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ABSTRACT 

As the use of technology has become more prevalent within the 

educational environment over the past decade, the emergence of 

the use of virtual manipulatives to support student learning in 

math has made transitioning to technology-infused math 

instruction unavoidable. Students in rural areas, however, have 

tended to receive far less technology-infused instruction due to 

the many challenges faced by rural schools that can adversely 

affect academic opportunities and disrupt equity in learning and 

teaching. In the current paper, we report on a classroom study 

conducted to examine whether the previously proven effects of 

concrete manipulatives can carry over into those of virtual 

manipulatives when teaching math fact fluency in multiplication 

and explored the potential for virtual manipulatives in rural 

classrooms from the teacher’s perspective. Quantitative and 

qualitative results both indicated a promising potential for usage 

of virtual manipulatives, with meaningful implications for 

practitioners. The educational implications for designing and 

planning effective instruction incorporating virtual manipulatives 

are discussed. 
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INTRODUCTION   

Mathematics has long been known to be a notoriously difficult subject particularly for students 

with learning disabilities (LD) because of many contributing factors including standards-based 

spiral nature of mathematics where topics increase in complexity and build upon previous 

learning, neuropsychological and academic characteristics of learning disability, and lack of 

instructional strategies or support (Fletcher & Grigorenko, 2017; Becker et al., 2009; Jayanthi et 

al., 2008). According to the National Mathematics Advisory Panel (2008), mathematical 

proficiency requires an integrative set of understanding and skills in five major strands: 

conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and 

productive disposition. Previous studies have used different approaches to increase students’ 

mathematics proficiency with an emphasis on at least one or two strands (e.g., Bottge et al., 

2014; Rave & Golightly, 2014).  

Hwang and Riccomini (2016) identified three main instructional approaches—heuristic, 

semantic, and authentic—that categorize math interventions with relative focus among the five 

strands. Among these three instructional approaches, math interventions that use a heuristic 

approach (e.g., mnemonic, meta-cognitive, and cover-copy-comparison strategies) concentrate 

more on promoting procedural fluency by teaching students’ skills to carry out the problem-

solving process more flexibly and efficiently (Kelley, 2008; Ramos-Christian et al., 2008). While 

both mathematical understanding and procedural skill are equally important (Common Core 

State Standards Initiative, 2010), increasing math fact fluency, the basic skill of procedural 

fluency, has particularly gained a lot of attention when teaching students with LD. Because math 

fact fluency is a critical stepping-stone that affects the pursuit of math proficiency along with 

conceptual understanding (Rushton et al., 2016; Wu et al., 2013; Richland et al., 2012; 

Yesseldyke et al., 2005). Math fact fluency has often been defined by speed and accuracy in 

solving basic mathematical facts (i.e., the number of problems correctly solved per minute). 

Students with LD and Math Fact Fluency 

Previous studies have argued the importance of math fluency for students at all grade levels. 

Wu et al. (2013) found that children who develop math fact fluency at an early age are more 

likely to become proficient in mathematics later in life. Additionally, Rushton et al. (2016) stated 

that the mastery of math fluency has a positive impact on students’ sense of efficacy, which can 

help lead to future math achievement. Several other studies (e.g., Berrett, & Carter, 2018; 

Kelley, 2008; Ramos-Christian et al., 2008; Poncy & Skinner, 2006) have also found that students 

who were not proficient in math fact fluency in elementary grades were less likely to succeed in 

later grades and that this lack of proficiency continued to be a significant barrier to pursuing 

advanced mathematics in middle and high school.  

The mastery of math fact fluency, resulting from the achievement of automaticity of 

math facts, is even more critical and central to success throughout the mathematics curriculum 

for students with LD. Many students with LD lack working memory and executive functioning, 
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have difficulties in organizing information and retrieving information from long-term memory, 

and present a series of non-strategic learner characteristics (e.g., unaware of possible steps to 

break the problem, unable to focus on a task, lack of persistence, and experience feeling of 

frustration, anxiety, and failure; Bryant et al., 2000; Morgan et al., 2019; Schmitz Jansen et al., 

2019; Sideridis, 2005). Also, studies reported that attention deficits may be strongly related to 

LD condition, resulting in certain types of errors on a multi-digit computation task (i.e., 

operation switch errors) that were presented across subgroups of children with mathematical 

difficulties (Raghubar et al., 2009; Shaywitz et al., 1994). Moreover, according to Hirvonen et al. 

(2012)’s study where they used a bi-directional model to explain the relationship between 

academic and behavior, increased feeling of anxiety and frustration resulted from early 

academic failure led to less involvement in mathematical activities.  

All of these make it difficult for students to do basic computations and break down 

problem-solving exercises (Miller & Mercer, 1997; Geary et al., 2012), which further makes it 

challenging to meet the current rigorous math expectations that have shifted to a greater 

emphasis on solving complex real-life problems (National Council of Teachers in Mathematics 

[NCTM], 2019; Maccini et al., 2007). These challenges mean that achievement of automaticity 

of math facts is the most important skill that students with LD should have under their belts to 

compensate for neuro-psychological difficulties. In fact, students with math fact fluency are less 

anxious and more engaged in math activities, which increases their ability to master more 

difficult mathematical exercises (Billington & Skinner, 2002; Cates & Rhymer, 2003; Ramos-

Christian et al., 2008).  

Using Multiple Representations to Teach Math 

The Center for Data-Driven Reform in Education (CDDRE; 2009) conducted a study where they 

reviewed evidence-based mathematical programs, interventions, and approaches and 

concluded that the incorporation of representations, cooperative learning, motivation, and/or 

classroom management in instruction had the most positive effects on student achievement in 

mathematics. Using representations, particularly manipulatives, was one of the most effective 

evidence-based strategies for students with disabilities followed by peer-assisted learning 

strategies (PALS). When teaching math facts, PALS can allow students to provide peer feedback 

as students deliver math facts to each other during timed sessions, which eventually leads to 

mastery of basic math facts; however, they are limited in their use in addressing current math 

standards as they focus more on memorization than on a conceptual understanding of math 

facts.  

