem 2).

In the rest of this paper, we first review per-
tinent elements of the automata theory in sec-
tion 2. Then, we introduced the logic IPL in
section 3. In section 4 we present a complete
formal model for bus-based systems, and a pro-
cedure for automatic generation of an invariant.
The application of this formalism to modeling
of buses is described in section 5. Final remarks
are given in section 6.

2. Automata theory

In this section we review only the most pertinent
elements of the automata theory. The complete

treatment can be found in numerous references
including [20].

2.1. Automata

A finite-state automaton over some alphabet =
is a 4-tuple (S,1,T,F), where S is some finite
and non-empty set of states, I C S is the set of
initial states, T C S x X x S is the transition
relation, and F C S is the set of final states. Au-
tomata are often visualized as graphs with one
node for every state, and an edge from node s to
node g labeled x for every (s, x, q) € T. Consis-

tent with this interpretation, we will use s = g
to denote the element (s, x, g) of a transition re-
lation. An automaton is said to be deterministic
if it has a unique initial state, and for every s € S
and every x € Z there exists at most one g such

that s 5 g € T. An automaton is said to be
complete if for every s € S and every x € =

there exists at least one g such thats > g € T.

2.2. Language

Given some finite-state automaton A, the string
(x1...X,) € Z* is said to be in the language of
A (denoted by L(A)) if there exists a sequence
S0, - . .,Sp of states (called an accepting run)
such that sq is an initial state, s,, is a final state,

and s;_1 X, s; is in the transition relation for
alli = 1,...,n Given any automaton A, it is
easy to construct an automaton such that it is
complete and has the same language as A. Such
an automaton is basically the same as A, except
possibly for one extra state. It is also possible
to construct an automaton that is deterministic
and has the same language as A (through the
procedure known as subset construction [20]),
but this automaton may be exponentially larger
than A.

2.3. Composition, union, complement

Given two automata A = (S4,Ia, T4, Fa) and
B = (Sg,Ip,Tp,Fp) their composition is de-
fined by:

A|[B = (Sa x Sp, 14 x I, TAHB! S XSg) ,

162

F. Balarin: Verifying Bus-Based Systems

where:

Ty = {(5,5) > (¢,d) |s > q€Tn

ands' 5 ¢ € Ty} .
The union of two automata is defined by:
AUB = (84 USB, Iy Ulp, TAUTR, S4USp) -

The complement of an automatonA=(S, I, T, F)
is defined by:

A= (SIT {scS|s¢F}) .
Proposition 1. L(A||B) = L£(4) N L(B).
Propesition 2. L(AUB) = L(A)U L(B).

Proposition 3. If A is deterministic and com-
plete, then:

LA) = LA) = {(x1vity) € Z* |

(x1...%,) & L(A)} .

Typically, components of digital systems are
modeled by automata where states correspond
to internal states of the system, and the alpha-
bet corresponds to values of externally visible
signals. The observable behavior is then repre-
sented by the language of the automaton. The
interaction of two components is modeled by
their composition: the global transition of the
system consists of the transitions in all the com-
ponents, and all the components must agree on
the values of common signals.

To verify an automaton A means to check whether
its language is contained in the language of
some other “property” automaton P. It follows
from propositions 1 and 3 that if P is deter-
ministic and complete, then checking whether
L(A) C L(P) is equivalent to checking whether
L(A||P) is empty. To check the emptiness of
the language of some automaton, it is enough to
check for existence of a path from some of its
initial states to some of its final states. This can
be done by standard graph searching techniques,
in time proportional to the size of transition re-
lation.

2.4. Quotient

Given some (not necessarily finite-state) au-
tomaton A = (S,1,T, F) over alphabet X, and
some equivalence relation ~ on S, the guotient
of A with respect to ~ (denoted by A/ ~) is the
automaton (§',I', T', F') over the same alpha-
bet, where:

o §' C §is some set of representatives of
equivalence classes induced by ~, i.e. S
is such that:

1. for every s € S there exists g € S
such that s ~ g, and

2. if s and q are two distinct elements of
S, then s ~ g does not hold,

o ' ={s € 8| ~ sforsomes e I},

o T'={(s 5¢)eS xEx5|s ~sand
q ~ q for some (s-iq) €T},

o F' = {5 € §'|s' ~ sforsome s € F}.

