Journal of Computing and Information Technology - CIT 2, 1994, 4, 277—-290

277

Information Systems and the
Engineering Paradigm:
Integrating the Formal Methods
into the Development Process’

Hossein Sailedian

Department of Computer Science, University of Nebraska, Omaha, U.S.A.

Formal methods are mathematically-based techniques
which can be used for rigorous modelling, analysis,
specification, and design of information systems. We
discuss the role of formal methods in the context of an
engineering paradigm and how it applies to informa-
tion systems development. An introduction to precise,
concise, and unambiguous description of information
systems using a formal method is provided. An example
is given to illustrate the effectiveness of formal methods
in describing an information system. The misconcep-
tions about the use of formal methods are examined, and
guidelines for transferring formal methods technology
into the actual workplace are presented. This discussion
emphasizes automated tools to assist in developing sys-
tems specification, marketing of formal methods through
additional industrial-strength case studies, and the need
for a framework for reusable specifications. The overall
aim of the paper is to narrow the gap between the results
of academia and pragmatic concerns of the information
systems industry, emphasizing the importance of formal
methods in the development of information systems
and encouraging further progress in information systems
methodologies.

Keywords: Formal Methods, Engineering Paradigm,
Software Development, Language Z

1. Introduction

The increased cost of software has become a
major concern of the computing industry. It is
reported that, in the mid 1950s, software cost
was less than 20% of total computing cost, but
now it exceeds 80% (Biermann 1990). Precise
and up-to-date figures representing the actual

cost is neither available nor is easy to establish.
Boehm (1987) suggested that in 1985 world-
wide software cost exceeded $ 140 billion and
was growing at a rate of 12% per year. Accord-
ing to this statistic, software cost will reach $
435 billion by the year 1995. Small improve-
ments in software development can, therefore,
result in a substantial reduction in this high
cost. A large portion of software cost is due
to its maintenance. The maintenance of ex-
isting software systems can account for over
70% of all efforts expended by a software or-
ganization (Pressman 1992). This percentage
continues to rise. Researchers have indicated
that a lack of rigorous practices which elim-
inate residual errors in specification and pro-
duces precise and unambiguous specification in
software development activities has translated
into a large portion of these maintenance costs.
Cost-effective development of reliable informa-
tion systems has been extensively studied as a
central issue in information systems develop-
ment. A considerable number of principles have
been explored and some have proven effective
in practical projects. These include software
development methodologies and environments
such as the phased approach, top-down design,
structured programming, CASE tools, 4GLs,
application generators, and so forth. Neverthe-
less, problems in reliable software development
are not completely resolved and many enter-
prises still suffer enormously from the high cost
of software. The concern for reliable and cost-

* This research was supported in part by a UCR grant from the University Nebraska at Omaha.

278

Hossein Saiedian: Information Systems and the Engineering Paradigm

effective construction of information systems
has led to a major emphasis in discovering new
techniques to improve information systems de-
velopment methodologies.

2. Information Systems as an Engineering
Discipline

The high cost of software has not been the only
concern. Another major concern of the com-
puting industry has been the reliability of its
information systems. Industry has enhanced its
information system infrastructure, and informa-
tion system are built in areas such as air traffic
control, airline reservations, military command
and control, hospital on-line patient record man-
agement, stock transactions. These systems
play an important role in our daily lives and
the competitiveness of our country. Incorrect
functionality or inefficient performance of these
systems could have major impact on our safety
and well being. Some of these systems will
have hundreds of thousands of lines of code.
The complexity of these systems may super-
sede the complexity of any artifact ever built
by mankind. The above characteristics of in-
formation systems imply that the specification,
design, implementation, and validation of these
systems is an engineering process of consid-
erable difficulty comparable to other complex
engineering products. The question is, are our
future information system specialists prepared
for the design and maintenance of such systems?
Will they be concerned with the efficiency, re-
liability, safety, ease of use, and robustness of
their information system products just like en-
gineers are concerned with their products? If
we are to use traditional engineering disciplines
as guides for our information system design, we
have to understand the engineering methods and
the process by which engineers have achieved
their goals. (Note that the emphasis here is
not necessarily on what engineering is but on
what engineers do.) Although these methods
are many and varied, we like to emphasize on the
application of science and by extension mathe-
matics in the activities of practicing engineers.
By doing so, we like to assert that formal meth-
ods may mirror these activities in the area of
information systems. Combining the investiga-
tion into engineering uses of mathematics with
our taxonomy of formal methods, we hope to

establish the important place of formal methods
in information system development, point to the
parallel between mathematics/engineering and
formal methods/information systems, and em-
phasize the importance of introducing the con-
cept of formal methods in information systems
curriculum. There are a number of excellent
references on what constitutes an engineering
process. One such reference is Koen (1985).
According to Koen, the engineering method is
“the strategy for causing the best change in a
poorly understood or uncertain situation within
the available resources,” and further explains
that engineers base their work on choosing the
best heuristics from a pool of given heuristics.
Indeed, what distinguishes an engineering prac-
tice is its assessment of a body of heuristics that
succeed more often than they fail. However, the
most important aspect of Koen’s thesis and the
one which we emphasize is his emphasis on use
of science, and by extension, mathematics part
of the engineering process. (The information
system also has its own heuristics, e.g., avoid
goto, limit modules to one page, avoid exces-
sive global data definition, etc. It is important
to use information system heuristics that have
proven effective. Our goal is to emphasize the
more important thesis of Koen, that of the appli-
cation of mathematics.) Although space does
not permit detailed discussion of Koen’s thesis
and its implications, the overall theme, i.e., the
emphasis on the role of science and mathemat-
ics, provides a framework for judging the place
of formal methods, which in our opinion play an
analogous role in information systems as math-
ematics do in engineering. Great achievements
in past chemical, electrical, industrial, civil and
mechanical engineering have been firmly based
on an understanding and application of formal
methods. The time has come to use formal
methods for information system development
and to construct a pragmatic framework for
teaching the basic concepts to newcomers.

