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Abstract: In this study, a mathematical model is formulated and studied from the per-
spective of adaptive dynamics (evolutionary processes), in order to describe the inte-
raction dynamics between two city public transport systems: one of which is establi-
shed and one of which is innovative. Each system is to be influenced by a characteristic 
attribute; in this case, the number of assumed passengers per unit it that can transport. 
The model considers the proportion of users in each transport system, as well as the 
proportion of the budget destined for their expansion among new users, to be state va-
riables. Model analysis allows for the determination of the conditions under which an 
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innovative transportation system can expand and establish itself in a market which is 
initially dominated by an established transport system. Through use of the adaptive 
dynamics framework, the expected long-term behavior of the characteristic attribute 
which defines transport systems is examined. This long-term study allows for the esta-
blishment of the conditions under which certain values of the characteristic attribute 
configure coexistence, divergence, or both kinds of scenarios. The latter case is repor-
ted as the occurrence of evolutionary ramifications, conditions that guarantee the via-
bility of an innovative transport system. Consequently, this phenomenon is referred to 
as the origin of diversity.

 Introduction

The city of Bogotá, Colombia is on the cusp of becoming one of the new world 
megacities. While in 1960, only seven megacities existed, by 2010, this number 
had increased to 27, and by 2020, it is projected that this number will grow to 
37. In this growth process, cities cannot ignore fundamental aspects of their 
own economic and demographic development, or the complex network of inter-
actions generated thereby (Kennedy, Stewart, Ibrahim, Facchini & Mele, 2014, 
p. 7; Baccini & Brunner, 2012, chapter 5). One fundamental question is the re-
lationship between population growth, demographic development, and public 
transport infrastructure. Bogotá, in particular, is going through a key decision-
making moment regarding the possibility of incorporating a metro system as 
one of its leading forms of transport. In contrast, the current mass-transit sys-
tem, Transmilenio, operates using articulated buses. There is a latent need to 
respond to the question: under what conditions could a mass-transport system 
invade, expand in the market, and coexist with current, established city trans-
port systems, in the long term? This type of question is closely related to others 
studied from the standpoint of evolutionary biology, and which have permit-
ted the development of adaptive dynamics as a useful mathematical theoretical 
framework for the study of these questions.

The formation of new species, called speciation, is one of the central points 
of evolutionary theory. It occurs through the genetic and phenotypic divergence 
of populations of the same species, which adapt to different environmental 
niches, either within the same, or in different habitats. In allopatric speciation, 
two populations are geographically separated by natural or artificial barriers, 
while in parapatric speciation, the two populations evolve toward geographic 
isolation, through the exploitation of different environmental niches in contig-
uous habitats. In either of these two cases, geographical isolation constitutes 
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an exogenous cause of speciation, instead of an evolutionary sequence (Dercole 
& Rinaldi, 2008, pp. 67–70; Butlin, Galindo & Grahame, 2008, p. 2997).

On the other hand, sympatric speciation considers a population in a single 
geographical location. As such, it is disruptive selection that exerts selection 
pressures, which favor extreme characteristics over average characteristics. 
This phenomenon may result, for example, from competition for alternative en-
vironmental niches, in which specializing may be more advantageous than be-
ing a generalist. Consequently, the population divides into two groups which 
are initially similar, but which later diverge on separate evolutionary paths 
(branches), each driven by their own mutations, undergoing what is called 
evolutionary branching. In figure 1, the evolutionary branching point concept, 
a product of sympatric speciation, is shown (Butlin et al., 2008, p. 2997; Doebeli 
& Dieckmann, 2000, pp. S77–S78).

Figure 1. Influenced by disruptive selection, a monomorphic population may become 
dimorphic in certain relevant attributes
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shared a common ancestor approximately six or seven million years ago. The 
causes of the evolutionary branching which led to humans are a source of great 
debate. However, one of the most intriguing potential causes is the evolution of 
articulated language, thanks to fine control of the larynx or the mouth, which 
is regulated by a particular gene (Dercole & Rinaldi, 2008, p. 24; Lai, Fisher, 
Hurst, Vargha-Khadem & Monaco, 2001, p. 522).