Note that even though there are many possible
choices of ', the corresponding automata differ
only in state names.

Proposition 4. L(A) C L(A/ ~).

Proof. Letsy,...,s,be an accepting run in A of
some string xj ... X, and foralli = 0,...,nlet
§; denote a representative of 5; in.$’, i.e. a unique
element of §" satisfying §; ~ s;. It follows from
the definition that §g, . . . , §, is an accepting run
of xy...x,inA/ ~. O

2.5. lterative arrays

Aniterative array can be thought of as an infinite
sequence Aq,Ap, ... of finite states automata,
where each A; represents the behavior of the
system consisting of exactly 7 instances of the
basic component. A network invariant is any
automaton whose language contains languages
of all A;’s. The language of a tight invariant
must be exactly | Jioy £(A;). If U2, £(A;) is
not regular, then no finite-state automaton can
have such a language [20]. However, one may
try to find a “tightest regular invariant”, i.e. an
invariant that is not tight, but that has the lan-
guage that is contained in the languages of all
other invariants. Unfortunately, if | J;o; £(A4;)
is not regular, such an invariant does not exist,
as shown by the following result:

F. Balarin: Verifying Bus-Based Systems

163

Proposition 5. Let L1 be some non-regular
language, and let a finite-state automaton A
be such that L1 C L(A). Then, there exists
a finite-state automaton A" such that:

LiccA)ccL@) .

Proof. Let x1...x, be some string in L£(A)
which is not in £; (since £(A) is regular and
L1 is not, such a string always exists), and let
X be a finite-state automaton such that £(X) =
{(x1...x,)} (any language containing a single
string is regular, thus it is the language of some
finite state automaton). It follows from propo-
sitions 1 and 3 that

L1 C LA|X) C L(A) .

3. Indexed propositional logic

Given a set of index variables Ind = {i,},.....},
and a finite set of states S (which act as monadic
predicates in our logic), well formed formulas
(WFF’s) are defined recursively as follows:

e s(i)andi = jare WFF’s forany s € §, and
any i,j € Ind.

o if f and g are WFF’s, thensoare alsof A g
(conjunction), f (negation), and Ji.f (ex-
istential quantification), where i is some
index variable.

We will also freely use standard abbreviations
Vif,f V g, and f =g, with their usual mean-
ings: Ji.f, fA g, and f V g, respectively. A
WEFF is closed if all variables appearing in it are
quantified. IPL formulas are closed WFF’s.

Models of WFF’s are n-tuples of states. Whether
a n-tuple satisfies a WFF is defined relative
to an inferpretation I which assigns a num-
ber between 1 and n to every indexed vari-
able. Formally, given a WFF f, a n-tuple
o: {1,2,...,n} — &, and an interpretation
T :Ind — {1,2,...,n}, the satisfaction with
respect to I (denoted by }=7) is defined recur-
sively as follows:

e U I:I S(l) iff O'(I(l)) =,
o 0k i =jiff Z() = Z()),

e ofErfAgiffolrfando =1g,
L) I:Ififf it is not the case that o '=If,

e o =7 Jif iff o =1 f, for some interpre-
tation Z' : Ind — {1,2,...,n} satisfying
Z'(j) = Z(j) forall j # i.

It is straightforward to show that if o =7 f, and
f is a closed WFF, then ¢ =7 f for any inter-
pretation 7', so without a loss of generality, we
can write o |= f.

Given the set of states {a, b}, some examples of
WEEF’s are:

a(i) , (1)
Hli=jfilAli=k

Vi.Yj.(b(i) A b(j)) = (:’j
3i.3j.3k.3L ((a(i) Aa() A =)))

A= zn) (4)

WEFF’s (3) and (4) are also IPL formulas. Their
informal meanings are that “there exists at most
one b in a tuple”, and that “there are at least
two a’s or two b’s in a tuple”, respectively.
For example, they are both satisfied by the
tuple (a,b,a,a). The same tuple also satis-
fies (1) and (2) with respect to the interpretation
i = j = k = 3, but does not satisfy either of the
two with respect to the interpretationi = j = 2,
k=1,

For a given WFF f, define a relation Ry on the
set of index variables, as follows:

_

v (b(k) A b(I) A

Ry = {(i,j)|i=jisasubformulaoff} ,

and let R}“ be reflexive, symmetric and transitive
closure of Ry. Obviously, R}‘f is an equivalence
relation, and thus it induces a partition of Ind
into equivalence classes. Let the order of a WEF
f (denoted by ord(f)) be the cardinality of the
largest equivalence class of Rf. Finally, let (R7];
denote the set {j # i|(i,j) € Rf}. Intuitively,
if j is in [Rf];, then the truth value of f depends

on whether or not i = j, either explicitly, be-
cause i = j is a subformula of f, or implicitly,
by transitivity of =. If j is not in [R}];, then
we do not care whether a specific interpretation
assigns the same value to i and j or not, because
the truth value of f is the same in both cases.