Many studies have demonstrated the positive effects of using multiple representations 

in various domains in mathematics (e.g., Hwang & Riccomini, 2016; Codding et al., 2011; Flores 

& Kaylor, 2007; Fuchs et al, 2011). Hwang, Riccomini, Hwang and Morano (2019) synthesized 22 

experimental math intervention studies and found using multiple representations to be a 

significant instructional component to consider when designing math instruction. Types of 
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representations take many forms, for example, concrete manipulatives, pictorials or drawings 

(i.e., semi-concrete manipulatives), schematic sketches of problem structures, and abstract 

symbols and notations. Two or more types of these representations are generally used in 

combination or they are used with other strategies (e.g., mnemonics).  

Among the different types of representations, the NCTM (2019) recommended the 

integration of manipulatives at any grade level to aid in students’ mathematical mastery but 

recommended them particularly for students with disabilities. Research has indicated that using 

manipulatives is beneficial in several aspects, one of which is improved retention of learned 

concepts and problem-solving skills (e.g., Ortiz, 2017). Additionally, studies have found that 

students who used manipulatives, no matter the grade level, ability level, or topic, 

outperformed students who did not use manipulatives (Clements, 1999; Ortiz, 2017; Witzel, 

Riccomini, & Schneider, 2008). Because students with LD tend to struggle in math environments 

with traditional instruction, which is often rule-based teaching focusing on learning the 

algorithms of any given mathematical problem (Becker et al., 2009), manipulatives offer an 

evidence-based strategy that can aid in improving mathematical proficiency in several different 

math concepts (Agrawal & Mori, 2016).  

Models for Multiple Representation Interventions 

Interventions that use manipulatives take various forms in terms of cognitive processing model 

(sequential vs. simultaneous), manipulative type (e.g., algebra block or tiles, actual objects, and 

stick), and delivery method (virtual vs. physical). Hwang, Riccomini, and Morano (2019) 

identified instructional sequences for types of cognitive processing in mathematical problem-

solving interventions that served as bases to categorize representation interventions and 

examined how manipulatives were incorporated within interventions. These cognitive 

processing models were (a) concrete-representational-abstract (CRA), (b) integrated concrete-

representational-abstract (CRA-I), and (c) virtual-abstract (VA).  

Concrete Manipulatives 

The first two models, CRA and CRA-I, help students interact with a more abstract concept by 

effectively incorporating concrete manipulatives into instructions, but differ in terms of whether 

the three representation types (C, R, and A) are provided sequentially or simultaneously. CRA’s 

sequence involves students progressing through three stages of representation in order (i.e., C 

followed by the R and A stages; Hudson & Miller, 2006; Yakubova et al., 2016). Students are first 

given an opportunity to manipulate concrete objects to solve specific mathematical problems, 

and as they reach mastery at the concrete level, students then progress to the representational 

stage where students then solve the same types of problems by drawing those manipulatives 

on paper. After mastery has been developed in the representational stage, students then move 

on to the abstract stage, the final stage, where students then solve the same types of problems 

using only mathematical notation and symbols.  
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The CRA model is advantageous for the development of number fluency (Jones & Tiller, 

2017). CRA is an effective strategy for students that struggle with mathematical fluency, since 

the concrete and representational components support procedural knowledge as part of the 

abstract stage (Agrawal & Morin, 2016; Miller & Kaffar, 2011; Milton et al., 2019). Additionally, 

since the abstract stage in CRA focuses on the completion of a task, students are best supported 

when they are exposed to the mathematical notation along with a math problem in the concrete 

and representational stages (Flores, 2010). CRA has been well established as an effective 

strategy to support students with LD in solving various types of mathematical exercises and 

problems (Strickland & Maccini, 2012; Satsangi & Bouck, 2014; Shin et al., 2017). 

Similar to CRA, CRA-I is a modification of CRA sequencing. Whereas CRA is delivered 

through stages and mastery of those stages, CRA-I involves the simultaneous presentation of a 

mathematical concept by integrating more than two stages at one time. Students use concrete 

manipulatives, drawing, and/or abstract notation at the same time. Use of CRA-I strategy helps 

students develop both procedural and conceptual knowledge leading to mathematical 

proficiency (Hudson & Miller, 2006; Strickland & Maccini, 2012; 2013; Strickland, 2016). Like 

CRA, the act of completing the concrete and representational phases, together with 

mathematical notation, supports math fact fluency. 

Virtual Manipulatives  

In addition to CRA and CRA-I, another cognitive processing type of mathematical problem 

solving is VA (Authors, 2019), where the C and/or R stages are replaced with the V stage. Over 

the last three decades, as the use of technology has become more prevalent within the 

educational environment (Bouck & Flanagan, 2010; Nelson et al, 2016), an increasing number 

of mathematics practices have integrated technology (e.g., software program, apps, and e-

books) with an impact in creating instruction. In intervention designed using the VA model, 

students were provided a virtual space to manipulate and represent problems on a computer 

screen (e.g., MobyMax, ABCmouse, and BrainPOP).   

Two types of virtual manipulatives are used in education: static manipulatives and 

dynamic manipulatives. Static manipulatives are representations of what concrete 

manipulatives look like as a picture so they are more like simple illustrations. Deubel (2000) 

explained that static manipulatives as not true virtual manipulatives and instead suggested that 

static manipulatives are more pictorial, like a picture or drawing. Another type of virtual 

manipulative is a dynamic representation of a concrete manipulative. Unlike static 

manipulatives, dynamic manipulatives are more dynamic, as their name indicates, in that they 

can be moved around, altered and adjusted, flipped around, and turned in different directions 

in ways that are similar to concrete manipulatives but in a virtual space where students 

manipulate them (Bouck & Flanagan, 2010; Moyer et al., 2002; Spicer, 2000); therefore, they 

are considered similar to concrete manipulatives (Bouck & Flanagan, 2010).  