Generally speaking, the basic units capable of evolution through innovation 
and competition processes are not limited to living organisms. Multiple exam-
ples of evolutionary branching can, in fact, be found in material products, ide-
as, and social norms (Dercole & Rinaldi, 2008, p. 33; Dercole, Dieckmann, Ober-
steiner & Rinaldi, 2008, p. 335; Dercole, Prieu & Rinaldi, 2010, p. 380; Landi 
& Dercole, 2016, p. 185). In particular, commercial products are replicated each 
time that a product is bought, and services each time they are used. They go ex-
tinct whenever they are abandoned by users. Thus, improved versions are oc-
casionally introduced, which are characterized by small innovations. These in-
teract in the market with the prior, established versions. Said interactions are 
usually competitive, and involve rivalry between products from both the same 
and different categories.

One example of this is shown in figure 2, in which the evolution of differ-
ent communication services in Switzerland, between 1980 and 2000, is shown. 
The arrival of digital telephones was a successful innovation, which has led to 
the substitution of analog telephones. This phenomenon is reported as attrib-
ute substitution. On the other hand, observe that internet hosts (circles) seem to 
coexist with both digital telephones and digital mobile telephone service sub-
scribers (Dercole & Rinaldi, 2008, p. 36).

With the information discussed up to this point, it is possible to respond 
to the question of what constitutes the theory of adaptive dynamics. In gen-
eral, it is a theoretical background which originates in evolutionary biology, 
and links demographic dynamics to evolutionary changes. It further permits 
the description of evolutionary dynamics in the long term, considering inno-
vations to be small and rare events (Dercole & Rinaldi, 2008, pp. 67–68; Dieck-
mann & Law, 1996, pp. 16–17; Geritz, Metz, Kisdi & Meszéna, 1997, p. 1; Geritz, 
Meszéna & Metz, 1998, p. 1). This theory focuses on the evolutionary dynamic 
of quantitative adaptation attributes in the long term, and disregards genetic 
details, through the use of asexual demographic models. Among the most rele-
vant aspects is that it recognizes interactions as the driving evolutionary force, 
and considers feedback between evolutionary change and the forces of selec-
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tion experienced by agents (Dercole & Rinaldi, 2008 pp. 67–68; Dercole & Ri-
naldi, 2010, pp. 3–4; Doebeli & Dieckmann, 2000, p. S78).

Figure 2. Use of telecommunication services in Switzerland
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Squares: analog telephones.  

Diamonds: digital telephones.  

Inverted triangles: subscribers to analog mobile phone services.  

Triangles: subscribers to digital mobile phone services.  

Stars: public payphones.  

Circles: internet hosts.  

Source: reprinted from (Dercole & Rinaldi, 2008, p. 36). 
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I n v e r t e d  t r i a n g l e s : subscribers to analog mobile phone services. 
T r i a n g l e s : subscribers to digital mobile phone services. 
S t a r s : public payphones. 
C i r c l e s : internet hosts. 

S o u r c e : reprinted from (Dercole & Rinaldi, 2008, p. 36).

The research methodology  
and the course of the research process

In this investigation, the question of whether conditions exist for the origin of 
diversity in a competitive market, among the principal public transport sys-
tems (TS) in a city, is addressed from the perspective of adaptive dynamics. 
Additionally, the average number of passengers transported per unit is consid-
ered to be a characteristic attribute of each TS. 
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In chapter 3 a model for a stablished TS is proposed, and the local stability is 
studied. In chapter 4 the model in reformulated to include a technological inno-
vation and a new innovative TS, which allows for determination of the innova-
tive TS fitness function. Invasion conditions are established therefrom in a mar-
ket dominated by a conventional TS. Later, in chapter 5, based on theory, the 
canonical equation of adaptive dynamics, which reveals the long-term behavior 
of the characteristic attribute and its impact on the TS market, is determined 
and studied. A scenario, in which evolutionary branching occurs, is simulated. 
This phenomenon is called the origin of diversity, as it implies that the market 
can be diversified. On the other hand, a scenario in which terminal points occur 
during attribute evolution, in the case that diversification is not possible, is also 
presented. Finally, conclusions and references are shown.