164

F. Balarin: Verifying Bus-Based Systems

It is easy to see that the ord(f) is at most one
larger than the number of subformulas of the
form i = j, and at least one larger than the size
of [R}]; for any i.

For example, for formulas (1)—(3) relations R}

induce a single equivalence class containing all
the index variable, while for formula (4) Ry

induces two classes: {i,j} and {k,/}. Conse-
quently, the orders of formulas (1)—(4) are 1, 3,
2, and 2, respectively.

Let o and o’ be two tuples of states (not nec-
essarily of the same length). We say that o is
k-equivalent to o’ (denoted o ~; o) if one
of the following two conditions holds for every
state s € .S:

e s appears in 0 and ¢’ the same number of
times, or

e s appears at least k times in both o and ¢'.

For example, (a, b, c, ¢) and (c, a, ¢, b,) are 2-
equivalent, but not 3-equivalent.

Let o and ¢’ be two tuples of states, and let 7
and 7' be two interpretations of index variables
in a WFF f, such that o(Z(i)) and o/ (Z'(i)) are
well defined for all i € Ind. We say that (0, 7)
is f-equivalent to (0’,Z') if 0 ~y) 0’ and
the following two conditions hold:

o(Z(i)) = o (Z'(i)) Vielnd ,(5)
I =ZIG) T @) =T() V() €RY6)

This terminology is justified by the following
theorem:

Theorem 1. If(o,T)isf -equivalentto (o', "),
theno =7 f iffo’ =1 f.

Proof. By induction on the length of a for-
mula. Base cases (s(i) and i = j) follow directly
from (5) and (6) respectively.

Let the inductive assumption be that the theorem
holds for all proper subformulas of f. Then, the
inductive steps for cases f = gAh,andf =g
follow trivially from the inductive assumption.

Consider now the case f = di.g. By the
inductive assumption and the symmetry of f-
equivalence, it suffices to show that for any in-
terpretation 7 such that J(j) = Z(j) for any
j # i, there exists an interpretation 7’ such that

J'(j) = Z'(j) for any j # i, and J and J'
satisfy (5) and (6). Towards that, assume 7 is
such that 7 (j) = Z(j) for all j # i. Two cases
are possible (by assumption o Nord(f) O):

1. J(j) = J(i) for some j € [R7];, or
o(J (i)) appears the same number of
times both in o and ¢'.
It follows from (5) and (6) that there exists
¢ such that (7 (7)) = o'(c), and for any
J € Rl
I'(j) = ciff I(j).= T () .
Setting J'(i) = ¢ and J'(j) = T'(j) for
all j # i satisfies all the requirements.
2. J(j) #£ J(@@) forallj € [RF];, and
o(J (7)) appears at least ord(f) times
both in ¢ and &'.
Since there are fewer than ord(f) elements
of [Rf];, there must exist a ¢ such that
o(J (i) = o'(c) and Z'(j) # c for all
J € [Rf]i. Again, setting J'(i) = c and
J'(j) = Z'(j) for all j # i satisfies all the
requirements.

O

Corollary 1. For any IPL formula f, and any
two tuples o and o such that o ~ord(f) O

oEfiffd S .

Proof. Let ¢ and ¢’ be such that o(c) = o'(c')
(by assumption o ~,4(r) 0, such ¢ and ¢ al-
ways exist). Define Z(i) = c and Z'(i) = ¢ for
all index variables i. Now, (0, Z) is f -equivalent
to (0’,Z'), so the claim follows by Theorem 1.
O

For example, any IPL formula of order 1 or 2 is
either satisfied both by (a, b, c,c) and (c, a,c,
b,c), or it is not satisfied by either. However,
there exist formulas of order 3 or more which
are satisfied by one and not by the other. For
example:

Ji.3j.3k.c() Ac(inck)Ai=jAi=kNj=k
is satisfied by (c, a, ¢, b, ¢) butnotby (a, b, ¢, ¢).