Although there has still been little research on virtual manipulatives when it comes to 

students with disabilities, recent studies have found that using virtual manipulatives can 



47                                                                                 
 

 

produce consistent or even better student outcomes than concrete manipulatives can, 

indicating that they are promising approach to transitioning to technology-infused math 

instruction (Bouck & Flanagan, 2010). Studies have also indicated that virtual manipulatives 

were effective in helping students gain mathematical mastery of certain math concepts (e.g., 

area, perimeter, and algebra; Bouck & Flanagan, 2010). The positive outcomes in these studies 

show that students may be able to access math concepts virtually through the use of the 

dynamic manipulatives, which students can use interactively (Bouck & Flanagan, 2010; Reimer 

& Moyer, 2005; Suh et al., 2005; Suh & Moyer, 2007). Several major studies on virtual 

manipulatives have found that students who used virtual manipulatives made mathematical 

gains. In the study done by Bolyard and Moyer (2012), students using virtual manipulatives 

showed a significant increase in mathematical fluency of addition and subtraction. Additionally, 

students with LD have been found to benefit from the use of these new technologies, which 

have built-in dynamic action and constraints in order to teach mathematical concepts (Bouck et 

al., 2018; Satsangi & Bouck, 2014).  

New Era in Teaching Mathematics 

Education has increasingly been saturated with technology, and the introduction of technology 

has been having an impact on educational settings in many aspects, especially dramatically as a 

result of the COVID-19 pandemic. For example, instruction have been held remotely using online 

conference tools such as Zoom and Google Hangout in synchronous or asynchronous mode. 

With the new technological methods and tools becoming part of classroom environments, it is 

important to consider whether educational goals in mathematics are being met when using 

these new platforms and methods of instruction and what their impact is on students both in 

achievement and perception in actual classroom environments (Cakir et al., 2009; Saylan et al., 

2018).  

Unlike concrete manipulatives, for which there is strong evidence for their use in helping 

students achieve mathematical mastery (e.g., developing fluency and mathematical 

understanding; Pratt & Eddy, 2017), the use of virtual manipulatives is a relatively new and 

growing field in education. In fact, virtual manipulatives offer several benefits that may not be 

available with concrete manipulatives. One benefit is the availability of instructional materials 

for teachers at school sites for low or no cost, as opposed to the cost for teachers of providing 

concrete manipulatives. There are many different websites that offer virtual manipulatives for 

free (e.g., MobyMax; https://www.mobymax.com/). Additionally, adjusting the use of virtual 

manipulatives allows teachers to differentiate their instruction in more flexible ways, which is a 

benefit to special education teachers (Bouck & Flanagan, 2010). Studies continue to be done on 

virtual manipulatives to demonstrate these effects as best practices for educating students with 

disabilities (Bouck & Flanagan, 2010; Maccini & Gagnon, 2000; Satsangi et al., 2018).  

Given the current educational trend and social situation, using technology in education 

settings is now unavoidable; therefore, the challenges of using virtual manipulatives need to be 

https://www.mobymax.com/
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addressed (e.g., need for training, unfamiliarity, and perceptions toward technology), and future 

directions for their effective use in classroom settings need to be sought. Additionally, too little 

research has been done for students with disabilities, particularly for those in rural areas, which 

may widen the achievement gap between them and students without disabilities in the era of 

digital and virtual learning. Students living in rural areas generally have limited access to 

technology and internet access at home (National Center for Education Statistics [NCES], 2018a; 

2018b) and rarely receive technology-infused instruction at school due to the many challenges 

faced by rural schools in terms of technology accessibility, implementation, and resources. 

These challenges adversely affect academic opportunities for students, which may also disrupt 

equity in learning and teaching. The current study aims to address this gap by conducting a 

classroom study in rural classrooms with students with LD. 

Study Purpose  

Recognizing the increasing need and promising evidence for using technology to teach 

mathematics concepts and skills, the main goals of the current study are (a) to examine whether 

the previously proven effects of concrete manipulatives on students’ math fact fluency can carry 

over into those of virtual manipulatives, (b) to examine virtual manipulatives’ potential for use 

in classroom settings based on the perceptions of students and teachers, and (c) to explore 

future directions for practices for effective use of virtual manipulatives in teaching math for 

students with LD in rural schools. To achieve (a), we compared students’ performance in math 

fact fluency on one-digit by one-digit multiplication problems between two types of 

manipulatives: virtual and concrete. Our purpose goes beyond the mere comparison of two 

manipulatives to how to improve math instruction in remote/virtual learning environments. To 

achieve (b), we examined students’ perceptions and attitudes toward the use of technology 

(e.g., how much they think virtual manipulatives helped them in their studies) and special 

education teachers’ perceptions of the efficacy and feasibility of using virtual manipulatives in 

rural classroom settings. The following specific research questions were addressed:   

1. How does the number of multiplication problems that students with LD solve 

correctly per minute (i.e., fluency) differ between the use of virtual and concrete 

manipulatives in math instruction?  

2. What are the perceptions of students with LD on the use of virtual manipulatives, and 

what are teachers’ perceptions about the efficacy (i.e., impact on students’ 

performance) and feasibility of the use of virtual manipulatives in rural classroom 

settings?  
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METHOD 

Participants and Setting 

Participants were recruited from one middle school in a mountain community in a rural area of 

Southern California that serves Grades 6 to 8. As shown in Table 1, eight sixth-grade students 

(age range 11-13) who were identified as having LD specifically in mathematics participated in 

this study. All students had at least one individualized education program (IEP) goal in math, and 

of the eight students, two had comorbidity in addition to their primary LD diagnosis (speech and 

language impairment and other health impairment). All eight students were enrolled in a 

resource specialist program (RSP), a mainstream program where students spent part of their 

day in special education classes for disciplines including math (n = 8) and/or English language 

arts (n = 6) and spent the other part of the day in general education classes for disciplines 

including physical education, science, and social studies. Students had no prior experience using 

virtual manipulatives to learn any mathematics domain.  