3. Objectives and Organization
of the Paper

We believe that formal methods should be rec-
ognized as an important element of information
systems development process and should be the
foundation for various techniques of validation
of software including verification, testing, and

Hossein Saiedian: Information Systems and the Engineering Paradigm

274

walk-through reviews. The aim of this paper is
to contribute to the wider use of formal meth-
ods in information systems development. Qur
objective is not to instruct the readers in the the-
oretical world of formal methods, but rather in
the importance of their application in develop-
ing information systems. The organization of
this paper is as follows:

e We first discuss formal methods and then dis-
cuss the effectiveness of specifications that
are formal, i.e., based on a mathematical ap-
proach.

e We will then give an example to show how
a formal system, called Z, can be used to
formally describe the functionality of an in-
formation system. This example is a simpli-
fied version of an airline reservation system;
nevertheless, the effectiveness of formalism
is illustrated.

e We then examine the roots of some common
misconceptions about formal methods.

e Finally, the paper ends with a discussion of
how to transfer the formal methods technol-
ogy into the workplace and focus on further
research areas for making formal methods
more widely used.

Our overall aim is to narrow the gap between
the results of academia and pragmatic concerns
of industry as well as emphasizing the impor-
tance of formal methods in the development
of information systems and encouraging further
progress in information system methodologies.

4. Formal Methods

A method is defined as a set of procedures (or
guidelines) for selecting and applying fools and
techniques to construct a (reliable) artifact (in
this case, an information system). A tool is for-
mal if it can be mechanically manipulated ac-
cording to some well-defined, mathematically-
based rules. That is, the the tool should have
a precise mathematical semantics. (Note that
a notation is a form of tool.) If a method uses
formal tools (or notations), then it is called for-
mal. The objective of formal methods is to
achieve rigor in reasoning as well as achiev-
ing mechanical support. Formal methods of

software development use a mathematical nota-
tion. By mathematics, we do not mean deriva-
tions, integration, differential equations, and
such. Most popular formal methods employ
only a limited branch of mathematics consist-
ing of set theory and logic. The elements of
both set theory and logic (which are taught in
discrete mathematics classes) are easily under-
stood. Such notation is used precisely describe
the properties of a software without unduly con-
straining the way in which these properties are
to be realized. In other words, they describe
what the system must do without saying how it
is to be done. This abstraction is very useful
in developing an software since it allows ques-
tions about the properties of the system to be
answered confidently without speculating about
the meaning of certain phrases in an imprecisely
worded prose description. Furthermore, formal
methods provide a basis for logical reasoning
about the artifacts produced. (These artifacts
may be abstract in terms of specifications, or
they may be concrete, in terms of programming
code.) We believe that it is important to build
an (abstract) mathematical description of an in-
formation system using formal methods before
building the system itself. The reason for doing
s0 is to achieve more precision in the descrip-
tions and to explore the validity of the design
by reasoning about the description. Since for-
mal methods deal with the semantics aspect of
an information system, they can help us deter-
mine which functional properties to capture in
abstract specification and which to focus on in
concrete design.

5. Formal Methods: Modelling and
Specification

Formal methods can be applied during the spec-
ification, design, and implementation phases of
information systems development. Some for-
mal systems like Z (Diller 1994) are considered
as a modelling and specification tool while a
system like the VDM (Jones 1990) emphasizes
design. Dijkstra’s “weakest precondition” ap-
proach can be used during the implementation
to prove the correctness of a program. Most
formal methods support both system modelling
and reasoning. (Of course the degree in which
emphasis is shifted from modelling to reason-
ing is varied in different approaches.) A formal

280

Hossein Saiedian: Information Systems and the Engineering Paradigm

system like Z can be used to produce a clear and
concise model of an information system. This
by itself is of sufficient value to encourage and
warrant the use of formal methods. This in fact
is our emphasis. That is, we emphasize the use
of formal methods for specification and mod-
elling. (Of course a formal model of a system
produced by a methods like Z can be used in
conjunction with verified design by a series of
refinement during which abstract descriptions
are transformed into more concrete design struc-
tures. While this transformation is being done,
inference rules can be used to uncover inconsis-
tencies.) The development of any large system
has to be preceded by a specification of what is
required. Without such a specification, the sys-
tem’s developers will have no firm statement of
the needs of the would-be users of the system.
The need for precise specification is accepted in
most engineering disciplines. Information sys-
tems are in no less need of precision than other
engineering tasks. We place special importance
on the requirement analysis and specification
phase since we believe that precise and con-
cise specifications are an essential prerequisite
to the successful development and evolution of
a system. If the system is not precisely speci-
fied, the design process could become chaotic,
resulting in a system that is complicated, error-
prone and difficult to maintain. Many aspects
of an information system must be specified in-
cluding its functionality, performance and cost.
In this paper attention is focused on a system’s
functionality. The requirements specification
phase, i.e., when the functions of an software
are specified, plays a critical role. Its role is
so critical that failure to properly carry out this
phase is historically known to cause great finan-
cial losses. Hence requirements specification
has been the subject of great deal of attention in
recent years. The existence of workshops and
conferences devoted to this subject, e.g., the
International Workshop on Software Specifica-
tion and Design, Formal Methods Europe, ACM
SIGSOFT International Workshop on Formal
Methods in Software Development and Work-
shop on Industrial-Strength Formal Techniques
bear witness to the importance of this field. Re-
quirements can be specified informally via a
natural language. Informal specifications alone
are certainly not appropriate because they are
normally inconsistent, inaccurate, ambiguous
and they rapidly become bulky and it would be