It follows from the Corollary 1 that ~ partitions
the infinite set of all the tuples into finitely many
equivalence classes, all members of which agree
on truth values of all the formulas of order less
or equal than £.

F. Balarin: Verifying Bus-Based Systems

165

Proposition 6. Given some set of states S, the
relation ~y, partitions the set | Jo- 1 S" of all tu-

ples of states into (k + 1)ISI — 1 equivalence
classes.

Proof. Equivalence classes of ~j can be char-
acterized by assigning a number between (and
ktoall s € S. A value i < k indicates that
s appears in all elements of the class exactly i
times, and the value & indicates that it appears at
least k times. All assignments are valid except
the one that assigns 0 to all s. a

4. lterative systems

An iterative system is a pair (A, f) where A =
(8,1, T,F) is a finite-state automaton called a
cell, and f is an IPL formula called an ar-
biter. An instance of size n (where n > 1)
of an iterative system (A, f) is the automaton
A= (8%, Ty, F%), Where:

In:{(SI:---asn)|(Sh"'9Sn) ':f
and Vi = 1,...,n:850€l} ; (7)

Tu={(s1,-,50) = (1, -, qu) |
(q1,...,qn) = f and Vi : 5; 5 gq; € T} (8)

In other words, an instance of size » is the com-
position of n instances of the basic cell restricted
to states that satisfy the arbiter.

The language of any invariant of an iterative
system (A, f) must contain the language of the

oo
infinite-state automaton A= |J,2 A;. Obvi-

ously, the automatonjzxo / ~ord(ryhas that prop-

erty, and it is also finite-state, because (by
Proposition 6) the number of equivalence classes
induced by ~ sy 1s finite. We can effectively
construct such an automaton by constructing

P 2*0?’ .
A= (Ui’lﬂ dU)Ai)/ ~ord(f) We claim that

A has the same language as A / ~ora(ry The
claim follows from the following lemma:

Lemma 1. Let S be the set of states of the cell
of some iterative system, and let f be the arbiter

of that system. If p > o is a transition of some
instance of size larger than |S|* x ord(f), then

. I a N .
there exists a transition p' — o in the instance

of size |S|? « ord(f), such that p' ~ord(f) P and
o ~ord(f) a.

Proof. Since there are at most |S| distinct states
in p and o, there can be at most |S|? distinct

component transitions in p — . Thus, some
of the component transitions must appear more
than ord(f) times. By eliminating enough ap-
pearances of those components, in a way that
each one still appears at least ord(f) times, we

obtain p' % o’. Since each component that
we have eliminated still appears at least ord(f)
times, the same is also true for the number of
appearances of the corresponding present (next)
states in p’ (respectively o’). Thus, p’ ~ord(f) P

and 0 ~ (s o both hold. O

It is straightforward to show that £(A) C E(ilo
/ ~orda())- To prove the converse, it suffices to
invoke Lemma 1. to show that all transitions in

A [~ora(s) @ppear also in A.

We have shown how to construct an invariant
of an iterative array. The constructed invariant
is not necessarily tight. Unfortunately, a tight
finite-state invariant does not always exist, as
shown by the following theorem:

Theorem 2. There exists an iterative array
(A,f) such that | J;2, L(Ay) is not regular.

Proof. (sketch) Consider the iterative array with
the basic cell as shown in Figure 1 (initial states
are indicated by arrows, final by double circles),
and the arbiter:

3. () v s(D) AV ((a0) v s)
=l i (9)
1.e. at all times exactly one cell must be in state
s or state g. As long as any cell is in state p only
1 can be accepted, and after one cell moves to
state s only O can be accepted. Therefore, the
instance of size n accepts a single string con-
sisting of n — 1 occurrences of 1, while all cells
but one move to state r, another 1 while the only
cell in state g moves to state s, and finally n — 1
occurrences of 0, while all cells but one move

to state ¢, and the last cell moves to s. It follows
that:

GE(AH) = {1"0" 1 |n>1},

which is easily shown not to be regular. O

166

F. Balarin: Verifying Bus-Based Systems

Fig. 1. A cell generating a non-regular language.

