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INTRODUCTION 

Microprocessor technology has been adopted in 

prosthetic knees for almost 30 years and in 

prosthetic feet for about 10 years. Several systematic 

reviews of the literature on microprocessor-

controlled knees have confirmed their benefits in 

safety and mobility, supporting their use in 

individuals with transfemoral amputation and MFCL-

3 and also MFCL-2 mobility. However, 

microprocessor-controlled (MP) passive and 

powered feet are widely considered experimental, 

investigational and unproven by health insurances.  

METHOD 

The Medline and EMBASE databases as well as the 

online library of the Journal of Prosthetics and 

Orthotics were searched on January 15, 2018, for 

publications using search terms related to feet with 

non-MP hydraulic ankles/dorsiflexion feature, or 

passive or powered microprocessor controlled feet.  
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ABSTRACT  

This paper reviewed 11 publications on non-MP controlled ankles with active 

dorsiflexion feature, 15 publications on passive MP controlled ankles, and 12 

publications on powered MP controlled ankle-foot mechanisms. 

Methodological quality of publications was low to moderate. The evidence 

found was mostly biomechanical and generated in gait lab studies. Non-MP 

ankles may increase toe clearance and reduce braking forces during level 

walking, thus supporting propulsion with increase in walking speed. Passive 

MP controlled ankles may also increase toe clearance and reduce the 

likelihood of stumbling over an unseen obstacle. They may reduce energy 

expenditure during level walking and facilitate slope and stair ambulation. 

Non-MP and passive MP controlled ankles have been also been shown to 

reduce residual limb-socket interface pressures. Powered ankles may 

increase walking speed to the level of and decrease energy expenditure to be 

no longer significantly different from that of able-bodied individuals. Also, at 

higher walking speeds the sound knee loading may be reduced by up to 15-

20%. However, it remains unclear to what extent the gait lab results for all 

advanced ankle-foot mechanisms can be transferred to real-life benefits in the 

free-living environment. 
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The search terms were combined into a title, 

abstract, and key word search phrase using Boolean 

operators, resulting in the following syntax: amput* 

OR prosth* AND foot OR ankle OR hydraulic OR 

dorsiflexion OR linkage OR microprocessor OR MP* 

OR power*. The literature search was repeated on 

June 30, 2018, to identify recent publications since 

the original search date. Titles and abstracts of the 

identified publications were screened for their scope. 

Technical papers and case studies were excluded. 

Publications on biomechanical and clinical studies 

were rated for methodological quality using the 

criteria of a Cochrane review of prosthetic foot 

research by Hofstad et al.1 Publications with good 

enough methodological quality were reviewed in full 

and results were extracted and summarized.   

 RESULTS 

The literature search yielded 12 publications 

(reference 2-13) on biomechanical and/or clinical 

studies with a prosthetic foot with a non-MP 

controlled hydraulic ankle/dorsiflexion feature, 16 

publications (reference 14-29) on passive and 17 

publications (reference 30-46) on powered MP 

controlled prosthetic ankle-foot mechanisms. One 

publication on non-MP feet (12), one publication on 

passive MP feet (14) and 5 publications on powered 

ankle-foot mechanisms (35, 40, 44-46) were 

excluded from the review for insufficient 

methodological quality.  

All included studies had low to moderate 

methodological quality and all but one were 

conducted with individuals with unilateral transtibial 

amputations. Compared to standard energy storage 

and return (ESAR) feet, the studies with a foot with a 

non-MP hydraulic ankle/dorsiflexion feature 

demonstrated a significantly increased toe clearance 

and self-selected walking speed on level ground. In 

addition, studies reported reduced braking forces 

(improved progression of the center of pressure 

under the foot), smoother gait and reduced 

perception of having to “climb over the prosthetic 

limb” by the patients. One study demonstrated 

reduced interface pressures between the socket and 

residual limb while walking on level and uneven 

terrain and ascending and descending slopes and 

stairs.  