Table 1: Participant Demographics 

 N 

Grade (Age)  
6 (11-12) 8 

Gender  
Female 3 

Ethnicity  
White 5 
Hispanic/Latino 3 

Disability  
SLDa Only 6 
SLD with Comorbid Conditions 2 (1=OHIe; 1=SLf) 

IEP Goal  
Math Only 2 
Math and Reading 6 

Cognitive Skills  
WISC-IVb 95 (13.04) 

Working Memory 90 (13.54) 
Processing Speed 86.25 (13.20) 

TONI-4c 102.67 (9.14) 

Academic Achievement  
WIAT-IIId  

Math Problem Solving 78.13 (11.37) 
Numerical Operations 83.75 (11.26) 
Math Fluency Addition 78.75 (11.73) 
Math Fluency Subtraction 74.5 (6.82) 
Math Fluency Multiplication 81.88 (4.36) 

Note: a= Specific Learning Disabilities; b= Wechsler Intelligence Scale for Children; c= The Test of 
Nonverbal Intelligence; d= Academic results were gathered from the Wechsler Individual Achievement 
Test; e= Other Health Impairment. f: Speech Language Disorder. 

 



      50 
 

 

Action Research Model 

To address the research questions, an action research model was used. Action research is a type 

of research that uses an experimental approach in traditional research (e.g., data collection, 

analysis, and interpretation) to address practical situations and set up action plans (Bradbury-

Huang, 2010; Lewin, 1946). Action research is beneficial in that it helps teachers become 

empowered by advancing their teaching by means of systematic implementation of evidence-

based practices and data-based decision making. Additionally, because action research is 

directly involved in and relates to real and unstructured (i.e., less constraint and controlled by 

research design) classroom settings, it provides useful implications for teachers, who are the 

primary consumers of the findings. To respond to the current increasing need for using 

technology in education and to help with the urgent need for virtual instruction as a result of 

the COVID-19 pandemic that began in 2020, we chose an action research model to provide 

relevant findings for teachers in their immediate and familiar environments. Findings from an 

action research model can also have implications for future directions and guidance for 

administrators, curriculum developers, and researchers. 

Several studies have proposed that action research be conducted in a spiral and recursive 

cycle (Hine, 2013; McMillan, 2008; Sagor, 2000). For example, Sagor (2000) proposed four 

stages: clarification of vision and targeted improvement, identification of action for desired 

results, implementation of actions and data collection, and reflection on results. Similar to 

previous models of action research, Taylor (2019) recently suggested four stages for an action 

research cycle: identify, plan, act, and decide. Taylor and colleagues (Taylor, 2019; Taylor & 

Moohr, 2018) also recommended that basic action research language (e.g., independent 

variable, dependent variable, and markedly different) should be used to better articulate 

research problems, resolve situations and concerns, conduct systematic research, and develop 

professional partnerships with colleagues and relevant researchers. In the identify stage, 

problems, target population, and independent and dependent variables are identified. In the 

plan stage, theories and strategies that will be used to implement are identified, and research 

questions are developed that will guide an investigation. In act stage, data is collected (baseline 

and intervention, or pre and post) and analyzed using appropriate techniques (e.g., data 

visualization, bar graph, or line graph). In the decide stage, findings are examined to adjust 

interventions and suggest future directions of intervention. See Table 2 for how the current 

study aligns with the four stages of Taylor’s (2019) action research cycle.  
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Table 2: Four Stages of Action Research 

Action Research 
Stages 

Description of Current Study 

Identify Problem is undiscovered benefits of use of virtual manipulatives to teach math 
fact multiplication fluency to middle students with LD in rural classroom. 
Independent variable is manipulative type (virtual vs. concrete manipulatives; 
and dependent variables are (a) single-digit multiplication fact fluency (the 
number of problems correctly solved per minute); and (b) single-digit by 
double-digit multiplication fact accuracy (the percentage of problems correctly 
solved) 

Plan Interventions that use CRA-I model framework are implemented and two 
manipulative types (concrete and virtual) are alternated. Research questions 
are developed. 

Act Interventions are implemented with ATD and data is collected for baseline, 
intervention, and maintenance phases. Results are analyzed with visual analysis 
technique and PND  

Decide Potential for the use of virtual manipulatives is sought compared to concrete 
manipulatives. Future direction for practices their effective use for students in 
rural classroom is discussed. 

 

Dependent Variables and Measures 

The dependent variables used to measure students’ performance were (a) multiplication fact 

fluency measured by the number of correctly solved single-digit multiplication problems per 

minute and (b) multiplication fact accuracy measured by the percentage of correctly solved two-

digit (> 20) by one-digit multiplication problems. The accuracy was additionally measured for 

the effects of virtual manipulatives but was not measured to compare effects of two different 

manipulatives types. The teacher developed 30 equivalent probes for math fact fluency and 10 

probes for accuracy from the Math-Aid.com website (http://www.math-aids.com/) and 

administered formative assessments using these probes at the end of each session. For math 

fact fluency, students were given a 6 cm x 10 cm math worksheet consisting of 60 single-digit 

by single-digit multiplication problems with sums from 1 to 18. Problems were arranged in 6 

rows across 10 columns with each problem being vertically presented. For math fact accuracy, 

students were given a worksheet consisting of 20 two-digit by single-digit multiplication 

problems arranged in 5 rows across 4 columns. Math fact accuracy was measured after every 

five consecutive sessions. The number of problems per probe (60 and 20) was chosen by the 

teacher to avoid ceiling effects based on the students’ previous performance.  

Data Collection Procedures 

A single-case alternating treatments design (ATD) was used to compare the effectiveness of 

virtual and concrete manipulatives on the math fact fluency in single-digit multiplication. ATD 

allows for the comparison of two or more treatments, and these effects can be found intuitively 

and quickly; therefore, it is an efficient design that teachers can use as part of their instruction 

http://www.math-aids.com/
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in classroom settings (Barlow & Hayes, 1979; Coffee & Kratochwill, 2015). Additionally, because 

our purpose was not only to examine whether virtual manipulatives could be promising 

alternatives to concrete manipulatives but also to examine ways to improve math instruction 

using virtual manipulatives, particularly during virtual and remote instructions, ATD also allows 

examination of the effects of concrete manipulatives, which could be used in remote learning 

via virtual conference tools such as Zoom and Google Hangout.  