5. Modeling buses

5.1. Abstract arbiter

In order to verify a communication protocol, it
might be useful to abstract low-level details of
bus arbitration, and just postulate that at any
given moment only one of the cells can own the
bus. Such arequirement can be easily expressed
by the IPL formula:

Vi. Vj. (master(i) A master(j))=—=(i = j) ,

10)
where master(i) characterizes a set of states(that
a cell can move to only if it owns the bus. If, in
addition, the bus must be owned by some pro-
cessor at all times, then (10) must be conjoined
with 3i. master(i). The order of either of the
formulas is 2.

Consider, for example, an iterative system with
the cell shown in Figure 2 (initial states are in-
dicated by an arrow, final by a double circle),
and the arbiter (9). Initially, one cell owns the
bus, and others wait to receive it. The owner
either moves to s asserting 0 on the bus, and

0,1

retaining the ownership indefinitely, or release
the bus (by moving to r). If at any time some
other cell receives the bus, it will assert 1, and
then behave as described. It is not hard to check
that the language of the instance of size n is
{107 |0 < i < n}. Thus, in the language of
every instance there exists a string not in the
language of any smaller instance (in particular
1"710), so no finite subset of instances can serve
as an invariant. Still, our procedure will find an
invariant, which is in this case even tight, in the
sense that its language is exactly the (infinite)
union of languages of all the instances.

5.2. Wired AND

One low-level approach to bus arbitration is to
let bus wires be “wired AND’s”. On these wires
only 0’s can be asserted. The value of a wire is
1 if no cells assert 0. If a cell wants the owner-
ship, it asserts 0 on one of the dedicated wires.
Other cells will not try to transmit until that wire
is 1 again. Of course, it is possible that two cell
assert 0 at the same moment, so some kind of
collision detection and recovery have to be built

Fig. 2. An example of a basic cell.

F. Balarin: Verifying Bus-Based Systems

167

into the protocol. A single wired AND can be
modeled by the following IPL formula:

(3i. sense0(i))==(3j. assert0(j)), (11)
where we assume that a cell can move to some
state characterized by senseQ only if the value
of that wire is 0, and similarly, a cell can move
to some assert0 state only if it is asserting 0. If
more wires represent wired AND, we can model
them by the conjunction of formulas like (11).
It is encouraging to notice that the order of (11)
is one, and that it remains one even when many
such formulas are conjoined.

6. Conclusions

We have proposed a formalism to model bus-
based systems, based on the use of automata to
model basic components, and the use of logic
formulas to model bus arbitration. For this pur-
pose, we have defined the logic IPL. We have
shown that IPL has a small model property, and
therefore partitions the infinite state space of
bus-based systems into a finitely many equiva-
lence classes. We have shown that the quotient
with respect to that partition can be constructed
in finite time, and propose to use that quotient
as a size-independent abstraction of bus-based
systems. The abstraction is conservative, and
we have shown that it is not generally possible
to do any better, because exact simplifications of
some bus-based systems have non-regular lan-
guages, and therefore cannot be represented by
finite-state automata.

References

[1] RAJEEV ALUR, COSTAS COURCOUBETIS, THOMAS A.
HENZINGER, AND PEI-HSIN HO. Hybrid automata:
an algorithmic approach to the specification and
verification of hybrid systems. In R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, editors, Hy-
brid Systems, Lyngby, Denmark, 10-12 Oct. 1991,
Proceedings, pages 209-229. Springer-Verlag, 1993.

[2] C.M. ANGELO, D. VERKEST, L. CLAESEN, AND H. DE
MAN. On the comparison of HOL and Boyer-Moore
for formal hardware verification. Formal Methods
in System Design, 2(1):45-72, February 1993.

[3] L. M. AUGUSTIN, D. C. LUCKMAN, B. A. GENNART,
Y. HUH, AND A. G. STANCULESCU. Hardware design
and simulation in VAL/VHDL. Kluver Academic
Publishers, 1991.

[4] A. Aziz, F. BALARIN, R. K. BRAYTON, S.-T. CHENG,
R. Hoiarl, S. C. KRISHNAN, R. K. RANIAN, A. L.
SANGIOVANNI-VINCENTELLI, T. R. SHIPLE, V. SING-
HAL, S. TASIRAN, AND H.-Y. WANG. HSIS: A BDD-
based environment for formal verification. In Pro-
ceedings of the 31th ACM/IEEE Design Automation
Conference, 1994.