very difficult to check for their completeness.
Semi-formal approaches to specification have
been developed since the 1970’s to improve
the practices used in software development. A
particular emphasis in semi-formal approaches
(e.g., data flow diagrams) is on graphical rep-
resentation of the software being built. Major
problems with semi-formal methods include:

e their lack of a precise semantics that can be
used to reason about or verify the properties
of the software, and

e generally “free” interpretation.

To overcome the limitations of informal and
semi-formal approaches, we emphasize using
formal methods to produce precise and unam-
biguous specifications (known as formal spec-
ifications). A formal approach is also needed
to achieve precise communication among var-
ious users and developers of a system. Pre-
cise communication is critical because in large
projects a group of people must arrive at a con-
sistent understanding of the proposed system in
order to successfully construct it. We do not
assert that informal (e.g., natural language de-
scriptions) and semi-formal specifications are
useless. Clear use of a natural language ob-
viously has a place in describing systems. In
fact, they may be very useful as a first introduc-
tion to a software and as comments to enhance
the readability of formal specifications. Thus
formal and informal specifications must not be
regarded as the only alternatives but rather as
complementary. In order to achieve precision,
however, a specification formal. Figure 1 de-
picts the role of the requirements specification
document in the software process. In addition to
precision in specifications, formal methods en-
able the designer to use rigorous mathematical
reasoning to prove the properties of the soft-
ware. Thus design errors (e.g., inconsistencies,
incompleteness, contradictions) can be detected
in an early stage of development.

6. An Example: A Flight Reservation
System

We mentioned that formal methods can be used
during both early stages of software develop-
ment for modelling and specification purposes
and in later stages for verification, formal walk-
through, or to show the equivalence of differ-
ent implementations. For this example, the use

Hossein Saiedian: Information Systems and the Engineering Paradigm

281

of formal methods for specification is empha-
sized. We provide an example in Z to show
the effectiveness of formal methods in the spec-
ification of an information system. An impor-
tant feature of Z is that it provides a framework
within which a specification of a system can be
constructed incrementally. The main building
block of this framework is a two-dimensional
graphical structure called schema. Schemas
group all the relevant information that belongs
to a system, and describe its static aspects (e.g.,
the states it occupies) and the dynamic prop-
erties (e.g., the operations that are possible on
the state). A complete Z specification is con-
structed from schemas which themselves can be
expressed in terms of other schemas. (This is
similar to construction of a program by a se-
ries of program modules which can be read and
understood in isolation.) A schema has the fol-
lowing structure:

SchemaName

Signature

Predicate

The signature introduces variables that define
the state and is analogous to the declaration part
of a Pascal program. The predicate of a schema
refers to variables (both local and “global”—
those that are defined in other schemas) and re-
lates the values of these variables to cach other.
(To reduce unnecessary clutter, entries of decla-
ration and conjuncts of predicate are placed on
separate lines. However, it is possible to place
more than one declaration entry, separated by
a semicolon, on each line. Similarly, conjuncts
of predicate can be placed on a single line and
explicitly connected by an “and” connective.)
The signature and predicate part of a schema
are separated by a horizontal bar which is pro-
nounced as “such that.” There is an equivalent
linear notation for schemas shown as [Signature
| Predicate]. To illustrate the purpose of each
part of a schema more specifically, we will give
the specification of a simple Flight Reservation
System (FRS). For the sake of simplicity, we
assume there is only one type of flight. (It will
not be difficult to extend this specification to
include more than one flight.) Since our main
objective is to illustrate the concepts of formal
specification in Z, we’ll keep the example very
small and simple by ignoring other aspects of

reservation such as destination, time, date, etc.
Only reservation and cancelation operations and
simple queries are considered.

6.1. State of the Flight Reservation
System

The first step is to define the state of the FRS:

FRS
Passengers : P Person

#Passengers < Capacity

The state of the FRS has only one item called
Passengers which is a set of Person. (In Z, P
stands for ‘set of’. Person is assumed to be a
pre-defined type.) The predicate of the FRS
Is an invariant expression that says the size of
the Passengers set must always be less than or
equal to Capacity. (Capacity is a value repre-
senting the maximum number of passengers for
the flight. A # symbol in Z represents the size
operator.) Next we specify the initial state of
FRS:

InitFRS
FRS’

Passengers’ = {}

which essentially specifies that the Passengers
set is initially empty. (The purpose of prime
symbol is explained below.)