A model for an established transport system 

Consider a city with an established transport system, which is characterized 
by a particular attribute, 

evolution, in the case that diversification is not possible, is also presented. Finally, conclu-
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Table 1. Description of state variables and of the coefficients used in the model 

 
State description 
�� Proportion of people who use system �
�� Proportion of the budget available to the expansion of system �

Parameter description 
�� Value of the characteristic attribute which describes TS �

�(��) Rate of instant TS i adoption 
�(��) Rate at which TS i is abandoned by users 
�(��) Rate of investment in new resources for the expansion of TS �
�(��) TS i efficiency of “converting” the investment into new users 

�(��� ��) Rate of interaction between systems � and �.
 
Source: elaborated by the author. 
 

For analysis of the above system, and particularly for its numerical study, certain con-

siderations have been taken into account for model coefficients. It has been assumed that, 

the proportion at which new resources	�(��) = � are invested, TS efficiency to “convert” 

the investment into new users �(��) = �� and the rate at which the TS is abandoned by 

users �(��) = �� are constants. On the other hand, it has been assumed that the rate of in-

stant adoption depends on characteristic attribute �, through the function: 

 

�(�) = 	�	����− 1
����

ln� � ����
��. 

 

For a TS characterized by attribute ��	the �(�) rate makes perfect sense when �� is 

small, and has no competition from other transport systems (Dercole et al., 2008, p. 342). 

A maximum of � occurs when �	 = 	���, in order to indicate the value of the attribute 

which is easiest to absorb. On the other hand, for a transport system with a very low or 
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two simulations which illustrate the two scenarios of interest. In figure 6, � � �, ��  �

 is unstable. 
The following have been used a = 1, a1 = 0.5, a2 = 22.36, d = 0.1, u1 = 200, and Rp (u1) = 1.8653. 

S o u r c e : own study.



 Mathematical model for the evolutionary dynamics… 87

The values of the parameters used in the simulations (see figure 4), par-
ticularly the value of attribute u1, is based partially on the capacity of the 
Transmilenio’s bi-articulated buses (massive TS in the city of Bogota, Colom-
bia). They have a 250-person capacity: 62 seated, and 188 standing passen-
gers. Figure 5 shows one of these buses. Considering that the Transmilenio 
also has smaller buses, the assumption that (u1) = 200 has been made. Other 
parameter values have been established ad hoc, and only in order to illustrate 
model behavior.

Figure 5. Representation of a bi-articulated Transmilenio bus,  
the mass-transport company in the city of Bogota, Colombia
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They have a 250-person capacity, 62 seated, and 188 standing passengers. 

S o u r c e : reproduced from (www1).

In order to finalize the study of the model with a single established TS, 
figure 6 shows two simulations which illustrate the two scenarios of inter-
est. In figure 6, a = 1, a1 = 0.5, a2 = 22.36, d = 0.1, and u1 = 200 have been used. 
As such, l*(u1) = 0.0215 and Rp(u1) = 1.8653, with the l = 0.015 value, and par-
tial adoption is obtained. This is shown in the two boxes on the left, and with 
l = 0.025 the total adoption case is obtained, as illustrated in the two boxes 
on the right.
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Figure 6. Two resident system simulation scenarios are shown for a single TS,  
with a = 1, a1 = 0.5, a2 = 22.36, d = 0.1, u1 = 200, l*(u1) = 0.0215, and Rp(u1) = 1.8653 
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Left: solutions for �� and �� are shown, with respect to time for � = 0.015. As such, the partial adoption 

equilibria ��� = (0.70, 0.54) is LAS.  

Right: the same parameter values are used, but with � = 0.025. In this case, the total adoption equilibria 

��� = (1, 0.57) is LAS, while ��� ∉ Ω.  

