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ABSTRACT

We consider the Calkin algebra CR(A) and the Fredholm theory in a Banach algebra

A, relative to some fixed ideal F of A. Our aim is to study linear maps between

unital Banach algebras A and B which are surjective up to the inessential elements

relative to F, and preserve Fredholm or semi-Fredholm elements in both directions

or equivalently different relatively essential spectral sets such as essential spectrum,

left or right essential spectrum, the boundary of essential spectrum or the full essential

spectrum. We characterize such mappings when one of CR(A) or CR(B) is commutative

and also investigate similar problems when A is assumed to be a unital C∗-algebra of

real rank zero and B is an arbitrary Banach algebra.

RESUMEN

Consideramos el álgebra de Calkin CR(A) y la teoŕıa de Fredholm en un álgebra de Ba-

nach A relativa a algún ideal fijo F de A. Nuestra meta es estudiar aplicaciones lineales

entre álgebras de Banach unitales A y B las cuales son sobrejectivas salvo los elementos

no esenciales relativos a F y preservan los elementos de Fredholm o semi-Fredholm en

ambas direcciones o equivalentemente conjuntos espectrales esenciales relativos difer-

entes tales como el espectro esencial izquierdo o derecho, la frontera del espectro esencial

o el espectro esencial completo. Caracterizamos dichas aplicaciones cuando uno de los

CR(A) o CR(B) es conmutativo e investigamos problemas similares cuando A se asume

que es una C∗-álgebra unital de rango real cero y B es una álgebra de Banach cualquiera.

Keywords and Phrases: Linear preservers, Fredholm element, semi-Fredholm element, inessen-

tial ideal, relative Calkin algebra.
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1 Introduction

Let A and B be algebras, and let P be a property. We say that a linear map θ : A→ B

(i) preserves property P , if for each a ∈ A, θ(a) has property P whenever a has property P ;

(ii) preserves property P in both directions, if for each a ∈ A, θ(a) has property P if and only if

a has this property.

In operator theory, one of the most active research areas is linear preservers. The main

problems in this subject concern with characterizing those linear maps that leave certain properties

invariant. In the context of operator algebras, some of the most well known preserving problems

deal with characterizing linear maps on the algebra of all bounded linear operators acting on a

Banach space which preserve Fredholm, semi-Fredholm or generalized invertible operators. New

contributions to the study of linear preserver problems in L(H), the algebra of all bounded linear

operators on an infinite dimensional complex Hilbert space H, have been recently made by several

authors, see [3, 4, 5, 12, 13, 14]. In [11], Kim and Park investigated linear maps φ on a unital

C∗-algebra A of real rank zero that are surjective up to some fixed closed ideal I and π(a) is

invertible in A/I if and only if π(φ(A)) is invertible in A/I, where π : A → A/I is the canonical

quotient map. In this paper we consider Fredholm theory in a Banach algebra A relative to some

fixed ideal F, c.f. [16], and investigate linear preservers between Banach algebras.

In Section 2 we give some preliminaries concerning Fredholm theory in Banach algebras and

the ideal of inessential elements relative to a fixed ideal. We will also consider the relative Calkin

algebra of a Banach algebra with respect to some fixed ideal. Section 3 is devoted to investigating

linear maps between two unital Banach algebras A and B which are surjective up to inessential

elements and preserve any of the sets of Fredholm, left semi-Fredholm, right semi-Fredholm or

semi-Fredholm elements in both directions (equivalently, preserves different spectral sets). We

characterize such mappings whenever one of the relative Calkin algebras in A or B is assumed to

be commutative. In Section 4 we consider similar linear preservers between unital C*-algebras or

from a unital C*-algebra of real rank zero to an arbitrary unital Banach algebra. In each case we

show that a linear map which is surjective up to inessential ideal and preserves a certain essential

spectral set, induces a continuous Jordan isomorphism between the corresponding relative Calkin

algebras.

2 Preliminaries

Throughout this section A is a unital Banach algebra with unit element 1 and F is a fixed two

sided ideal of A. The elements of F are called finite elements of A. Set

I(A) = k(h(F)) :=
⋂

{P ∈ ΠA; F ⊆ P},

where ΠA denotes the set of all primitive ideals of A. By [15, Theorem 4.3],

I(A) = {a ∈ A; a+ F ∈ rad(A/F)}.