6.2. Operations on the Flight Reservation
System

We first specify the Reserve operation:

Reserve
AFRS
p?: Person

#Passengers < Capacity
p? & Passengers
Passengers’ = Passengers U {p?}

e The declaration AFRS alerts us to the fact
that the schema is describing a state change:

282

Hossein Saiedian: Information Systems and the Engineering Paradigm

the state of the FRS will be modified because
of the operation.

e Variable p is input to the Reserve operation.
Note that the question mark, by the common
convention, specifies that p is an input.

o The predicate part of the schema consists of
three predicates. The first two are essentially
the pre-conditions for the success of the op-
eration. The first one states that the number
of passengers booked for the flight should be
less than the maximum capacity, while the
second one specifies that the input p should
not already be in the set of Passengers. (The
latter predicate disallows multiple reserva-
tions by the same passenger).

e The last predicate is the post-condition of
the operation and states that after the oper-
ation, the set of passengers includes input
p. Conventional notation of adorning a vari-
able with the prime symbol to show the new
value of unprimed variable is adopted by Z.
Thus, the notation Passengers’ reflects the
new value after the operation.

The operation for cancelation is specified be-
low:

Cancel
AFRS
p?: Person

p? € Passengers

Passengers’ = Passengers \ {p?}

Note that in the above, the pre-condition states
that a passenger must have a reservation for the
cancelation to succeed. (Symbol is for set sub-
traction.)

Strengthening the Specification To strengthen
the specifications we have to specify what is to
happen when the pre-condition(s) of an opera-
tion are not fulfilled. Because Z allows incre-
mental specifications, we can separately spec-
ify all error cases and use Z schema calculus to
combine them. For the Reserve operations, the
pre-conditions are:

#Passengers < Capacity
p? & Passengers

When either of the above pre-conditions s false,
we would like to output a suitable error message.

A schema is constructed for each of the above:
FlightFull

=ZFRS

response! . Report

#Passengers’ = Capacity

response! = Flight is full’

AlreadyReserved
ZFRS
p?:Person

response! : Report

p? € Passengers

response! = ‘Already reserved’

Note that:

e when an error occurs, the state of FRS should
not be altered. The declaration EFRS indi-
cates this fact.

e Variable response is used for outputting mes-
sages and is of pre-defined type Report. Out-
put items in Z are decorated with an excla-
mation point.

For the sake of completeness we introduce the
following schema:

Success

response! : Report

response! = Successful’

to output ‘Successful’ when an operation has
been carried out successfully. It is now possi-
ble to construct a robust version of Reserve by
using operators of Z schema calculus:

RReserve = Reserve N Succes
\%
FlightFull
A%
AlreadyReserved

The above notation introduces a new schema
called RReserve obtained by combining four
existing schemas. RReserve is in fact made
of four schemas. Its signature can be pictured

Hossein Saiedian: Information Systems and the Engineering Paradigm

283

as containing all variables of Reserve, Success,
FlightFull, and AlreadyReserved. Likewise, its
predicate is a correct combination of the predi-
cates of these four schemas. If expanded, RRe-
serve would look like the following:

RReserve
Passengers, Passengers’ : P Person

p? : Person

response! : Report

(#Passengers’ < Capacity
p? & Passengers
Passengers’ = Passengers U p
response! = ‘Successful’)
V
(#Passengers = Capacity
response! = ‘Flight is full’
Passengers’ = Passengers)
vV
(p? € Passengers
response! = ‘Already reserved’

Passengers’ = Passengers)

The definition of RReserve could have been
developed like the above without the use of
schema calculus. But such an approach would
have been tedious and prone to errors. The
schema calculus makes specification of com-
plex operations a lot simpler and manageable by
providing operators to combine existing schemas.
The robust version of Cancel operation can be
developed similarly. We first define a new
schema called NoSuchReservation:

NoSuchReservation
ZFRS
p?: Person

response! : Report

p? & Passengers

response! = ‘No such reservation’

The above schema is combined with Cancel to
form the RCancel operation:

RCancel = (Cancel V Succes)
A (NoSuchReservation)

6.3. Querying the Flight Reservation
System

Two examples of query operations are given be-
low. One is used to determine whether a certain
passenger has a reservation:

QueryReservation
EFRS
p?:Person

response! : Report

(p? € Passengers A response! = '0K’
v

(p? & Passengers A

response! =‘No reservation’)

the next is for determining the total number of
passengers:

HowManyPFassengers
EFRS
count! : Z

count! = #Passengers

Note that neither one of the above query opera-
tions alters the state of the FRS.

6.4. Observations

As it can be observed from the above, formal
specifications can aid in arriving at the most
useful abstract description of a system because
they highlight the relevant details of a system.
Formal specifications given in a language like
Z allow one interpretation and, unlike program-
ming languages, they are not required to contain
efficiently implementable constructs and thus
eliminate unnecessary details. This attribute
contributes to the readability, minimality, and
precision of specifications. The advantages of
formal modelling and specifications, as evident
from the above example, can be summarized as
follows:

e Preciseness. Formal specifications allow re-
quirements of an information system to be
recorded accurately.

284

Hossein Saiedian: Information Systems and the Engineering Paradigm

e Unambiguous. Different interpretations are
avoided because the constructs used have
well-defined meaning.

e Conciseness. A mathematical notation is ca-
pable of expressing complex facts about in-
formation systems in a short space.

6.5. A Few Comments about Z

The design of Z illustrates that informal (En-
glish) descriptions are complementary to for-
mal specifications. As it can be seen from the
above example, small chunks of formal descrip-
tions, framed in schema boxes, are surrounded
by informal prose, explaining the relationship
between the formal expressions and reality, thus
motivating discussion and subsequently deci-
sions that are captured by formalism. Note
that in the above example, the English state-
ments were used primarily to explain the Z no-
tation. Z also reminds (and allows) us to begin
the specification with a simple description of
the overall structures of an information system
(with as few variables/operations as possible)
and then expand the descriptions (while leav-
ing the initial descriptions unchanged). This
is done by: (1) embedding the initial general
schema inside other schemas, and (2) forming
new schemas by connecting existing schemas
through schema connective operators. Such an
approach encourages and facilitates modularity:
individual requirements are defined separately
and then they are joined together by connective
operators. The schema calculus of Z is based
on simple connective operators (A, V, =
and negation).