Source: elaborated by the author. 
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vative TS characterized by the value of attribute ��. In general, it is assumed that the inno-

vation is small, and will have a minimal effect, which permits the interaction between 

transport systems to occur below the same conditions, and on the same market platform. In 

this case, the difference between the two TSs is in the average number of users they can 
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This model goes by the name resident – innovative system. Note that, for the model 

characteristics, must be satisfied that � ≤ �� � �� ≤ 1. On the other hand, �(��� ��) is the 

interaction rate between systems i and k. A number of situations are then obtained: 

 If �(��� ��) > 1, inter-system competition prevails over intra-system competition. 

A simple example of this is that, if system i corresponds to a city taxi system, while 

system k corresponds to a public bus system, then �(��� ��) > 1 implies that taxi 

competition with buses is stronger than the competition between the taxis them-

selves. 

 If � ≤ �(��� ��) ≤ 1, then intra-system competition prevails over inter-system 

competition. Returning to the public taxi and bus example, in this scenario, compe-
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. On the other 
hand, c(ui, uk) is the interaction rate between systems i and k. A number of situ-
ations are then obtained:
 ■ If c(ui, uk) > 1, inter-system competition prevails over intra-system com-

petition. A simple example of this is that, if system i corresponds to a city 
taxi system, while system k corresponds to a public bus system, then  
c(ui, uk) > 1 implies that taxi competition with buses is stronger than the 
competition between the taxis themselves.

 ■ If c(ui, uk) ≤ 1, then intra-system competition prevails over inter-system 
competition. Returning to the public taxi and bus example, in this sce-
nario, competition between the taxis themselves is stronger than com-
petition between taxis and buses. Particularly, c(ui, uk) = 0 indicates that 
there is no interaction between the two TSs, and c(ui, uk) = 1 indicates 
that the interaction between the two TSs is symmetrical, or affects both 
equally.

 
(7)

 
(8)

(9)

(10)

(11)
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 ■ If c(ui, uk) < 0 the interaction between transport systems does not corre-
spond to competition, but rather cooperation, a situation which can de-
scribe integrated TSs. 

At the time in which innovation occurs, the city established TS was in E1 
equilibria. In other words, it is assumed that this equilibria is LAS, and as such, 
the Jacobian matrix denoted here J(E1) has two eigenvalues with a real negative 
part. When the resident – innovative system is studied, it may be of interest to 
determine the conditions under which the innovative TS of attribute u2 can “in-
vade” the market. For this, stability conditions at the equilibria:
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�� = (�̅�(��), ���(��), 0,1), 
 

must be studied. The zero and one values in the last two coordinates of �� indicate that 

the innovative TS has not yet entered the market, and that the entirety of the budget is 

available for investment. In order to determine local stability, a small disruption is created 

around it, and the behavior of the linear system associated is studied (Perko, 2013, section 

2.6). The corresponding Jacobian matrix takes diagonal form in blocks:  

 

�(��) = �
�(��) ⋯
� �(��)���(��) − 1��1 − �(��, ��)�̅�� 0

−�(��)�(��)�� −�(	��)
� 

 

where �(��) is a 2 × 2	matrix, with both of their eigenvalues with real negative parts. 

Indeed, it corresponds to the Jacobian matrix of the resident system at a LAS equilibria. 

The � which appears in the bottom left block is a null 2 × 2 matrix. Thus, �(��)�� eigen-

values are those contributed by �(��), together with �� = −�(	��),	which evidently is neg-

ative, owing to the positivity of �(�), and finally λ� = �(��)���(��) − 1��1 −
�(��, ��)�̅��, whose sign will depend on the functions that it involves.  

The fitness function is defined via the expression:  
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equilibria: 

 

�� � (�̅�(��), ���(��), 0,1), 
 

must be studied. The zero and one values in the last two coordinates of �� indicate that 

the innovative TS has not yet entered the market, and that the entirety of the budget is 

available for investment. In order to determine local stability, a small disruption is created 

around it, and the behavior of the linear system associated is studied (Perko, 2013, section 

2.6). The corresponding Jacobian matrix takes diagonal form in blocks:  

 

�(��) � �
�(��) ⋯
� �(��)���(��) � 1��1 � �(��, ��)�̅�� 0

��(��)�(��)�� ��(	��)
� 

 

where �(��) is a 2 × 2	matrix, with both of their eigenvalues with real negative parts. 