CUBO
17, 1 (2015)

Maps preserving Fredholm or semi-Fredholm elements . . . 31

Clearly I(A) is a closed two sided ideal of A containing F. We call I(A) the inessential ideal of A

(relative to F), and the elements of I(A) are called the inessential elements relative to F.

Definition 2.1. An element a ∈ A is said to be left (resp. right) semi-Fredholm (relative to F), if

it is left (resp. right) invertible modulo F, and a is called Fredholm if it is invertible modulo F. An

element a ∈ A is a semi-Fredholm or an Atkinson element if it is either left or right semi-Fredholm.

We denote by Φl(A) (resp. Φr(A)) the set of all left (resp. right) semi-Fredholm elements of

A. Also we denote by Φ(A) := Φl(A) ∩Φr(A) and Ψ(A) := Φl(A) ∪Φr(A) the sets of Fredholm

and semi-Fredholm elements of A, respectively.

By [2, BA.2.4] an element a ∈ A is left (resp. right) invertible modulo F if and only if it is

left (resp. right) invertible modulo I(A).

Since I(A) is a closed ideal it is easy to see thatΦ(A), Φl(A) andΦr(A) are open multiplicative

semigroups of A and adding I(A) to each of these classes leaves it stable. For more about Fredholm

theory in Banach algebras see [2, 15, 16].

Definition 2.2. The quotient algebra A/I(A), denoted by CR(A), is called the relative Calkin

algebra of A with respect to F.

The relative Calkin algebra of A is semisimple; see [16, Theorem 3.2 (vi)].

We recall that if A has minimal left ideals the smallest left ideal containing all of them is

called the left socle of A. The right socle is similarly defined in terms of right ideals. If A has

both minimal left and minimal right ideals, and if the left socle coincides with the right socle, it

is called the socle of A denoted by soc(A). In this case we say for brevity that soc(A) exists. If A

has no minimal left or minimal right ideals we put soc(A) = {0}. Clearly the socle, if it exists, is a

non-zero ideal of A. If A is a semiprime algebra which has minimal left ideals, then soc(A) exists

(see [2, BA.3.3]).

When A is a semisimple Banach algebra, as a special case in Definition 2.2, we may assume F

to be the socle of A. In this case the relative Calkin algebra coincides with the generalized Calkin

algebra as in [4].

For x, y ∈ A let x ◦ y = x+ y− xy denote the quasi product of x and y. Set

Q(A) := {x ∈ A; there exist u, v ∈ A such that u ◦ x, x ◦ v ∈ F}.

By [16, Theorem 3.2 (viii)], I(A) is the largest ideal of A contained in Q(A).

Lemma 2.3. Let A be a unital Banach algebra. Then

I(A) = {x ∈ A; u+ x ∈ Φ(A) for all u ∈ Φ(A)}

= {x ∈ A; u+ x ∈ Φl(A) for all u ∈ Φl(A)}

= {x ∈ A; u+ x ∈ Φr(A) for all u ∈ Φr(A)}

= {x ∈ A; u+ x ∈ Ψ(A) for all u ∈ Ψ(A)}.
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Proof. The first equality is [16, Theorem 3.5]. We prove the second equality; the others are proved

similarly. Let

J = {x ∈ A;u+ x ∈ Φl(A) for all u ∈ Φl(A)}.

Clearly I(A) ⊆ J. A modification of the proof of [16, Theorem 3.5] shows that J is an ideal of

A. We show that J ⊆ Q(A). Let x ∈ J, then 1 − x ∈ Φl(A). Thus there exists y ∈ A such

that (1 − y)(1 − x) − 1 ∈ F. Since F ⊆ J we have y ∈ J. Therefore there exists z ∈ A such that

(1− z)(1− y) − 1 ∈ F. This shows that 1− y+ F is both left and right invertible in A/F with right

inverse 1−x+F. It follows that 1−x+F is invertible in A/F and so x ∈ Q(A), therefore J ⊆ Q(A).

Now [16, Theorem 3.2 (viii)] implies that J = I(A).