[5] ADNAN Aziz AND ROBERT K. BRAYTON. Verify-
ing interacting finite state machines. Technical
Report UCB/ERL M93/52, Electronics Research
Laboratory, College of Engineering, University of
California, Berkeley, July 1993.

[6] FELICE BALARIN, ROBERT K. BRAYTON, SzU-TSE
CHENG, DESMOND A. KIRKPATRICK, ALBERTO L.
SANGIOVANNI-VINCENTELLI, AND EPHREM C. WuU.
A methodology for formal verification of real-
time systems. Technical Report Memorandum
No. UCB/ERL M95/11, University of California,
Berkeley, Electronics Research Laboratory, College
of Engineering, University of California, Berkeley,
CA 94720, February 1995.

(7] FELICE BALARIN AND ALBERTO L. SANGIOVANNI-
VINCENTELLL. On the automatic computation of
network invariants. In David L. Dill, editor, Pro-
ceedings of Computer Aided Verification: 6th Inter-
national Conference, CAV’94, Stanford, CA, June
1994, pages 234-246. Springer-Verlag, 1994. LNCS
vol. 818.

[8] ORNA BERNHOLTZ, MOSHE Y. VARDI, AND PIERRE
WOLPER. An automata-theoretic approach to
branching-time model checking. In David L. Dill,
editor, Proceedings of the Conference on Computer-
Aided Verification, volume 818 of LNCS, pages
142-155, Stanford, CA, June 1994. Springer-Verlag.

[9] W.R. BEVIER, W.A. HUNT, J.S. MOORE, AND W.D.
YOUNG. An approach to systems verification. Jour-
nal of Automated Reasoning, 5(4):411-28, Decem-
ber 1989.

[10] KARL S. BRACE, RICHARD L. RUDELL, AND RAN-
DAL E. BRYANT. Efficient implementation of a BDD
package. In Proceedings of the 27th ACM/IEEE
Design Automation Conference, pages 4045, June
1990.

[11] M.C. BROWNE, E.M. CLARKE, AND O.-GRUMBERG.
Reasoning about networks with many identical fi-

nite state processes. Information and Computation,
81(1):13-31, 1989.

[12] B. CHEN, M. YAMAZAKI, AND M. FunTA. Bug
identification of a real chip design by symbolic
model checking. In Proceedings of The European
Conference on Design Automation, EDAC-ETC-
EUROASIC, Paris, France, 28 Feb.-3 March 1994,
pages 132-136. IEEE Comput. Soc. Press, 1994,

[13] EDMUND M. CLARKE, E. A. EMERSON, AND A. P.
SISTLA. Automatic verification of finite-state con-
current systems using temporal logic specifications.
ACM Transactions on Programming Languages Sys-
tems, 2(8):244-263, 1986.

168

F. Balarin: Verifying Bus-Based Systems

[14] E. ALLAN EMERSON. Temporal and modal logic.
In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 995-1072. Elsvier Science
Publishers B. V., 1990.

[15] M. GORDON. Why higher-order logic is a good
formalism for specifying and verifying hardware. In
G.J. Milne and P.A. Subrahmanyam, editors, For-
mal Aspects of VLSI Design. Proceedings of the
1985 Edinburgh Workshop on VLSI, pages 153-77.
North-Holland, 1986.

[16] ORNA GRUMBERG AND DAVID E. LONG. Model
checking and modular verification. In CONCUR,
Amsterdam, The Netherlands, August 1991. (also
submitted to JACM).

[17] AARTI GUPTA. Formal hardware verification meth-

ods: A survey. Formal Methods in System Design,
1(2/3):151-238, October 1992.

[18] FREDERICK C. HENNIE. [terative Arrays of Logical
Circuits. MIT Press and John Eiley Sons, Inc., 1961.

[19] THOMAS A. HENZINGER, XAVIER NICOLIN, JOSPEH
SIFAKIS, AND SERGIO YOVINE. Symbolic model-
checking for real-time systems. In Proceedings of
7th Symposium on Logics in Computer Science.
IEEE Computer Society Press, 1992.

[20] J.E. HOPCROFT AND 1.D. ULLMAN. [Introduction

to Automata Theory, languages and Computation.
Addison Wesley, 1979.