Indeed, it corresponds to the Jacobian matrix of the resident system at a LAS equilibria. 

The � which appears in the bottom left block is a null 2 × 2 matrix. Thus, �(��)�� eigen-

values are those contributed by �(��), together with �� � ��(	��),	which evidently is neg-

ative, owing to the positivity of �(�), and finally  

λ� � �(��)���(��) � 1��1 � �(��, ��)�̅��, whose sign will depend on the functions 

that it involves.  

The fitness function is defined via the expression:  

 

�(��, ��) � �(��)���(��) � 1��1 � �(��, ��)�̅�� 
 

Through study of the sign of this function for specific u1 and u2 the possibil-
ity of innovative transport system invasion may be established. 

 
(12)
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In order to numerically study the previous system, it is considered anew 
that the proportion in which new resources are invested for transport system 
expansion is l (u1) = l, that the TS efficiency to “convert” the investment into 
new users is given by ϵ(ui) = ϵ, and that the rate at which the TS is abandoned 
by users δ(u1) = δ are constants for i = 1,2. Additionally, the interaction rate be-
tween TSs is represented in the following form:

�(��� ��) = �(��)���(��) − 1��1 − �(��� ��)�̅�� 
 

Through study of the sign of this function for specific	�� and �� the possibility of inno-

vative transport system invasion may be established.  
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tion in which new resources are invested for transport system expansion is �(��) = �, that 

the TS efficiency to “convert” the investment into new users is given by �(��) = �� and 

that the rate at which the TS is abandoned by users �(��) = � are constants for � = 1�2. 

Additionally, the interaction rate between TSs is represented in the following form: 

 

�(��� ��) = ����ln
���
2���

� ����− 1
2���

	ln� ������� �� 

 

Observe that the interaction rate between TSs �(��� ��)	depends on the ���� reason, and 

tends toward zero when said radius tends toward zero, or when it tends toward infinity, 

which reflects that TSs which are very different compete weakly. A graphic representation 

of the function is shown in figure 7 (Dercole et al., 2008, p. 342). 

 

Figure 7. Chart of function �(��� ��), for parameters �� 	= 	0.96 y �� 	= 	2 

 

 
 

Source: elaborated by the author. 
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S o u r c e : own study.

 
(15)



Hernán Darío Toro-Zapata, Gerard Olivar-Tost92

If f1 > 1, the TSs that move the greatest average of passengers tend to have 
a competitive advantage. On the other hand, if 0 < f1 < 1, the TSs that move 
a lower average number of passengers will be those which have the advantage. 
A large f2 value implies that very different TSs also compete strongly. When  
f1 = 1 competition between TSs is symmetrical. 

Figure 8. Representation of a train used in the metro in Medellin, Colombia

If �� > 	1, the TSs that move the greatest average of passengers tend to have a competi-

tive advantage. On the other hand, if 0	 < �� 	< 1, the TSs that move a lower average 

number of passengers will be those which have the advantage. A large �� value implies 

that very different TSs also compete strongly. When �� = 1, competition between TSs is 

symmetrical.  

 

Figure 8. Representation of a train used in the metro in Medellin, Colombia 

 

 
 

They have a 1220-passenger capacity (eight passengers per square meter), with 148 seats.  

Source: reproduced from (www2). 

 

The values selected for simulations correspond to the belief that innovation involves a 

TS that is in conditions to transport a higher number of passengers. For this reason, it has 

been assumed that the value of the established TS attribute is �� = 200, as stated in the 

previous section, and that the value of the innovative TS attribute is �� = 800. Although 

this value is far above the current capacity of the Transmilenio’s bi-articulated buses, it is 

well below the capacity of other mass TSs. For example, a three-car train from the Medel-

lin, Colombia metro has the capacity to transport up to 1220 passengers at a time. In figure 

8, one of these vehicles is shown. 