One study with a passive MP controlled prosthetic 

foot also demonstrated significantly improved toe 

clearance during over-ground walking, reducing the 

likelihood of tripping over an unseen obstacle of 0.5 

cm height from 1/166 steps with an ESAR foot to 

1/3,169 steps with the MP foot. Studies also found a 

reduction of metabolic energy consumption on level 

ground and a reduction in perceived energy demand 

for walking up slopes. One study found some 

improvements but also some deteriorations in 

biomechanical parameters during slope ambulation. 

Another study demonstrated that it was easier with a 

MP controlled than with a non-MP controlled 

hydraulic ankle to control the walking speed while 

descending a 5° slope. One study with a MP 

controlled foot with instant terrain adaption and a 

dorsiflexion stop found that it was more physiologic 

to stand on a 10° incline and decline with this foot 

than with other MP controlled feet with only gradual 

terrain adaption and no dorsiflexion stop. One study 

found some improvements in biomechanical 

parameters while ascending and descending stairs. 

Finally, one study also demonstrated significantly 

reduced interface stress between the socket and the 

residual limb when using a MP controlled foot as 

compared to a standard ESAR foot on varying 

terrains. 

Studies with a MP controlled powered ankle-foot 

component found that subjects able to walk with at 

least 1.2 m/s with their regular ESAR foot have a 

good chance to further increase their self-selected 

walking speed to the level of able-bodied individuals. 

At higher walking speeds of 1.5 to 1.75 m/s, use of a 

powered foot may result in a significant 15-20% 

reduction of sound knee loading, which may have the 

potential to reduce incidence rates of sound knee 

osteoarthritis related to long-term prosthesis use.  

Studies also found improved stability while walking 

on level ground and slopes. There is conflicting 

evidence on the reduction in metabolic energy 

consumption during over ground walking: One study 

showed a significant decrease in energy 

expenditure, whereas another study could only 

confirm that for subjects with MFCL-4 mobility. 

Finally, studies reported significantly improved push-

off and walking speed on uneven terrain and 

normalized ankle power generation and increased 

plantarflexion during stair ascend. 

DISCUSSION 

A total of 38 publications on the benefits of prosthetic 

feet with non-MP hydraulic ankles/dorsiflexion 

https://doi.org/10.33137/cpoj.v1i1.30450
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feature, passive or powered MP controlled ankles 

was reviewed. Most of the studies had been 

conducted in gait labs and focused on biomechanical 

parameters of gait.  

Clinically, the most relevant finding was that non-MP 

and passive MP controlled ankles may have the 

potential to increase toe clearance and, thus, reduce 

the risk of tripping. However, it remains to be studied 

if that feature also results in reduced falls in the free-

living environment. Improved passive ankle motion 

may result in reduced braking forces, increased self-

selected walking speed, and reduced interface 

pressures between the residual limb and the socket 

on varying terrains.  

Passive MP controlled feet may also improve the 

ability to navigate slopes and stairs. Powered feet 

may enable high-functioning individuals with 

transtibial amputation to further increase their self-

selected walking speed to the level of able-bodied 

subjects while significantly reducing sound knee 

loading at higher walking speeds. Some subjects 

may also benefit from using a powered ankle-foot 

component by reducing metabolic energy 

consumption at faster walking speeds. However, 

none of studies reported any criteria for identifying 

patient groups who are more likely to benefit from 

either type of advanced foot technology than others. 

Thus, matching the right patient with the individually 

best advanced prosthetic ankle-foot mechanism 

remains a difficult challenge to clinicians.    

CONCLUSION 

Prosthetic feet with non-MP or passive MP controlled 

hydraulic ankles/dorsiflexion feature may be 

considered for transtibial amputees with 

compromised toe clearance and tendency to trip. 

These feet may also be considered for patients who 

experience increased residual stress while 

negotiating uneven terrain, slopes and stairs. 

Powered prosthetic feet may be considered for high-

functioning individuals with transtibial amputations 

who want to further increase their walking 

capabilities and reduce their long-term risk of 

developing sound knee osteoarthritis.   
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