
FREDERICK G. KILGOUR 

Symbol-Manipulative Programing for 
Bibliographic Data Processing 

on Small Computers 

Drawing upon experience in the processing of bibliographic data on a 
small computer, the author makes suggestions for appropriate pro­
grams for production runs. Subfects covered by these suggestions in­
clude programing language, procedures of program preparation, cod­
ing and flagging, field length, and hints on effective program appli­
cation. 

RELATIVELY LITTLE has been writ­
ten on symbol-manipulative program­
ing, and papers that have appeared 
discuss "high-lever' languages to be run 
on large machines.1 Furthermore, pub­
lications in the general field of language­
data processing are concerned, for the 
most part, with machine translation or 
information retrieval from natural lan­
guage-two procedures which require 
large computers. However, in 1963 Don 
S. Culbertson proposed that COBOL 
should be the standard computer lan­
guage for library data processing, 2 and 
in the same year I. H. Pizer, D . R. Franz, 
and Estelle Brodman raised objections to 

1 "ACM Conference on Symbol Manipulation, May 
20-21, 1960," Communications of the ACM, III (April 
1960), 183-234; "Design, Implementation and Appli­
cation of IR-Oriented Languages," in " Papers ..• 
at ... Princeton, N.J., October 20-21, 1961," Com­
munications of the ACM, V (January 1962), 8-46; 
[Symposium on Symbolic Languages in Data Proc­
essing, Rome, 1962.] Symbolic Languages in Data 
Processing (New York: Gordon and Breach, 1962), 
p. 114-85 ; Philip M. Sherman, Programming and 
Coding Digital Computers (New York: John Wiley 
and Sons, [1963J). p. 294-326; Daniel G. Bobrow and 
Betram Raphael, "A Comparison of List-Processing 
Computer Languages," Communications of the ACM, 
VII (April 1964), 231-40 . 

2 Don S. Culbertson, "Another Tower of Babel?" 
Library Journal, LXXXVIII (March 1963), 940-943. 

Mr. Kilgour is Associate Librarian, Yale 
University. 

Culbertson's plea.3 These two discus­
sions appear to be the total literature on 
programing for bibliographic data 
processing. This paper is based on, and 
will report experience in programing the 
processing of bibliographic information 
on a small computer; namely, an IBM 
1401 having a 4 K core, two tape drives, 
and advanced programing features. Most 
of the programs are production programs 
and are run on a daily production sched­
ule, but some are run monthly. There­
fore, the paper presents suggestions for 
programs, for production runs, not for 
one-shot programs. 

Perhaps the cardinal principle of a 
bibliographic data processing system is 
that the machine must not be allowed to 
impose its characteristics on the data or 
the procedure. In the case of library 
procedures, long experience has accrued; 
indeed, libraries are thousands of years 
old, while books have been printed 
for hundreds of years. Lessons learned 
empirically, decades and perhaps cen­
turies ago, should not be discarded be-

3 Irwin H. Pizer, Donald R. Franz, EsteUe Brod.: 
man, "Mechanization of Library Procedures in the 
Medium-Sized Medical Library : I. The Serial Record," 
BuUetin of the Medical Library Association, LI (July 
1963)' 331-38. 

I 95 



96 I College & Research Libraries • March, 1966 

cause of machine characteristics or be­
cause of difficulties in program planning 
or coding. For instance, it is not neces­
sary to sacrifice lower-case letters in 
printout from high-speed printers; fur­
thermore, final printout can be done on 
typewriters controlled by computer-pro­
duced punched cards or punched tapes, 
thereby achieving upper and lower case 
print. 

Perhaps the most important character­
istic of the computer to be used is that it 
should have variable word length storage 
in its internal memory. In short, its core 
should be able to store variable length 
words characteristic of natural language. 
In the years ahead, language-data proc­
essing will be being done on such 
machines, and a start made now should 
be in the right direction. The speed of 
the computer matters little, and indeed 
a slow computer may be better than a 
fast machine and most certainly will do 
better if high speed is acquired with the 
penalty of fixed word length. 