In figure 9, a simulation of the transport systems is shown, both before and after innova-

tion. The curve shown as a dashed line is the simulation of the resident system before the 

innovation, respectively, for the �� proportion of users (left), and for the proportion of 

budget �� (right). Once the innovation occurs, the innovative TS enters the market (dash-

dot line), which competes with the established TS (solid line). Observe that this scenario 

corresponds to diversification, or what here has been called the origin of diversity. Indeed, 

initially, there was just one TS established in the market. After the innovation, however, 

both TSs can expand and coexist in the market as two transport options for users. In the 

figure 9 caption, the values of the parameters used are described. In particular, it should be 

noted that �� 	= 	0.96 implies that the TS which mobilizes a lower number of passengers 

has the competitive advantage. However, innovative transport is able to expand and estab-

lish itself in the market. 

They have a 1220-passenger capacity (eight passengers per square meter), with 148 seats. 

S o u r c e : reproduced from (www2).

The values selected for simulations correspond to the belief that innovation 
involves a TS that is in conditions to transport a higher number of passengers. 
For this reason, it has been assumed that the value of the established TS attrib-
ute is u1 = 200, as stated in the previous section, and that the value of the inno-
vative TS attribute is u2 = 800 Although this value is far above the current ca-
pacity of the Transmilenio’s bi-articulated buses, it is well below the capacity 
of other mass TSs. For example, a three-car train from the Medellin, Colombia 
metro has the capacity to transport up to 1220 passengers at a time. In figure 
8, one of these vehicles is shown.

In figure 9, a simulation of the transport systems is shown, both before and 
after innovation. The curve shown as a dashed line is the simulation of the resi-
dent system before the innovation, respectively, for the x1 proportion of users 
(left), and for the proportion of budget y1 (right). Once the innovation occurs, 
the innovative TS enters the market (dash-dot line), which competes with the 
established TS (solid line). Observe that this scenario corresponds to diversi-
fication, or what here has been called the origin of diversity. Indeed, initially, 
there was just one TS established in the market. After the innovation, however, 
both TSs can expand and coexist in the market as two transport options for us-
ers. In the figure 9 caption, the values of the parameters used are described. In 
particular, it should be noted that f1 = 0.96 implies that the TS which mobilizes 
a lower number of passengers has the competitive advantage. However, innova-
tive transport is able to expand and establish itself in the market.
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Figure 9. Diversification

 
�eft: �� solutions before innovation (dashed line) and after innovation (solid line) and for �� (dash�dot line). �i�ht: �� solutions 
before innovation (dashed line) and after innovation (solid line) and for �� (dash�dot line). �he follo�in� have been used: � = �, 
��  =  0.�, ��  =  22.�6, � = 0.�, � = 0.�, � = 0.02�, ��  =  0.�6, and ��  =  2. �he attributes are �� = 200 and �� = 800, thus, 
�∗���) = 0.02��, �∗���) = 0.0��84, �����) = �.86��, and �����) =  6.4287.  
Source: elaborated by the author. 
 

Similarly, in figure 10, a substitution scenario is shown. Again, in the dashed line curve, 

the simulation for the resident system, prior to innovation, is shown, while after the inno-

vation, resident – innovative system solutions are shown using a solid line for �� and �� 

solutions, and a dash-dot line for the �� and �� solutions. Observe that, after innovation, 

the innovative TS expands in the market, and is able to substitute the established TS, which 

tends to have a proportion of zero users in finite time. The only variation that has been 

performed with respect to the simulation of figure 9 is the ��  =  2 value, which indicates 

that, in the market, the TS with the capacity of transporting a higher number of passengers 

is favored. 

 

Figure 10. Substitution 

L e f t : x1 solutions before innovation (dashed line) and after innovation (solid line) and for x2 (dash-
dot line). Right: y2 solutions before innovation y2 (dashed line) and after innovation (solid line) 
and for y1 (dash-dot line). The following have been used: a = 1, a1 = 0.5, a2 = 22.36, δ = 0.1, ϵ = 0.1,   
l = 0.025, f1 = 0.96, and f2 = 2. The attributes u1 = 200 and u2 = 800, thus, l*(u1) = 0.0215,  
l* (u2) = 0.01184, Rp(u1) = 1.8653, and Rp(u2) = 6.428. 

S o u r c e : own study.