7. Misconceptions about Formal Methods

There are a number of common misconceptions
about the uses of formal methods. For example,
it is stated that formal methods are difficult to
use, too mathematical, only applicable to triv-
ial academic problems, and not widely used.
In this section, we examine a number of such
misconceptions. Many of these and other mis-
conceptions are discussed in greater detail in
the context of “seven myths of formal methods”
by Hall (1990). (A recent article by Bowen &
Hinchey (1994) discovers and addresses seven
more myths of formal methods.)

7.1. Formal Methods are for Program
Verification Only

One misconception is that formal methods are
for program verification only. A lot of work,
especially in academic institutions, has concen-
trated on using formal methods for program ver-
ification. Program verification makes formal
methods seem very difficult and technical. In
fact, one reason that formal methods is unpop-
ularly perceived is that they are often confused
with proving programs corrects. Program veri-
fication, however, is only one aspect of formal
methods and perhaps the least significant. Pro-
gram verification is normally applied to the later
stages of development well after the system has
been modelled and specified. The primary use
of formal methods is for writing specifications
that precisely define what a system is intended
to do.

7.2. Formal Methods are Inapplicable
to Real Projects

Another misconception is that formal methods
are not used in industry for real projects. The
fact is that they are. There are numerous re-
ports on practical and effective use of formal
methods in industry (Hinchey & Bowen 1995,
Woodcock & Larsen 1993, Hall 1990). The
range of applications, from small to large sys-
tems, possessing attributes such as real-time,
interactive, robust, and secure, has been suf-
ficiently wide to test the viability of formal
methods, and to establish a considerable body
of knowledge and experience. Several authors
have discussed experience gained in applying
formal specification techniques to IBM’s CICS
transaction processing system. CICS is a large,
20-year-old system and contains over half a mil-
lion lines of code. The language Z was used by
IBM to re-specify CICS to improve its main-
tainability. Industry’s concern for mathemati-
cal techniques is also evident from a recently
completed report by the Computer Science and
Technology Board (Press 1990). This report
points to the need for strengthened mathemati-
cal foundations in information systems and re-
lated areas. For example, the report warns that
as the software developers begin to envision in-
formation systems that require many thousands

Hossein Saiedian: Information Systems and the Engineering Paradigm

285

of person-years, current pragmatic or heuris-
tics approaches begin to appear less adequate
to meet application needs. Therefore, the de-
velopers may have to call for more systematic
approaches. More mathematics, science, and
engineering are needed to meet their call. For
an international survey on industrial applica-
tions of formal methods see (Craigen, Gerhart
& Ralston 1993). This report evaluates inter-
national industrial experience in using formal
methods, provide an authoritative record on the
practical experience of formal methods to date,
and suggests areas where future research and
technology development are needed.

7.3. Formal Methods are too Mathematical

Another misconception is that formal methods
are too mathematical and too complicated re-
quiring extensive mathematical background to
understand and use them. Formal methods are
based on mathematics. However, the mathe-
matics of formal methods are not difficult to
learn. Using them requires some training, but
experience has shown that such training is not
difficult and that people with only high school
math can develop the skills to write good for-
mal specifications. Most popular formal meth-
ods languages (e.g., Z and VDM) employ only
a limited branch of mathematics consisting of
set theory and logic. The elements of both set
theory and logic are easily understood and are
taught early in high school these days. Cer-
tainly, anyone who can learn a programming
language can learn a specification language like
Z.In fact, learning a specification language such
as Z should be easier than a programming lan-
guage like COBOL. Z is smaller; it is abstract,
and is implementation-independent. (For ex-
ample, 7 uses data types like sets instead of
programming language’s types like arrays. This
kind of representation captures the essence of
what is required better than the corresponding
implementation structures.) The specification
of a problem in Z is shorter and much easier
to understand than its expression in a program-
ming language like COBOL. The negative per-
ception of the role of mathematical techniques
in requirements specification is very unfortu-
nate. When problems become very large and
complex in other engineering disciplines, they
normally turn to mathematics for help. Un-
fortunately, some software developers feel that

formal methods and mathematical tools are of
academic interest only and that real problems
are too large and complex to be handled by for-
mal methods and mathematical tools. The need
for a broader use of mathematical techniques
and concerns for lack of rigor and accountabil-
ity in software development is not felt just by
the academicians. Consider, for example, a re-
cent report released by the Subcommittee and
Oversight of the U.S. House of Representatives
Committee on Science, Space and Technology
(House of Representatives 1989). This report
addresses the problem of software reliability
and quality and criticizes universities for not
providing adequate education for software en-
gineers. In an article summarizing this congres-
sional report, Cherniavksy (Cherniavsky 1990)
writes:

“[...there is] a fundamental difference be-
tween software engineers and other engi-
neers. Engineers are well trained in the
mathematics necessary for good engineer-
ing. Software engineers are not trained in the
disciplines necessary to assure high-quality
software ...”

8. Formal Methods and the Workplace

Numerous pragmatic challenges are still ahead
in order to transfer formal methods technology
into the actual workplace and make them more
popular. We will give our guidelines and sug-
gestions in this section. Most importantly, pro-
fessionals and students must be trained and ed-
ucated in the use of formal methods. Training
and education guidelines are given at the end
of this section. (A much more detailed discus-
sion of these and other guidelines is given by
Saiedian & Hinchey (1994).)