[21] R. P. KURSHAN. Analysis of discrete event co-
ordination. In J.W. de Bakker, W.P. de Roever,
and G. Rozenberg, editors, Stepwise Refinement of
Distributed Systems : Models, Formalisms, Correct-
ness, pages 414—453. Springer-Verlag, 1990. LNCS
vol. 430: :

[22] R.P. KURSHAN AND K. L. MCMILLAN. A structural
induction theorem for processes. In Proceedings of
the 8th ACM Symp. PODC, 1989,

[23] ROBERT P. KURSHAN. Computer-Aided Verification
of Coordinating Processes: The Automata-Theoretic
Approach. Princeton University Press, 1994.

[24] ZOHAR MANNA AND ANIR PNUELI. Verification of
concurrent programs: The temporal framework. In
R. Boyer and J. Moore, editors, Correctness Prob-
lem in Computer Science, pages 215-273. Academic
Press, 1981.

[25] KENNETH L. MCMILLAN. Symbolic Model Check-
ing. Kluwer Academic Publishers, 1993.

[26] B. E. NELSON, R. B. JONES, AND D. A. KIRK-
PATRICK. Simulation event pattern checking with
proto. In Proceedings of the SHDL Conference,
1994,

[27] A. PNUELL The temporal logic of programs. In
18th IEEE Symposium on Foundations of Computer
Science, pages 4657, October 1977.

[28] J.K. RHO AND F. SoMENzI. Inductive verification
of iterative systems. In Proceedings of the 29th
ACM/IEEE Design Automation Conference, pages
628-33, June 1992.

[29] J.K. RHO AND F. SOMENZI. Automatic generation
of network invariants for the verification of iterative
sequential systems. In Costas Courcoubetis, editor,
Computer Aided Verification: 5th International Con-
ference, CAV’93, Elounda, Greece, June/July 1993,
Proceedings, pages 123—137. Springer-Verlag, 1993,
LNCS vol. 697.

[30] R. SCHLOR AND W. DAMM. Specification and ver-
ification of system level hardware designs using
timing diagrams. In Proceedings of The European
Conference on Design Automation, Paris, France,
February 1993, 1993.

[31] Z. SHTADLER AND O. GRUMBERG. Network gram-
mars, communication behaviors and automatic veri-
fication. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems, International
Workshop Proceedings, Grenoble, France, 12-14
June 1989, pages 151-65. Springer-Verlag, 1990.
LNCS vol. 407.

[32] ARAVINDA P. Si1STLA AND EDMUND M. CLARKE.
Complexity of propositional linear temporal logics.
Journal of the ACM, 32(3):733-749, July 1985.

[33] MOSHE Y. VARDI AND PIERRE WOLPER. An
automata-theoretic approach to automatic program
verification. In Proc. IEEE Symp. on Logic in
Computer Science, pages 332-344, Boston, July
1986.

[34] MoSHE Y. VARDI, PIERRE WOLPER, AND AR-
AVINDA P. SISTLA. Reasoning about infinite com-
putation paths. In Proceedings of 24th Annual
Symposium on Foundations of Computer Science,
Tucson, AZ, USA, 7-9 Nov. 1983. IEEE Comput.
Soc. Press, 1983.

[35] P. WOLPER AND V. LOVINFOSSE. Verifying proper-
ties of large sets of processes with network invariants.
In J. Sifakis, editor, Automatic Verification Methods
for Finite State Systems, International Workshop
Proceedings, Grenoble, France, 12-14 June 1989,
pages 68-80. Springer-Verlag, 1990. LNCS vol.
407.

Received: August, 1995
Accepted: November, 1995

Contact address:

Felice Balarin

Cadence Berkeley Laboratories
1919 Addison St., Suite 303-304
Berkeley, CA 94704, USA
phone: 1-408-944-7146

fax: 1-510—486-0205

email: felice@cadence.com

FELICE BALARIN received the B.S. degree in electrical engineering and
the M.S. degree in computer sciences from the University of Zagreb,
Croatia in 1985 and 1989, respectively. He received the Ph.D. degree in
electrical engineering and computer science from the University of Cal-
ifornia at Berkeley in 1994. Since then, he has been a research scientist
at the Cadence Berkeley Labs. His research is focused on the analysis
and development of formal methods for design, verification and control
of digital and real-time systems, and the application of these methods
to the hardware /software co-design.