Similarly, in figure 10, a substitution scenario is shown. Again, in the dashed 
line curve, the simulation for the resident system, prior to innovation, is shown, 
while after the innovation, resident – innovative system solutions are shown 
using a solid line for x1 and y1 solutions, and a dash-dot line for the x2 and y2 solu-
tions. Observe that, after innovation, the innovative TS expands in the market, 
and is able to substitute the established TS, which tends to have a proportion 
of zero users in finite time. The only variation that has been performed with 
respect to the simulation of figure 9 is the f2 = 2 value, which indicates that, in 
the market, the TS with the capacity of transporting a higher number of pas-
sengers is favored.
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Figure 10. Substitution

 
Left: �� solutions before innovation (dashed line) and after innovation (solid line) and for �� (dash-dot line). 

Right: �� solutions before innovation (dashed line) and after innovation (solid line) and for �� (dash-dot 

line). The same values have been used for parameters, except �� 	= 	2.  

Source: elaborated by the author. 

 

The canonical equation of adaptive dynamics  
The dynamic of the attributes, henceforth called the evolutionary dynamic, will help to 

explain the characteristics of the innovation and competition process which acts on the 

market. Dercole et al., 2008, chapter 3, succinctly describes the processes which should be 

considered for rigorous formulation of the canonical equation, which describes the evolu-

tionary behavior (in the long term) of attribute �. This equation takes the general form: 

 

�� = 1
2 ��

�	�̅��� ����� 	��� ��� 

 

where � is innovation frequency, and �� is variance. In other words, the canonical 

equation considers the frequency with which innovations are presented in the public TS 

market, and the size of the variations obtained in each innovation. The �̅��� value corre-

sponds to the equilibria in which the established TS stabilizes before the innovation. On 

the other hand, partial derivative ����� 	��� ��� is called the selection gradient, and is associ-

ated with the forces of selection which are exerted from the market, by the same TS users, 

L e f t : x1 solutions before innovation (dashed line) and after innovation (solid line) and for x2 
(dash-dot line). Right: y1 solutions before innovation (dashed line) and after innovation (solid line) 
and for y2 (dash-dot line). The same values have been used for parameters, except f1 = 2. 

S o u r c e : own study.

The canonical equation of adaptive dynamics 

The dynamic of the attributes, henceforth called the evolutionary dynamic, will 
help to explain the characteristics of the innovation and competition process 
which acts on the market. Dercole et al., 2008, chapter 3, succinctly describes 
the processes which should be considered for rigorous formulation of the ca-
nonical equation, which describes the evolutionary behavior (in the long term) 
of attribute u. This equation takes the general form:

 
Left: �� solutions before innovation (dashed line) and after innovation (solid line) and for �� (dash-dot line). 
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line). The same values have been used for parameters, except �� 	= 	2.  

Source: elaborated by the author. 
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where � is innovation frequency, and �� is variance. In other words, the canonical 

equation considers the frequency with which innovations are presented in the public TS 

market, and the size of the variations obtained in each innovation. The �̅��� value corre-

sponds to the equilibria in which the established TS stabilizes before the innovation. On 

the other hand, partial derivative ����� 	��� ��� is called the selection gradient, and is associ-

ated with the forces of selection which are exerted from the market, by the same TS users, 

where μ is innovation frequency, and σ2 is variance. In other words, the canoni-
cal equation considers the frequency with which innovations are presented in 
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the public TS market, and the size of the variations obtained in each innovation. 
The 

 
Left: �� solutions before innovation (dashed line) and after innovation (solid line) and for �� (dash-dot line). 

Right: �� solutions before innovation (dashed line) and after innovation (solid line) and for �� (dash-dot 

line). The same values have been used for parameters, except �� 	= 	2.  