Automated Tools One factor limiting the use of
formal methods is the lack of investment in au-
tomated tools and support structures to reduce
the efforts of applying these methods. In fact,
lack of support tools is often seen as a major
barrier to using formal methods. A key fac-
tor in the acceptance of high-level languages
has been the presence of a comprehensive set
of tools to support the user. If formal methods
languages are to achieve the same level of ac-
ceptance, they too require extensive automated
support. Support tools may reduce the learning

286

Hossein Saiedian: Information Systems and the Engineering Paradigm

time, thereby aiding their widespread use. In
our opinion, automated tools may include:

Special editing environment

Syntax checkers
e Animation tool

Refinement and Proof Tools

A special editing environment for language Z
would, for example, provide a specifier with a
number of pop-up menus from which the spec-
ifier could view global schemas, local schemas,
state schemas, operation schemas, defined sets,
etc. The editor would also make schema cre-
ation, modification, deletion, etc., more flexi-
ble. (There is a specification environment for
the formal method Z. It is called ZED. Ac-
cording to Dharap & Narayana (1992), ZED
is an interactive and incremental environment
for the specification language Z. The basic unit
of editing in ZED is a paragraph which can
be a schema, a definition, or an axiom, etc.
An incremental parser permits the specifica-
tion to be altered and the effects of changes
in the specification to optimally propagate only
to those attributes that are affected. An incre-
mental type inferencing algorithm provides for
type-checking the specification. A WYSIWYG
editor with graphical fonts allows the pleasant
display of the paragraphs as they are typed. To
permit documenting the specifications, ZED in-
tegrates IATRX and its previewers. Menu-based
cut and paste facilities for fonts and for compo-
nents of the specification enhance the power of
ZED.) In addition to the above, good interface
to specification languages, transformation tools
for taking popular methods and converting them
into formal methods; and tools for inferencing
from specifications to assist software validation
are needed. Furthermore, a specification is and
should be considered a major reference docu-
ment for the customer as well the developer. It
is impractical, however, to expect a customer to
read mathematical expressions. A large amount
of work needs to be done in this area for devel-
oping tools, for example, to animate the mathe-
matical expressions in a specification document
so that a customer may understand them more
casily.

Marketing of Formal Methods As mentioned
earlier, most practitioners perceive formal meth-
ods as academic tools which are difficult to use.

They are reluctant to use them despite their con-
siderable advantage over traditional methods. A
study needs to be done to discover what it will
take to move formal methods from this unfair
perception into a wider acceptability within the
information systems community. Case studies
must be developed to demonstrate the appli-
cability of formal methods with the intention
of convincing the practitioners that the bene-
fits outweigh the difficulties of transition and,
results disseminated. To demonstrate that for-
mal methods pay off, more realistic, large scale
examples performed in conjunction with indus-
try (e.g., IBM’s CICS) are necessary. These
industrial case studies not only are necessary
for advancing the technology and demonstrat-
ing the potential benefits, they also help identify
the needs of companies that adopt formal meth-
ods and enhance the integration of formal meth-
ods with current software engineering practices.
In general, formal methods tend to address se-
mantic issues rather than pragmatic issues of a
software. Managers and practitioners are, how-
ever, most concerned with pragmatics issues.
This understanding would help researchers de-
lineate more precisely where formal methods
are most useful. Case studies also assist in iden-
tifying the limits of formal methods. Formal
methods have proven very useful for the spec-
ification of functional properties of a system.
Non-functional properties of a software system
such as reliability, cost, performance, portabil-
ity, man-machine interfaces, or resource con-
sumption of running programs are ditficult, or
perhaps even impossible to specify by means
of formal methods. Research needs to be done
to find out if formal methods can in fact be
used for such purposes. It is only in practical
applications that the limits or constraints of for-
mal methods are revealed. Debora Weber-Wulff
(Weber-Wulff 1993) addresses some of the typ-
ical questions in attempting to introduce formal
methods into industry, elaborates on other mar-
keting aspects of formal methods, and offers
10 propositions for industrial strength formal
methods. Some of these propositions include:

1. An industrial formal method should be con-
finable, i.e., restricted to just one aspect of a
large software project, so that it wont disrupt
the rest.

2. The uses of formal methods should be re-
versible so that if it decided to drop the uses
of these methods, it would be possible to

Hossein Saiedian: Information Systems and the Engineering Paradigm

287

revert to the previous status in the develop-
ment.

3. A formal methods should be open to allow in-
terchangeability of software components or
to allow uses of different tools.

4. A formal methods should not be coercive or
overly concerned with imposing and enforc-
ing restrictions on trivial aspects of software
development.

5. A formal methods should be teachable.
6. A formal methods should be inexpensive.

/. There must adequate documentation for an
industrial formal methods technique.

Clarify “WHEN” to Use Formal Methods An
important responsibility of proponents of for-
mal methods is to clarify when in the develop-
ment process formal methods should be applied.
The greatest benefit of formal methods is at the
early stages of development for modelling and
specification. What normally disappoints prac-
titioners is the mathematics involved in proving
programs correct (also known as program veri-
fication). Program verification, however, is car-
ried out at the last phase of development when
actual programs have been coded. Program
coding is not necessarily the most error-prone
part of the development, especially if the over-
all structure of the system under development
has been properly designed and well-conceived.
The need for complicated programs, and by ex-
tension, program verification, is in fact a sign of
poor design The greatest benefit of formal meth-
ods emerges when they are employed during the
specification and modelling stages, early in the
development process. Thus, to ensure wider
acceptance of formal methods, the information
systems practitioners should be reminded that
formal methods have the highest leverage dur-
ing the specification of a system.