Baseline 

Students were assessed for multiplication fact fluency using one-digit by one-digit multiplication 

problems and for accuracy using two-digit by one-digit multiplication problems over three 

sessions (three probes for each condition totaling six probes) for three consecutive days in a 

special education classroom. During the baseline assessment, students were allowed to use any 

strategies that they had already used to help them solve the questions, but new strategies were 

neither introduced nor were prompts, either verbal or visual, provided.  

Intervention 

The interventions used the CRA-I intervention model framework, an instructional sequence 

using three stages of multiple representations (concrete or virtual, representational, and 

abstract representations), incorporated with explicit instruction components such as modeling, 

guided practice (e.g., I do - we do - you do) and clear identification of skills to learn. Research 

has indicated that mathematical instruction that is structured, guided, and explicit is highly 

effective in improving students’ mathematical operations performance and problem-solving 

abilities when teaching students with LD (e.g., Maccini et al., 2007; Satsangi, Hammer, & Hogan, 

2018). 

One of the two types of manipulatives, concrete or virtual, was used for the first stage of 

the sequence, and the types were alternated to compare their effects on multiplication fact 

fluency and accuracy. At the beginning of each intervention session, the teacher taught and 

modeled how to use each manipulative to solve a problem. Data was collected in the special 

education classroom and computer lab after each session. At the end of each 51-minute session, 

the teacher administered formative assessments (i.e., probes). Students were given a one-

minute drill to measure math fact fluency in one-digit by one-digit multiplication for 10 sessions 

and 10 minutes for accuracy in two-digit by one-digit multiplication for 2 sessions (sessions 5 

and 10). 

Concrete Manipulatives. For the intervention with concrete manipulatives, the teacher 

modeled how to use concrete manipulatives to solve multiplication facts using an ELMO 

projection system that displayed what the teacher was doing on the classroom whiteboard (see 

Figure 1). The teacher showed students how to create an array using base-ten blocks and count 

the blocks in each row and column to get a total amount. For example, the teacher took 12 

blocks out of the manipulative box and showed the class over the ELMO, saying, “if you make 3 

rows and 4 columns of blocks in a rectangle, the total amount of blocks is 12. Therefore, 3 x 4 = 

12.” The teacher demonstrated the usefulness of multiplication with manipulatives by telling 
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students the total number of blocks they counted (12) is the answer for the multiplication fact 

(3 x 4). Then, the teacher and the students together created a 6 x 7 array using base-10 blocks 

and a product mat. Students were provided opportunities to practice different problems at the 

same level using blocks (e.g., 2 x 3 = 6). For example, students rolled dice three times and created 

single-digit by single-digit arrays using the numbers from the dice. The teacher and the 

paraprofessional walked around the room during instruction to help.  

Figure 1: Concrete vs. Virtual Manipulatives 

  

  

                    Concrete Manipulative                                             Virtual Manipulative 

When the students achieved at a predetermined satisfactory level set by the teacher 

(correctness in 3 out of 5 trials), the teacher had the students draw the blocks on paper and 

create an array. The teacher showed the students how to solve multiplication problems using 

the same strategies, but instead of handheld manipulatives, they created drawings on paper. 

Students were provided a worksheet including questions asking how to read base-ten blocks 

and arrays from the drawings that were used as replacements for concrete manipulatives.   

Virtual Manipulatives. Students used a desktop computer in a computer lab to access the 

McGraw Hill Virtual Manipulative website (see Figure 1). At the beginning of each session, the 

teacher let students explore and play on the webpage to get used to the use, movements, and 

structure of the virtual manipulatives. The structure of the interventions was constant, but 

concrete manipulatives were replaced with virtual manipulatives and hands-on activities were 

conducted on the computer screen. For example, the teacher modeled how to create an array 

using virtual blocks by dragging and dropping individual blocks and showed how to count the 

blocks in each row and column to get a total amount on the computer screen. Similar to the 

intervention with concrete manipulatives, when students achieved at a predetermined 

satisfactory level after a number of practices using virtual manipulatives go solve multiplication 

problems, the teacher had the students draw the blocks on paper and create an array. 

Mathematical notation and symbols were used at all stages of the intervention so that students 

could avoid disconnection among the representations.   
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During both conditions of intervention, two supplementary worksheets were used to aid 

students’ understanding and skills in using manipulatives to solve problems (both available at 

http://www.CommonCoreSheets.com/). One, called “partitioning rectangles,” helped students 

understand the vocabulary used when working with manipulatives. The teacher used the 

partitioning rectangles worksheet to teach students the differences between rows and columns. 

Another one, called “rectangular arrays,” was used to help students understand what an array 

is and how they can extract an answer for a problem using manipulatives. This worksheet 

showed students 14 different arrays and asked them make an equation from each different 

array. Both worksheets helped students concentrate on using manipulatives by reducing 

cognitive loads and accommodating other factors that may hinder or affect the usage of 

concrete manipulatives (e.g., math vocabulary and organization skills), which reduced any noise 

effects to detect pure effects of the use of concrete manipulatives.  

Maintenance   

The maintenance effect of the intervention on math fact fluency was measured two weeks after 

the intervention. All participants completed three probes on one-digit by one-digit 

multiplication facts over three sessions in a period of three days and one probe on two-digit by 

one-digit multiplication facts on the third day of the maintenance period. All probes were 

administered during the same math class by the same teacher.   

Data Analysis 

Intervention effects were analyzed using visual analysis and effect-size calculation. For visual 

analysis, we examined three aspects of the data: level, trend, and stability. First, median and 

mean levels were calculated within phases and their changes between phases were calculated. 

Second, trends within phases using the split-middle method of trend estimation were examined 

(Gast & Ledford, 2014). In using the split-middle method, we divided data each phase into two 

halves, identified the intersections of the mid-rate and mid-date for each half, and drew a line 

passing through the intersections of the mid-date and mid-rate for each phase. Trend direction 

was determined to be either decelerating (deteriorating) or accelerating (improving) within 

each phase and summarized between phases for each intervention condition. Third, stability of 

data within phases was determined by calculating percentage of data points that fell within a 

20% range of the median of each phase. Using an 80% stability criterion, we determined 

whether data was stable or variable in each phase.  