In [4, Lemma 3.2] a different method has been applied to prove the same equalities as in

Lemma 2.3 when A is assumed to be semisimple and F is assumed to be the socle of A. However,

it should be emphasized that semisimplicity has been used just to guarantee the existence of the

socle.

For any a ∈ A

σ(a) := {λ ∈ C : a− λ1 is not invertible},

σl(a) := {λ ∈ C : a− λ1 is not left invertible},

σr(a) := {λ ∈ C : a− λ1 is not right invertible},

denote the spectrum, the left spectrum and the right spectrum of a, respectively. Also ∂σ(a) and

r(a) are the boundary of the spectrum and the spectral radius of a, respectively. We recall that

for every compact set K ⊆ C, the polynomial convex hull ηK, is defined by

ηK = {z ∈ C : |p(z)| ≤ sup
ξ∈K

|p(ξ)|, for each polynomial p}.

For an element a in a Banach algebra, the polynomial convex hull ησ(x) of σ(x) is called the full

spectrum of a.

Let πA : A → CR(A) denote the canonical quotient map. For a ∈ A, σe(a) := σ(πA(a)),

σle(a) := σl(πA(a)), σre(a) := σr(πA(a)), ησe(a) := ησ(πA(a)) and re(a) := r(πA(a)) are called,

respectively, the essential spectrum, the left essential spectrum, the right essential spectrum, the

full essential spectrum and the essential spectral radius of a relative to F.

Let Λ(.) denote any of the spectral sets σe(.), σle(.), σre(.), σle(.) ∩ σre(.), ∂σe(.) and ησe(.).

A linear map θ : A→ B is said to be Λ(.)-preserving if Λ(θ(x)) = Λ(x) for all x ∈ A, and θ is called

essentially spectrally bounded if there exists a positive constant M such that re(θ(x)) ≤ Mre(x)

for all x ∈ A. If re(θ(x)) = re(x) for all x ∈ A, θ is called an essential spectral isometry.

Throughout this paper we will always suppose the following.

Assumption A. We assume that A and B are unital Banach algebras and denote by 1 the unit

element both in A and B. We consider arbitrary fixed ideals F and F ′ in A and B, respectively. The

inessential ideals in A and B relative to F and F ′ are denoted by I(A) and I(B), respectively. CR(.)
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denotes the relative Calkin algebra in the corresponding Banach algebra. Note that when we use

the terms Fredholm, left semi-Fredholm, right semi-Fredholm or semi-Fredholm, we always mean

relative to the specific fixed ideal considered in the corresponding algebra.

For a linear map θ : A → B, N(θ) will denote the null space of θ. If θ(1) = 1, θ is called

unital. We say that θ is surjective up to inessential ideal if B = θ(A) + I(B). If θ(a2) = θ(a)2 for

all a ∈ A (equivalently, θ(ab+ ba) = θ(a)θ(b) + θ(b)θ(a) for all a, b ∈ A), then θ is said to be a

Jordan homomorphism. A Jordan isomorphism is a bijective Jordan homomorphism.

3 Fredholm and semi-Fredholm preservers

We consider Assumption A and begin with the following lemma. Note that there is no assumption

of semisimplicity neither for A nor for B. The proof of the following lemma is a modification of a

part of the proof of [3, Theorem 1.1]. We give the proof for the sake of convenience.

Lemma 3.1. If the linear map θ : A → B is surjective up to the inessential ideal and essentially

spectrally bounded then θ(I(A)) ⊆ I(B).

Proof. Assume that there is a positive constant M such that re(θ(a)) ≤ Mre(a) for all a ∈ A.

Take u ∈ I(A) and let b ∈ B be an arbitrary element. Since θ is surjective up to the inessential

ideal, there exist x ∈ A and y ∈ I(B) such that b = θ(x) + y. For every λ ∈ C, we have

r(λπB(θ(u)) + πB(b)) = r(πB(λθ(u) + b)) = re(λθ(u) + b)

= re(θ(λu + x) + y) = re(θ(λu + x))

≤ Mre(λu+ x) =Mre(x).