Formal Specifications as Reusable Frame-
works Traditional efforts on formal methods
have been for functional specification of a soft-
ware system and have largely focused on ab-
stractions techniques (and refining abstractions
into some implementation). To make formal
methods an integral part of industrial software
development, the use of these methods has to
be as cost-effective as possible. One way of
achieving such cost-effectiveness is through de-
velopment of a framework for reuseability of

already developed formal specifications. Such
a framework has numerous benefits (Garlan &
Delisle 1990):

1. If a single specification can serve a num-
ber of products, its development cost can be
amortized over those products.

2. The development of several products from
the same specification can lead to unifor-
mity across those products as well as their
development.

3. Reusability in specification may lead to cor-
respondingly reusable products.

4. The fact that a specification can serve as
framework for several products, may cause
its developers to strive for particularly ele-
gant abstractions. This in turn may lead to
cleaner definitions of the fundamental con-
cepts behind related applications.

5. The job of defining specifications for the
framework may be delegated to a small team
of highly skilled engineers.

6. Libraries of formally specified software com-
ponents that form the basic design repertoire
of software developers may gradually be pro-
duced.

Thus research work on a reusable framework
for formal specifications should be expanded.
The work reported by Garlan & Delisle (1990)
is but one such approach used in Tektronix Lab-
oratories.

Executable Specifications and Rapid Proto-
typing A promising approach to rapid proto-
typing is the executable specification approach.
The basic idea is that if a specification language
is formal and has operational semantics, then it
is possible to construct a system that can execute
it directly. This will reduce the cost of soft-
ware development and allows rapid prototyp-
ing. Work on executable specifications needs
to be expanded. It is one way (and perhaps the
most effective way) to increase the acceptance
of formal methods by demonstrating that such
methods increase productivity and can reduce
development cost.

Training for Professionals Since the job of
software developers is product oriented, they
require a different kind of education than that
typically taught by research institutions and

288

Hossein Saiedian: Information Systems and the Engineering Paradigm

computer science departments. The ideal ap-
proach for educating the practitioners is to de-
velop a curriculum for a graduate professional
degree (analogous to an MBA degree but per-
haps with less course work). Such a curricu-
lum would cover the necessary background for
using formal methods (e.g., discrete mathemat-
ics courses covering sets and logic) and would
present a variety of principles, tools, and skills
in applying formal methods during software
development. Such a professional curriculum
is, unfortunately, not very practical now but it
should be considered for near future. The pro-
fessional degree is not the only approach. A
good deal of knowledge of formal methods for
software development can be found in profes-
sional workshops in industry and can be attained
through apprenticeship. Typical workshops on
formal methods present concepts and compar-
isons of various types of specifications for dif-
ferent software components (e.g., data struc-
tures, files, single procedures, composite ob-
jects, programs, etc.). Examples are developed
and the relationships between formal specifi-
cations and other topics such as logic program-
ming, program verification and “clean-room de-
velopment™ are illustrated. We suggest the fol-
lowing hints for the information systems pro-
fessional:

e Training in discrete mathematics covering el-
ementary set theory and logic should be the
first step. For those who have amathematical
background but are unfamiliar with the ba-
sic concepts of set theory and propositional
logic one or at most two days suffices to in-
troduce the ideas. For others one week of
training is required.

e Training-in a particular formal method such
as Z or VDM should be the next step. Such
training typically takes one to three weeks,
once the participant has the necessary math-
ematical background.

e Tutoring and consultation in a real project
is helpful, so is participation in workshops
where one can study a problem and describe
it formally with the help of a tutor.

Tools for Students A glance at the structure
of most popular formal methods (e.g., Z and
VDM) will show that elementary set theory and
mathematical logic are of prime importance in
these systems and are heavily used in the con-
text of software development. Students need to

be familiar with these concepts and how they
provide a basis for precise definition of the enti-
ties we perceive in an information system. Both
of these concepts are covered in discrete mathe-
matics course. (Itis called discrete mathematics
to distinguish it from the continuous mathemat-
ics of real numbers that include differential and
integral calculus.) Discrete mathematics is a
study of calculations involving a finite number
of steps and is the foundation for much of com-
puting science. It focuses on the understanding
of concepts and provides invaluable tools for
thinking and problem solving. Discrete math-
ematics is especially important when a student
is not required to study much of ancillary math-
ematics (Saiedian 1992). Students should be
taught the skills for formalizing problems and
behaviors and adjusting the level of rigor to fit
software development processes. (In the U.S.,
the Software Engineering Institute has initiated
such teaching programs.) Students learn more
by active participation than just by observing.
Theoretical concepts (such as discrete mathe-
matics) should be reinforced with hands on ex-
perience in labs. Since such courses should be
taught early in college (to provide necessary
background for high-level courses), educators
must ensure that the students learn the concepts
well. As is often the case, the students have
difficulty with theoretical concepts that are de-
scribed in books using definitions, theorems,
and proofs. A tool which visualizes theoreti-
cal concepts and allows a student to experiment
with these concepts creates a creative environ-
ment. Such a tool is helpful in solving various
discrete math problems which would be tedious
to work by hand. Freed from the mechanical
aspects of these calculations, the students can
focus their attention on the concepts which form
the basis of the material being studied.