A programing language to be used for 
bibliographic data processing on a small 
computer must be machine oriented. In 
other words, the programing language of 
choice is a symbolic-assembly language 
as close to machine language as avail­
able. Macros can be wasteful of space, 
and if used, should be only in the form 
of closed subroutines or routines used 
but once in the main program. The so­
called high-level languages are certainly 
easier to learn but are inefficient and 
must be run on large machines. More­
over, these languages restrict a computer 
in the operations it can perform so that 
they lend a provincial quality to their 
programs, whereas symbolic-assembly 
languages make possible the writing of 
sophisticated programs taking full ad­
vantage of the computer's capabilities. 
Indeed, many workers employing large 
computers for language-data processing 
have increasingly used machine-oriented 
languages. 

Culbertson, in the paper referred to 

above, urged that librarians adopt 
COBOL for library computer programs. 
He based his suggestion on the attractive 
premise that use of COBOL would yield 
standardized programs that could be run 
on a large array of computer models pro­
duced by various manufacturers. How­
ever, he recognized that to achieve such 
standardization only one of the COBOL 
dialects could be used. To compile 
COBOL, a slightly larger computer con­
figuration must be available since four 
tape drives are required with a 4 K core. 
Furthermore, COBOL is a problem­
oriented language and such languages 
are not inherently suitable for symbol­
manipulative programing. Still, Culbert­
son was quite correct in pointing out that 
use of a symbolic-assembly language 
may mean that an extensive and ex­
pensive reprograming task could accom­
pany a change in equipment. 

The output of language-data process­
ing is often characterized by ·having one 
section which is fixed in its two dimen­
sional design and other sections which 
may be varied two dimensionally. For 
instance, printed text on a page may 
vary in number of lines and in line length 
from book to book, but it is essentially 
a block of words. On the other hand, the 
running head and page number vary ex­
tensively in position. An analogous fixed 
and varied format is the card found in 
the conventional library card catalog. 
Here, bibliographic data describing 
books occur in the same relative posi­
tions on cards in most libraries. However, 
call numbers for books and headings for 
subjects, titles, editors, etc., are placed 
in varying positions according to in­
dividual library practices. Programs can 
be written for formats having varied and 
fixed characteristics by assigning the 
processing of the fixed characteristics to 
the main program. In addition, a genera­
tor program can be written which will 
operate on data from a control card 
whereby the generator will write brief 
programs to determine position of that 



Programing for Bibliographic Data Processing I 91 

part of the format which may vary from 
one product to another. Siich generator 
programs give flexibility to bibliographic 
data processing. Since language-data 
processing requires relatively large work 
areas in the computer's internal memory, 
the generator should be written in the 
work area and erased after it has written 
its programs to be used by the main 
program. Program tables can also be de­
vised to attain similar flexibility. 

It is not possible to employ a monitor 
program in the conventional sense of 
that phrase in a small computer, but a 
somewhat similar effect can be attained 
by employing a systems tape, if a pro­
gram is too large to fit into core. In 
such a circumstance, the program should 
be divided into three or more sections, 
one section being common to the others. 
In assembling the program, the common 
section can be assembled either first or 
last. Should it be first, the others should 
be written on tape with one of the tape 
sections in core at the start of processing. 
In the case of three sections, the third 
section may be left in core and written 
on tape during processing and the sec­
ond section called in to replace it. This 
procedure may, of course, be reversed, 
for when the third section is needed, the 
common section containing calling in­
structions can bring it back into core. 
Also, the systems tape may be used to 
store data for recall in subsequent proc­
essing. 

If a large amount of processing is 
necessary, several programs may be 
needed. In such a circumstance, the pro­
grams can be planned for a sequential 
system wherein they are linked together. 
The program system that yielded most 
of the experience on which this paper 
draws consists of four major programs, 
two of which have generators, and two 
that employ a systems tape. The four 
major programs have been linked to­
gether so that when the first program has 
completed its processing of the data, it 
loads the second program automatically. 

The third and fourth are similarly 
loaded. Such a program system greatly 
simplifies operation, for the operator 
need only place the data cards after the 
first program and depress the load but­
ton. 