The function λ 7→ r(λπB(θ(u)) + πB(b)) is subharmonic on C, and so by Liouville’s Theorem

r(πB(θ(u)) + πB(b)) = r(πB(b)). Zemanek’s characterization of the radical (see [1, Theorem

5.3.1]), implies that πB(θ(u)) ∈ rad(CR(B)) = {0} and thus θ(u) ∈ I(B).

Lemma 3.2. Let the linear map θ : A→ B be surjective up to the inessential ideal. If θ preserves

any of the sets of Fredholm, left semi-Fredholm, right semi-Fredholm or semi-Fredholm elements

in both directions, then

(i) θ(I(A)) ⊆ I(B);

(ii) N(θ) ⊆ I(A).

Proof. (i) If θ(1) = 1 (mod I(B)), then re(θ(a)) = re(a) for all a ∈ A and the result follows by

Lemma 3.1. Otherwise, let S(.) denote any of the sets of Fredholm, left semi-Fredholm, right semi-

Fredholm or semi-Fredholm elements in the corresponding Banach algebra. Let x ∈ I(A). Then

we show that θ(x) ∈ I(B). Suppose u ∈ S(B). Since θ is surjective up to the inessential ideal I(B),
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there exist u ′ ∈ A and x ′ ∈ I(B) such that u = θ(u ′)+x ′. It follows that θ(u ′) = u−x ′ ∈ S(B) and

so u ′ ∈ S(A). Now u+θ(x) = θ(u ′)+x ′+θ(x) = θ(u ′+x)+x ′ ∈ S(B). Thus, for every u ∈ S(B),

u+ θ(x) ∈ S(B). Lemma 2.3 implies that θ(x) ∈ I(B), which establishes that θ(I(A)) ⊆ I(B).

(ii) Let S(.) be as above. If x ∈ N(θ) and u ∈ S(A), then θ(x + u) = θ(u) ∈ S(B). Thus, for all

u ∈ S(A), x+ u ∈ S(A) and by Lemma 2.3, x ∈ I(A).

Remark 3.3. By [1, Corollary 5.2.3] a semisimple Banach algebra A is commutative if and

only if the spectral radius is subadditive on A, that is, there exists M > 0 such that r(x + y) ≤

M(r(x) + r(y)) (x, y ∈ A). Now, let A and B be semisimple Banach algebras and let θ : A → B

be a surjective linear map which preserves spectral radius. It is easy to see that commutativity of

either of A or B, implies commutativity of the other one.

Theorem 3.4. Let at least one of CR(A) or CR(B) be commutative. Suppose that θ : A → B

is a linear map which is surjective up to the inessential ideal. Then the following assertions are

equivalent.

(i) θ preserves the set of Fredholm elements in both directions;

(ii) θ(I(A)) ⊆ I(B) and the induced map θ̂ : CR(A) → CR(B), θ̂ ◦ πA = πB ◦ θ, is a continuous

isomorphism multiplied by an invertible element in CR(B).

Proof. (i) ⇒ (ii). By Lemma 3.2, θ(I(A)) ⊆ I(B)); thus θ induces a linear map θ̂ : CR(A) → CR(B)

such that θ̂ ◦ πA = πB ◦ θ. Clearly θ̂ is surjective. Since θ(1) is a Fredholm element, πB(θ(1)) is

invertible in CR(B). Take s ∈ B such that πB(s) = πB(θ(1))
−1 in CR(B). Consider

ψ := LπB(s) ◦ θ̂ : CR(A) → CR(B),

where the linear mapping LπB(s) is the left multiplication by πB(s) in CR(B). Then ψ(πA(x)) =

πB(sθ(x)) for all x ∈ A. Now it is easy to see that ψ is surjective, ψ(πA(1)) = πB(1) and

πA(x) ∈ Inv(CR(A)) ⇐⇒ x ∈ Φ(A) ⇐⇒ θ(x) ∈ Φ(B)

⇐⇒ πB(θ(x)) ∈ Inv(CR(B))

⇐⇒ πB(s)πB(θ(x)) ∈ Inv(CR(B))

⇐⇒ ψ(πA(x)) ∈ Inv(CR(B)).