For effect-size calculation, the percentage of non-overlapping data (PND) was calculated 

to supplement the visual analysis. PND is calculated by identifying the highest point in the 

baseline data, then calculating the total number of data points in the intervention phase that 

exceed the highest baseline data point (Scruggs, Mastropieri, & Casto, 1987). We considered 

the intervention effect highly effective when the PND was greater than 90%, mostly or fairly 

effective between 70% and 90%, mildly effective between 50% and 70%, and less effective or 

no observable effectiveness when less than 50% (Scruggs et al., 1987).  

http://www.commoncoresheets.com/
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Social Validity  

To examine attitudes and perspectives toward the use of technology, particularly virtual 

manipulatives, students were given a survey using an online system at the end of the two-week 

intervention period. The survey consisted of five multiple-choice questions about prior 

experience using manipulatives, personal preferences and confidence level in using virtual and 

concrete manipulatives, and general attitude toward using technology in lessons. Two weeks 

after the conclusion of the intervention, the researcher interviewed two students so that they 

could elaborate on their responses to the survey and interviewed the teacher regarding the 

applicability and effectiveness of and potential for using virtual manipulatives in classroom 

settings. 

RESULTS 

While the use of both virtual and concrete manipulatives increased the performance of all 

students’ math fact fluency (the number of one-digit by one-digit multiplication problems 

correctly solved per minute) and accuracy (the percentage of two-digit by one-digit 

multiplication problems correctly solved), students demonstrated a greater rate of increase (i.e., 

trend) and long-lasting effect when using virtual manipulatives than they did when using 

concrete manipulatives. The research questions were addressed as follows.  

Research Question 1. Math Fact Fluency in One-Digit by One-Digit Multiplication 

Immediate Effect  

Intervention effects of using both types of manipulatives were examined using three aspects of 

visual analysis (level, trend, and stability) and calculation of PND (see Table 3 and Figure 2). First, 

mean and median levels increased from baseline to intervention for both intervention 

conditions (mean level change: +6.20 for virtual and +4.19 for concrete; median level change: 

+17 for virtual and +15 for concrete), with greater increases in the virtual manipulative 

intervention than in the concrete manipulative intervention. Second, the trend between 

baseline and intervention phases was greater in the virtual manipulative intervention condition 

(M = 8; SD = 3.14) than in the concrete manipulative intervention (M = 1.25; SD = 5.41), 

indicating that the rate of improvement was greater when using virtual manipulatives than 

when using concrete manipulatives. While all eight students demonstrated positive trends 

(ranging from +1.5 to +11.5, but mostly between +8 and +11.5) in that their performance on 

one-digit by one-digit multiplication facts when using virtual manipulatives changed in a 

therapeutic direction, only three students demonstrated positive trends (ranging from +1.5 to 

+11.5) with the use of concrete manipulatives.  
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Table 3: Visual Analysis and Effect Size Calculation 

Descriptive 

Student 

Total A B C D E F G H 

Level          
MBL 15.33 13.67 13 7.33 9.67 11.67 9.33 3.33 10.42 

(3.86) 
MINT-V 17.6 18.75 18.2 14.2 13.4 14 17.4 19.4 16.62 

(2.37) 
MINT-C 17.5 17.25 13 11.75 12.5 15.5 16 13.33 14.60 

(2.23) 

Level Change          
MINT-V - MBL 2.27 5.08 5.2 6.87 3.73 2.33 8.07 16.07 6.20 
MINT-C - MBL 2.17 3.58 0 4.42 2.83 3.83 6.67 10 4.19 
MeINT-V - MeBL 3 4.5 2 6 1 1 8 20 17 
MeINT-C - MeBL 3 4 -2 4 3.5 4 6 10 15 

Trend          
TBL 1 -2 0 -1 7 0 4 4 1.62 

(3.07) 
TINT-V 8 1.5 10 9.5 9 5.5 9 11.5 8 

(3.14) 
TINT-C -1 6.5 1.5 -1.5 -6 -1 0 11.5 1.25 

(5.41) 

Stability          
SINT-V 0.6 1 0.2 0.6 0.4 0.4 0.6 0.2 0.5 
SINT-C 1 0.5 1 0.5 0.5 1 1 0.5 0.75 

PND          
PNDINT-V 0.6 1 0.6 0.8 0.2 1 0.8 0.8 0.73 
PNDINT-C 0.75 0.5 0.33 0.5 0.25 1 1 0.67 0.63 

Note. MBL=Mean for baseline; MINT-V=Mean for Intervention with Virtual Manipulative; MINT-C=Mean for 
Intervention with Concrete Manipulative; MeBL=Median for baseline; MeINT-V= Median for Intervention 
with Virtual Manipulative; MeINT-C= Median for Intervention with Concrete Manipulative; TBL=Trend for 
baseline; TINT-V=Trend for Intervention with Virtual Manipulative; TINT-C=Trend for Intervention with 
Concrete Manipulative; SINT-V=Stability for Intervention with Virtual Manipulative; SINT-C=Stability for 
Intervention with Concrete Manipulative; PND=Percentage of nonoverlapping data. 

 

Third, intervention data were more variable in the virtual manipulative condition than in 

the concrete manipulative condition, with stability indexes of 0.5 and 0.75, respectively. This 

indicates that 50% and 75% of students’ scores fell within 20% of the overall mean for the virtual 

and concrete manipulative intervention phase, respectively, which shows that the intervention 

for virtual manipulatives was less stable that of concrete manipulatives (Gast & Spriggs, 2010). 

Last, effect size (the quantified value of performance difference between baseline and 

intervention, measured using PND) was greater in the intervention of virtual manipulatives (PND 

= 73%, fairly effective) than that of concrete manipulatives (PND = 63%, mildly effective), which 

demonstrated the stronger immediate effect of the intervention using virtual manipulatives on 

one-digit by one-digit multiplication fact fluency. 
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Figure 2: Average Math Fact Fluency in One-Digit by One-Digit Multiplication  

 

Maintenance Effect 

Two weeks after the end of the period of intervention using virtual manipulatives, fact fluency 

was measured over three consecutive sessions to examine the maintenance effect of virtual 

manipulatives (see Figure 2). The overall mean level increased by 9.5 from baseline and by 3.3 

from the intervention, ranging from -3.53 to 6.6. The intervention effects were either 

maintained or improved for all eight students except for one. This student achieved mean score 

of 14.67 across the three maintenance sessions, which was a little less than the mean score of 

the virtual manipulative intervention condition (18.2) and somewhat less than the last score of 

the intervention (22).  