9. Conclusions

Formal methods in the context of overall engi-
neering was discussed. We argued that formal
methods enable a software developer to spec-
ify a system via a rigorous mathematical nota-
tion. Such an approach to specification elim-
inates many of the problems associated with
software development such as ambiguity, im-
preciseness, incompleteness and inconsistency.

Hossein Saiedian: Information Systems and the Engineering Paradigm

289

The errors are discovered and corrected more
easily; not through an ad hoc review, but through
application of mathematical reasoning. When
used during the early stages of software devel-
opment, formal methods enable the software
developer to discover and correct errors that oth-
erwise might go undetected, therefore increas-
ing the quality of the software and it mainte-
nance and decreasing its failure rate as well as
its maintenance cost. Although such ideas are
the objectives of all specification methods, the
use of formal methods results in a much higher
likelihood of achieving them. While it may
be easier to educate students in formal meth-
ods within an academic setting, it is less easy
to convince the industry to accept such meth-
ods. Regardless of how many case studies are
presented, information systems managers, who
rarely have a technical degree, are still fearful
of what the consequence may be in terms of
re-education and/or training of present practi-
tioners, the long term influence of formal meth-
ods on the software development process, and
the change-over from ad hoc approaches to for-
mal methods. (Managers often equate formal
methods with the theoretical underpinning of
programming or engineering practices.) In the
latter section of this paper, we gave a number
of guidelines for making formal methods more
acceptable and for transferring formal methods
technology into the actual workplace. We also
encourage integrating formal methods as part
of a pragmatic approach in information systems
education (through courses in discrete mathe-
matics, mathematical logic, and formal meth-
ods) to prepare our new graduates for the future
while slowly transferring the technology itself
into industry.

References

BIERMANN A. W., (1990) Great Ideas in Computer Sci-
ence, MIT Press.

BoOEHM B., (1987) ‘Improving software engineering
production’, IEEE Software 20(9) 43-58.

BOWEN J. & HINCHEY M., (1994) Seven more myths of
formal methods, Technical Report PRG-TR—7-94,
Oxford University Computing Laboratory, Oxford,
England.

CHERNIAVSKY J. C., (1990) “Software failures attract

congressjonal attention’, Computer Research Re-
view 2(1) 4-5.

CRAIGEN D., GERHART S. & RALSTON T., (1993) ‘An
international survey of industrial applications of
formal methods’. NISTGCR 93/626, U.S. De-
partment of Commerce.

DHARAP S. & NARAYANA K., (1992) ‘The ZED en-
vironment’, (An article posted to the USENET
newsgroup comp.specification.z).

DILLER A., (1994) Z: An Introduction to Formal Meth-
ods, 2nd Edition, John Wiley.

GARLAN D. & DELISLEN., (1990) Formal specifications
as reusable frameworks, in “VDM’90’, LNCS 428,
Springer—Verlag, pp. 150-163.

HALL A., {1990) ‘Seven myths of formal methods’,
IEEE Software 7(5), 11-19.

HINCHEY M. & BOWEN I, eds (1995) Application of
Formal Methods, Prentice Hall International.

HOUSE OF REPRESENTATIVES, (1989) Bugs in the pro-
gram problems in federal government computer
software development and regulation, Techni-
cal Report 052-070-06604—1, Subcommittee and
Oversight of the House of Representatives Com-
mittee on Science, Space, and Technology, Su-
perintendent of Documents; Government Printing
Office, Washington, D.C., 20402,

JonEs C. B., (1990) Systematic Software Development
using VDM, Prentice—Hall International.

KOEN B., (1985) ‘Definition of the engineering meth-
ods’, American Society for Engineering Education.

PRESS N. A., (1990) ‘Computer Science and Technol-
ogy Board Report: Scaling Up: A Research
Agenda for Software Engineering’, Communica-
tions of the ACM 33(3), 281-293. Excerpted.

PRESSMAN R., (1992) Software Engineering: A Practi-
tioners’ Approach, 3rd Edition, McGraw—Hill.

SAIEDIAN H., (1992) ‘Mathematics of computing’,Jour-
nal of Computer Science Education3(3),203-221.

SAIEDIAN H. & HINCHEY M., (1994) “Transferring the
formal methods technology into the workplace’,
Submitted for publication.

WEBER-WULFF D., {1993) Selling formal methods to
industry, in ‘Formal Methods 93°, LNCS 670,
Springer—Verlag, pp. 671-679.

WooDCOCK J. & Larsen P, eds (1993) FME’93: In-
dustrial Strength Formal Methods, LNCS 670,
Springer—Verlag.

Received: June, 1994
Accepted: November, 1994

Contact address:

Department of Computer Science
University of Nebraska
Omaha, NE 68182 U.S.A.

290 Hossein Saiedian: information Systems and the Engineering Paradigm

HOSSEIN SAIEDIAN is an assistant professor in the Department of Com-
puter Science at the University of Nebraska at Omaha. Dr. Saiedian
received his PhD degree from Kansas State University in 1989. He
is a member of the IEEE Computer Society, Sigma Xi, the ACM, and
curently serves as the Chair of the ACM SIGICE (Special Interest Group
in Individual Computing Enviroments). Dr. Saiedian research articles
have been accepted for publications in IEEE Computer, Computer Net-
works and ISDN Systems, Journal of Systems ans Software, Journal of
Information and Software technology, Office Systems Research Journal,
Journal of Microcomputer Applications and many others. His research
inferests include sowtware engincering models, formal methods and
object-oriented computing.