Thus ψ is unital and preserves the set of invertible elements in both directions and so it preserves

the spectrum. The Banach algebras CR(A) and CR(B) are semisimple, so by Remark 3.3 both

CR(A) and CR(B) are commutative. It follows from [1, Theorem 4.1.17] that ψ is an isomorphism

which is continuous by semisimplicity of CR(B). The assertion (ii) ⇒ (i) is obvious.

We recall that a C∗-algebraA is said to be of real rank zero, if the set of all invertible selfadjoint

elements of A is dense in the set of selfadjoint elements. Suppose that A is a C*-algebra of real

rank zero and B is a semisimple Banach algebra. Let I(A) and I(B) denote the inessential ideals
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relative to soc(A) and soc(B), respectively. It is proved in [4, Corollary 3.5] that if θ : A→ B is a

linear map which is surjective up to I(B) and if θ preserves any of the sets Φl(A), Φr(A) or Ψ(A)

in both directions, then θ(I(A)) ⊆ I(B) and the induced map θ̂ : C(A) → C(B) is a continuous

Jordan isomorphism multiplied by an invertible element in C(B). Here we prove a similar result

in a different setting.

Proposition 3.5. Let A, B satisfy Assumption A. Suppose that θ : A→ B is a linear map which is

surjective up to the inessential ideal. If θ preserves any of the sets of left semi-Fredholm, right semi-

Fredholm or semi-Fredholm elements in both directions, then θ(I(A)) ⊆ I(B) and θ preserves the

set of Fredholm elements in both directions. Moreover, if one of CR(A) or CR(B) is commutative,

then the induced map θ̂ : CR(A) → CR(B) is a continuous isomorphism multiplied by an invertible

element in CR(B).

Proof. By assumption and Lemma 3.2, θ̂ : CR(A) → CR(B) is well defined. Since CR(A), CR(B) are

semisimple, [4, Theorem 2.2] implies that θ̂ preserves invertibility in both directions. Therefore θ

preserves the set of Fredholm elements in both directions. The last assertion follows from Theorem

3.4.

We will need the following theorem in the sequel. We recall that a linear map θ : A → B

preserves idempotents if for each idempotent e in A, θ(e) is an idempotent in B.

Theorem 3.6. [10, Corollary 2.3] Let A and B be two semisimple Banach algebras and let Λ(.)

denote any of the spectral sets σ(.), σl(.), σr(.), σl(.)∩σr(.), ∂σ(.) and ησ(.). Suppose that θ : A→ B

is a surjective linear map. If Λ(θ(x)) = Λ(x) for every x ∈ A, then θ is a bijective linear map

preserving idempotents.

In the above theorem, since Λ(θ(x)) = Λ(x) for one of the spectral sets, we have θ(1) = 1.

Remark 3.7. Let K ⊆ C be compact. It is well known that ∂η(K) is the boundary of the unbounded

component of C \ K which is called the outer boundary of K. Thus max{|z| : z ∈ K} = max{|z| : z ∈

∂η(K)}.

Theorem 3.8. Let CR(A) or CR(B) be commutative. Suppose that θ : A → B is a linear map

which is surjective up to the inessential ideal. The following assertions are equivalent.

(i) θ preserves the set of Fredholm elements in both directions and θ(1) = 1(mod I(B)).

(ii) θ(I(A)) ⊆ I(B) and the induced map θ̂ : CR(A) → CR(B), θ̂ ◦ πA = πB ◦ θ, is a continuous

unital isomorphism.

(iii) θ is σe-preserving;

(iv) θ is σle-preserving;

(v) θ is σre-preserving;
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(vi) θ is (σle ∩ σre)-preserving;

(vii) θ preserves the set of left semi-Fredholm elements in both directions and θ(1) = 1(mod I(B)).

(viii) θ preserves the set of right semi-Fredholm elements in both directions and θ(1) = 1(mod I(B)).

(ix) θ preserves the set of semi-Fredholm elements in both directions and θ(1) = 1(mod I(B)).

(x) θ is ∂σe-preserving;

(xi) θ is ησe-preserving.

(xii) θ is an essential spectral isometry and θ(1) = 1(mod I(B)).

Proof. (i) ⇒ (ii). Since θ(1) = 1 (mod I(B)), we have the result from Theorem 3.4.