Math Fact Accuracy in Two-Digit by One-Digit Multiplication  

In addition to the effect comparison between virtual and concrete manipulatives, we examined 

effects of virtual manipulatives on math fact accuracy in two-digit (> 20) by one-digit 

multiplication. Accuracy was measured by calculating percentage of correct items at four 

different time points: before, during, immediately after, and two weeks after the intervention. 

The overall mean accuracy for the eight students increased from 40.65% to 65% (baseline: 

40.65%; during intervention: 55%; immediately after intervention: 65%; and two weeks after 

intervention: 87.50%), demonstrating the effects of virtual manipulatives in reducing errors 

when solving multiplication problems.  

Research Question 2: Social Validity from Perceptions of Students and Teacher Toward Using 

Technology in Learning and Teaching Math 

All eight students responded that they had no prior experience using virtual manipulatives in 

either home or school learning environments, which corresponded with the student 
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information reported by the teacher. Perception and confidence levels toward using technology 

were rather mixed: six students responded that virtual manipulatives were preferred, one 

student responded that there were not sure or did not know, and one student responded in 

favor of concrete manipulatives.  

The teacher was asked two questions. The first question was, “From the perspective of a 

teacher who has actually used and implemented virtual manipulatives (i.e., from a practical 

standpoint), how would you evaluate the potential for using virtual manipulatives in teaching 

math to students with LD?” The teacher agreed manipulatives were effective regardless of their 

types. The teacher had an optimistic view of the potential for virtual manipulatives in particular 

based on several benefits observed from his students. The teacher stated that virtual 

manipulatives allowed students to see and experience the connection of representations to 

mathematical problems on the screen in more flexible ways. Also, he stated that one of the 

benefits includes built-in assessments that immediately test the comprehension of various 

problems until students master each concept.  

The second question was, “What were the challenges or limitations in using virtual 

manipulatives in teaching students with LD, and what do you think needs to be improved or 

changed given the fact that using technology in education is unavoidable?” The teacher stated 

that several of the students experienced difficulty in working on math problems using the virtual 

manipulatives at the beginning of the intervention, which may have been due to the learning 

curve that came with learning a new online program. The teacher then stated that the students 

gradually adjusted to the new platform of learning and presented a sharp improvement in math 

fact fluency. Additionally, the teacher pointed out that lack of resources and accessibility to 

educational technology in rural schools are limitations that may hinder equal access to 

education opportunity. He stated that the ambiguity of virtual manipulatives leaves an 

additional element that needs to be learned by students as part of the technology experience 

and also noted the need for special education teachers to have expertise in the use of those 

technology tools. Given that students with LD need more direct and explicit support than 

general education peers, the teacher stated that a tactile element needs to be incorporated to 

maximize the effects of virtual manipulatives. The teacher concluded that the effectiveness of 

these technologies still needs to be assessed, particularly in rural areas. 

DISCUSSION 

As the use of technology has become more prevalent within the educational environment over 

the past decade, increased attention has been paid to integration of technology into 

mathematics practices in K-12 education. A survey conducted by the National Center for 

Education Statistics (NCES, 2018b) concluded that in 2015, 94% of children ages 3 to 18 had a 

computer at home and 61% had internet access. Additionally, in 2009 the NCES found that 97% 

of teachers had computers in the classroom. With such changes to K-12 educational settings, 

additional technology-based practices such as virtual manipulatives are emerging to support 
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student engagement and instruction (Musti-Rao et al., 2015). Recent studies have found that 

since using virtual manipulatives can produce consistent or even better student outcomes than 

using concrete manipulatives, they are a promising approach to transitioning to technology-

infused math instruction (Bouck & Flanagan, 2010). The use of virtual manipulatives also offers 

students, especially secondary age students, an age-appropriate alternative to concrete 

manipulatives, which are more commonly used with younger children (Witzel, Mercer, & Miller, 

2003). The use of virtual manipulatives in classrooms is becoming more common practice due 

to new types of technologies for students (Bouck et al., 2018; Satsangi & Bouck, 2014; Satsangi 

et al., 2018).  

Unfortunately, too little research has been done with students with disabilities, 

particularly those in rural areas, which may widen the achievement gap between them and 

students without disabilities in the era of digital and virtual learning. In particular, students living 

in rural areas generally have limited access to technology and internet access at home (NCES, 

2018b) and rarely receive technology-infused instruction at school due to the many challenges 

faced by rural schools in terms of technology accessibility, implementation, and resources. 

These challenges adversely affect academic opportunities for students, which may also disrupt 

equity in learning and teaching.  

Legislation such as the Individuals with Disability Act (IDEA, 2004) has mandated that 

students with disabilities should have access to an adequate general education curriculum. 

National organizations such as NCTM (2019) have advocated for high-quality teaching and 

learning mathematics for each and every student regardless of disability, level of achievement, 

socioeconomic status, or geographical location. Still, approximately 6.7 million students that 

have been identified under the IDEA as having a disability, and particularly the 34% of those 

students who have LD (National Center of Education Statistics, 2018), have been shown to have 

a significant achievement gap between them and students without disabilities where more than 

half of students with LD scored at the basic level for mathematics and this gap increased to 

almost 80% when they entered high school (National Assessment for Education Progress, 2019).  

With this new era of education where technology-infused instruction, a new platform of 

instruction, is highly desired, it has been increasingly important to address this achievement gap 

between students with and without disabilities. Therefore, the current study explored the 

potential for using virtual manipulatives to build math fact fluency for single-digit by single-digit 

multiplication. We examined whether the previously proven effects of concrete manipulatives 

on students’ math fact fluency can carry over into those of virtual manipulatives and therefore 

be an effective alternative tool to concrete manipulatives. Additionally, we explored future 

directions for practices for effective use of virtual manipulatives in teaching math for students 

with LD. In particular, we discussed educational implications for designing and planning effective 

instruction incorporating virtual manipulatives by examining the technology limitations in rural 

areas and their derived impact on virtual instruction. Moreover, we discussed the implications 

of our findings for virtual learning during the COVID-19 pandemic. 
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Overall, our findings indicate that the usage of virtual manipulatives is promising, with 

meaningful implications for practitioners. One aspect that is notable is the significant upward 

trend when using virtual manipulatives during intervention and the continued growth in 

accuracy even two weeks after the conclusion of interventions.  