Symbol-manipulative programs are 
characterized by their high percentage of 
logic instructions. However, symbol­
manipulative programs for language­
data processing have an additional typi­
cal feature in that the core position of 
data is locked into the logic. It is this 
characteristic of logic interlocked with 
position that places exceptionally heavy 
requirements on indexing features of a 
computer and on the programer to con­
trive efficient, qlosed subroutines to 
maintain index registers at correct 
values. 

Another characteristic of such symbol­
manipulative programs is a high density 
of labels. If the assembly program has a 
limitation of the number of labels it 
will process in one iteration, care should 
be taken to keep the number of labels 
below that limit by use of actual address 
or by other means. Reiterative assembly 
of one large program for processing bib­
liographic information on a 1401 requires 
25 minutes and uses a box and a third of 
punched cards. Since de-bugging may 
sometimes constitute as much as 90 per 
cent of the total time of development 
of a computer program,4 it is important 
to minimize assembly time. 

If bibliographic data is to be sorted 
and arranged alphabetically, such sorting 
will constitute a major programing prob­
lem. Moreover, to obtain differentiation 
in sorting, it will most likely be necessary 
to sort on more characters than origi­
nally estimated. The technique for doing 
such sorting is, of course, to establish 
a separate sort control on which the com­
puter actually operates. Initial articles 
should be removed from this control, 
and when various languages are in­
volved, separate article tables for each 

' Sherman, op. cit., p. 398. 



98 I College & Research Libraries • March, 1966 

language must be established in the pro­
gram. Also, various spellings of "Mac" 
and many other letter, or letter and 
diacritical mark, combinations should or 
should not be brought together in the 
sort control, depending upon the filing 
rules adopted. Finally, there will be 
some elements by which filing is to take 
place such as numbers in a title. An ex­
ample is 1066 and All That. If this title is 
to be sorted as though it were Ten Sixty­
six and All That, there is no program 
which can instruct the machine to do it. 
Here it is necessary for the person proc­
essing the data to write out a separate 
sort control in the form of TEN SIXTY­
SIX AND ALL THAT, and the pro­
gramer must provide for a signal which 
will enable the computer to recognize 
that it must use this human determined 
sort control. 

Another characteristic of language­
data processing on a small computer is 
that the preparation of the data involves 
linking it with the program to be used. 
In general, it is necessary to identify 
each internal category of data with an 
exclusive code, and to assign such codes 
so that the program can recognize when 
processing moves from one category to 
another. Also, codes must be designed 
to identify sections of data within each 
category. These three simple coding re­
quirements yield enormous flexibility in 
processing. 

Codes or flags should be positive and 
exclusive. Negative flags, such as blank 
spaces, should be avoided, for experience 
has shown that they can be troublesome. 

In establishing flags, one should use 
symbols that occupy but one column on 
a punched card. As a concomitant of this 
rule, upper-case characters should not 
be used as flags, for in many circum­
stances it will necessitate the use of an­
other flag to indicate upper-case. Hence, 
the flag would actually occupy two 
columns. Experience has shown that such 
two-column flags are difficult to program. 
Also, symbols should not be used which 
are in the regular printout of the sys­
tem; it is preferable to use non-printing 
characters despite the unquestionable 
fact that they complicate the de-bugging 
process since they do not appear in a 
post listing of a program. 

A further caution about preparing data 
for processing is to avoid having fixed 
internal fields. In most, if not all cases, 
it will be necessary to have a fixed over­
all record length, but it is unnecessarily 
restrictive of the data to have fixed fields 
within the record length, albeit that such 
fixed fields facilitate programing. 

Finally, if a major bibliographic data 
processing system is to be established, 
it is most desirable that there be one 
operational application made early in the 
development. Such an application will 
reveal various difficulties which it may 
be necessary to solve by altering the 
preparation of the data, by elaborating 
the program, or by using both these tech­
niques. Should it be necessary to change 
the data preparation, much future grief 
will be avoided, and it is for this rea­
son that an early application is advan­
tageous. •• 

J 