(ii) ⇒ (iii). For every x ∈ A, we have

σe(θ(x)) = σ(πB(θ(x))) = σ(θ̂(πA(x))) = σ(πA(x)) = σe(x),

and the result holds.

(iii) ⇒ (i). Since θ is σe-preserving, it preserves Fredholm elements in both directions. Lemma

3.2 implies that θ(I(A)) ⊆ I(B) and by the hypothesis the induced map θ̂ : CR(A) → CR(B) is

spectrum preserving. It follows from Theorem 3.6 that θ̂ is unital, that is θ(1) − 1 ∈ I(B).

It is easy to see that (ii) implies all other assertions.

(iv) ⇒ (vii). If θ is σle-preserving then θ preserves the set of left semi-Fredholm elements in both

directions. By Lemma 3.2, θ̂ is well defined and by the hypothesis it preserves the left spectrum.

So by Theorem 3.6, θ̂ is unital. The inverse implication is obvious. The assertions (v) ⇐⇒ (viii),

(vi) ⇐⇒ (ix) are proved similarly.

(vii) ⇒ (i). If θ preserves the set of left semi-Fredholm elements in both directions then by

Proposition 3.5, θ preserves the set of Fredholm elements in both directions.

The same reasoning gives (viii) ⇒ (i) and (ix) ⇒ (i).

If each of assertions (x), (xi) and (xii) holds then by Lemma 3.1, θ̂ is well defined and from

Theorem 3.6, θ̂ is bijective, unital and also a spectral isometry. Thus both CR(A) and CR(B)

are commutative. Now from [1, Theorem 4.1.17], θ̂ is an isomorphism which is continuous by

semisimplicity of C(B) and (ii) follows.

4 Essential spectral preservers on C∗-algebras

Let A be a Banach algebra. We recall that an element a ∈ A is called regular if there exists b ∈ A

such that a = aba and b = bab; b is said to be a generalized inverse for a. Note that if a and b

in A satisfy a = aba, then a is regular and b ′ = bab is a generalized inverse for a. This shows,

in particular, that the generalized inverse of a regular element is not unique. For an element a in

a Banach algebra A, the regular set of a denoted by reg(a) is the set of all λ ∈ C such that there
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exists a neighborhood Uλ of λ, and an analytic function f : Uλ → A, such that f(µ) is a generalized

inverse of a − µ1 for all µ ∈ Uλ. The generalized spectrum (also called Saphar spectrum) of a is

given by σg(a) := C \ reg(a). The conorm or the reduced minimum modulus of a ∈ A is given by

γ(a) :=

{
inf{‖ax‖ : dist(x, ker(La)) ≥ 1}, if a 6= 0

∞, if a = 0,
(4.1)

where La denotes the operator x 7→ ax on A. If F is a fixed ideal in A then the essential conorm

and the generalized essential spectrum of a relative to F is given by γe(a) := γ(πA(a)) and

σge(a) := σg(πA(a)), respectively. Here πA denotes the canonical quotient map from A onto

the relative Calkin algebra CR(A). It is easy to see that if A is a C∗-algebra then σge(a) =

{λ ∈ C : limµ→λ γe(a − µ) = 0}, and that ∂σe(a) ⊆ σge(a) ⊆ σe(a). It is clear from the

definition of γ(.) that, if θ preserves essential conorm that is, γe(θ(a)) = γe(a) for all a ∈ A, and

θ(1) = 1 (mod I(B)), then σge(θ(a)) = σge(a) for all a ∈ A.

We recall that a unital C∗-algebra A is said to be finite if a∗a = 1 implies that aa∗ = 1. It is

easy to see that in a finite C∗-algebra every one-sided invertible element is invertible. C∗-algebras

with finite traces and those with dense subset of invertible elements are examples of finite C∗-

algebras. The quotient of a finite C∗ algebra A need not be finite. A unital C∗ algebra A is said

to be residually finite if every quotient of A is finite; [6, V.2.1.3].

Note that, in this section A and B as Banach algebras, satisfy Assumption A.