Practitioners’ Perspectives on Potential for Virtual Manipulatives  

Applications where virtual manipulatives can be used are seen positively from practitioners’ 

perspectives because of their potential to have impact on student learning. For example, 

educational applications that utilize virtual manipulatives allow them to be manipulated 

dynamically and flexibly on a computer or tablet PC screen, providing an enriched experience 

to students. Another positive is that formative assessment can be built in to assess students’ 

comprehension of various problems and correct any errors or misconception immediately. 

Some newer programs incorporate a tactile element using touchscreens, which will provide 

more opportunities to approach learning math. While training may be needed for both teachers 

and students for them to be able to utilize other technology tools, using virtual manipulatives 

themselves is not very different from using concrete manipulatives, as they work in a similar 

way in many aspects.  

Students with LD require support that is often more explicit, direct, and intensive than 

what their general education peers need. The ambiguity of virtual manipulatives creates an 

additional element that needs to be learned by students as part of the technology experience. 

This is where a special educator’s expertise in the use of these educational tools is paramount. 

Being able to guide students through the use of these instruments concisely and effectively will 

benefit students’ chances of closing achievement gaps. With practice, students can move into a 

routine where using virtual manipulatives becomes clearer and more concise, allowing students 

to increase their understanding of the mathematical objectives teachers are striving to achieve. 

Technologies that can more closely connect the virtual world of mathematical manipulatives 

with that of the physical can offer better instruments for student achievement in mathematics, 

but the effectiveness of these technologies needs to be continuously assessed. 

Implications to Virtual Learning  

Student development in mathematics has for years benefited from the use of concrete 

manipulatives. Students have been able to use this evidence-based learning strategy to 

organize, create, and actually touch these manipulatives with the goal of increased 

mathematical comprehension, so rather than choosing one over the other, using a combination 

of concrete and virtual manipulatives may be able to enhance student learning outcomes. 

However, in the current COVID-19 climate where much instruction has been restricted to online 

environments with no physical contact, using concrete manipulatives in instruction may not be 

possible. Although anecdotal reports have shown that some students have seemed to benefit 
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from distance learning, many have reported that the majority of students have been falling 

behind academically.  

The implications of the use of visual manipulatives for student achievement are still 

uncertain due to the current pandemic. However, the modality of distance learning has provided 

a platform for the extensive use of virtual manipulatives. Current technologies have been 

adapted to virtual manipulatives with the use of touch screens, making virtual manipulatives 

more tactile and kinesthetic. With the advent of new technologies such as augmented reality 

and virtual reality, the possibilities for virtual manipulatives are vast, as shown from our findings. 

These educational tools could in future be adapted for practitioners and teachers to use in 

virtual and face-to-face environments. 

Implications for Education in Rural Schools 

It is unknown the extent to which virtual manipulatives have been used during the COVID-19 

pandemic. However, one area that has seen improvements in technology accessibility has been 

rural school districts. To allow all students to access instruction and the curriculum, local 

educational authorities along with public and private agencies have worked to improve the 

infrastructure of these technologies in these districts. Improvements have not only been seen 

in large districts but rural districts as well. These improvements will have both positive and 

negative effects in smaller districts. The new technologies will allow these districts to 

differentiate instruction that was previously impossible for rural districts. For example, Google 

Classroom has been widely used for years by large districts. However, these districts were able 

to provide one-to-one access for their students when utilizing this technology. Rural districts 

will now have the capability to provide this resource to students. However, many teachers will 

need to receive professional development and training on these technologies before they can 

successfully be implemented. Finding time to train teachers and roll out new technologies will 

be a struggle for districts that adopt any new programs. However, these technologies are now 

widely available to every student. The implication for teachers is that technology is here to stay 

and will be interwoven with current and future classroom practices.  

Limitations and Future Direction 

Given the nature and purpose of action research, the current study contains the limitations and 

several factors that are naturally embedded in actual classroom settings. Four main limitations 

were found that provide guidance for research and practical actions in the future. First, 

limitations in technology at the rural school have made the use of virtual manipulatives difficult. 

At the rural school where this study took place, the introduction of technology has been slow, 

such that the school district technology framework is about 10 years behind most other school 

districts around the state. The lack of access to technology for these students seems to have 

played a role in the results of the virtual manipulative interventions, which also signals that more 

technological resources and support need to be provided to rural schools for equal access and 

equal education opportunity.  
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Second, students’ lack of training in the use of virtual manipulatives and online programs 

made using virtual manipulatives difficult. Considering the lack of resources, it is likely that a 

school with students that have been more exposed to technology would have transitioned more 

easily into using virtual manipulatives as an intervention for multiplication problem solving. It 

would be advantageous for students to be trained in these new technologies before using them 

as an intervention.  

Third, the current study examined the intervention effect only on multiplication math 

fact fluency that is a small part of mathematical understanding, which limits our findings to be 

generalized for an overall understanding of mathematics. Future study will address other 

mathematical areas for a larger grade span. Fourth, social validity was only examined for the 

implementation of intervention (independent variable) but students’ outcome (dependent 

variable).  

Regardless, our findings presented a positive potential for using virtual manipulatives. 

Future research can address the limitations by providing training sessions for utilization of 

virtual manipulatives before and during intervention and extending the intervention period for 

virtual manipulatives. Additionally, future research can look at how virtual manipulatives can be 

used to increase other mathematics domains and skills such as discourse, creative thinking, and 

problem-solving abilities in the classroom. Moreover, future study can additionally examine 

social validity on dependent variables (i.e., behavioral goals and outcomes that are aimed to be 

achieved) to strengthen the findings.     
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