Source: elaborated by the author. 
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 , 
is called the selection gradient, and is associated with the forces of selection 
which are exerted from the market, by the same TS users, on the long-term dy-
namic of the characteristic attribute. Specifically, for the present example: 

on the long-term dynamic of the characteristic attribute. Specifically, for the present exam-

ple:  

 

��� = 	−
1
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�	��	����	
�1�������

���
�
����

���������
�	�	��� � �	�� ������
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�
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���������
� − �����	 

 

Whose stationary solutions are:  

 

��� = ������ ����−2	�� ������  and ��� = ������ �−���−2	�� ������ 

 

When an evolutionary equilibria solution ��� for � = 1 or 2 is LAS, this means that suc-

cessive innovations which replace those previous, drive the attribute � toward the value of 

equilibria ���. It is important to consider that, in the case of diversification, or when, after 

innovation in the market, both TSs can coexist, each characteristic attribute will be de-

scribed by a canonical equation like that described previously. The equations which corre-

spond to this situation are not reported here, as the explicit expressions are quite long and 

do not significantly contribute to the discussion. However, they may be handled via sym-

bolic calculation. 

In figure 11, the behavior of characteristic attributes �� and ��	are shown, before and 

after innovation. It is evident that both attributes diverge in their values to different evolu-

tionary equilibria. While the established TS from attribute �� is maintained below 200 pas-

sengers per mobile unit, the innovative TS progressively increases its capacity until reach-

ing an average of over 1400 passengers transported. 
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. It is important to consider that, in the case 
of diversification, or when, after innovation in the market, both TSs can coex-
ist, each characteristic attribute will be described by a canonical equation like 
that described previously. The equations which correspond to this situation 
are not reported here, as the explicit expressions are quite long and do not sig-
nificantly contribute to the discussion. However, they may be handled via sym-
bolic calculation.

In figure 11, the behavior of characteristic attributes u1 and u2 are shown, 
before and after innovation. It is evident that both attributes diverge in their 
values to different evolutionary equilibria. While the established TS from at-
tribute u1 is maintained below 200 passengers per mobile unit, the innova-
tive TS progressively increases its capacity until reaching an average of over 
1400 passengers transported.
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Figure 11. The solutions to the canonical equation for u1 shown  
before innovation (dashed line), for u1 canonical equations (solid line)  

and for u2 (dash-dot line) after innovation

Figure 11. The solutions to the canonical equation for  shown before innovation 

(dashed line), for  canonical equations (solid line) and for  (dash-dot line) after inno-

vation 

 
The parameters used are the same as those in figure 9 for the diversification scenario.  

Source: elaborated by the author. 

 

Conclusions 
The resident model proposed here is an initial approach to the phenomenon, it permits the 

study of the dynamics of a city’s TS in various scenarios, and learn under which conditions 
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entire population of the city.

One of the features that stand out from the model is that it includes the budg-
et invested to obtain new users as one of the state variables. Based on this con-
sideration, it is possible to obtain explicit conditions under which a equilibrium 
of partial adoption or one of total adoption of the TS by users can be achieved. 
In addition, according to this model, both cases are perfectly achievable with-
out consuming all the available resources. In fact, the model made it possible to 
establish explicit conditions for the level of investment required in each case, 
information that may be useful in decision making.

The innovative-resident model allows for the establishment of the condi-
tions under which an innovative TS can invade and expand in the market. This 
information is obtained from study of the sign of the fitness function for spe-
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cific model coefficient expressions. Additionally, the approach through adap-
tive dynamics permits establishment of the long term dynamics the quantita-
tive attribute (average number of passengers per mobile unit). The study of this 
evolutionary dynamic permits the classification of the evolutionary equilibri-
um in ramification points (diversification) or terminal points (those in which 
the evolution definitively halts), like the points where substitution takes place.

Particularly in the case of diversification, with the coefficients defined in 
this study, and for the values of the parameters considered, it was observed 
that the established TS should maintain a low number of users transported 
(< 200 passengers per unit), while the innovative TS should attain a high num-
ber of users transported (> 1400 passengers per unit).

The above indicates that, in a scenario of coexistence between the two 
transport systems, it is necessary for each one of them to use a different strat-
egy, in regards to the number of passengers that they decide to transport. One 
of them should focus on mobile units with few passengers, while the other sys-
tem should focus on mobile units which can transport passengers massively.

Diversification is impossible when both transport systems use the same 
strategy. For example, if both TSs design a strategy that permits them to trans-
port over 1400 passengers per unit, the effect would be that the innovative TS 
would absorb all users and substitute the established TS.
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