Theorem 4.1. Let A and B be unital C∗-algebras and let θ : A → B be a ∗-preserving linear

map which is surjective up to the inessential ideal. Then in the following assertions, (i) − (iv) are

equivalent and (v) − (vii) imply (ii). Moreover, if A and B are residually finite C∗-algebras, then

all of the following conditions are equivalent.

(i) θ is σe-preserving;

(ii) θ(I(A)) ⊆ I(B) and the induced map θ̂ : CR(A) → CR(B), is an isometric Jordan isomor-

phism;

(iii) θ preserves Fredholm elements in both directions and θ(1) = 1(mod I(B));

(iv) γe(θ(a)) = γe(a) for all a ∈ A and θ(1) = 1(mod I(B)).

(v) θ is σle-preserving;

(vi) θ is σre-preserving;

(vii) θ is (σle ∩ σre)-preserving.

Proof. (i) ⇒ (iii). Since θ is σe-preserving, it preserves Fredholm elements in both directions and

it follows from Lemma 3.2 that θ̂ : CR(A) → CR(B) is well defined and is unital by Theorem 3.6.

(iii) ⇒ (ii). It follows from Lemma 3.2 that θ̂ is well defined and by the assumption it is unital
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and preserves invertibility in both directions. It is easy to see that θ̂ is ∗-preserving. Therefore, θ̂

is a Jordan isomorphism by [9] and is an isometry by [8, Lemma 4.3]. (ii) ⇒ (i) is obvious.

(iv) ⇒ (ii). If (iv) holds then σge(θ(a)) = σge(a) for all a ∈ A and thus θ is an essential spectral

isometry and so θ̂ is well defined by Lemma 3.1. Moreover, θ̂ is injective and preserves the conorm.

Thus by [8, Theorem 3.1], θ̂ is an isometric Jordan isomorphism.

(ii) ⇒ (iv) follows easily.

Now suppose that (v) holds. Then θ preserves the set of left semi-Fredholm elements in both

directions. Lemma 3.2 implies that θ̂ is well defined. By Theorem 3.6, θ̂ is unital and bijective.

θ̂ preserves left invertibility in both directions and so preserves invertibility in both directions by

[4, Theorem 2.2]. Therefore θ̂(Inv(CR(A))) = Inv(CR(B)). It is easy to see that θ̂ is ∗-preserving.

Therefore, θ̂ is a Jordan isomorphism by [9] and is an isometry by [8, Lemma 4.3]. (vi) ⇒ (ii) and

(vii) ⇒ (ii) are proved in a similar way.

Finally, if A and B are residually finite C∗-algebras, then CR(A) and CR(B) are finite and

since a Jordan isomorphism is spectrum preserving it is easy to see that (ii) implies each of the

assertions (v) − (vii).

Theorem 4.2. Let A be a unital C∗-algebra of real rank zero and B a Banach algebra. Suppose

that the linear map θ : A → B is surjective up to the inessential ideal. Consider the following

assertions. Then (i) − (v) are equivalent and (vi) − (viii) imply (v).

(i) θ is σe-preserving;

(ii) θ is ∂σe-preserving;

(iii) θ is ησe-preserving;

(iv) θ preserves Fredholm elements in both directions and θ(1) = 1(mod I(B)).

(v) θ(I(A)) ⊆ I(B) and the induced map θ̂ : CR(A) → CR(B) is a continuous Jordan isomorphism;

(vi) θ is σle-preserving;

(vii) θ is σre-preserving;

(viii) θ is (σle ∩ σre)-preserving;

Proof. It is obvious that (i) ⇒ (ii), (i) ⇒ (iii), (i) ⇔ (iv) and (v) implies each of the statements

(i) − (iv) .

If each of the statements (i) − (iii) holds then re(θ(x)) = re(x) and Lemma 3.1 implies that

θ(I(A)) ⊆ I(B). Thus the induced map θ̂ : CR(A) → CR(B) is a spectral isometry and so is

injective. By Theorem 3.6, θ̂ is unital and preserves idempotents. Let p and q be orthogonal

projections in A. Then, p + q is a projection and

θ̂(p) + θ̂(q) =
(
θ̂(p) + θ̂(q)

)2
= θ̂(p) + θ̂(p)θ̂(q) + θ̂(q)θ̂(p) + θ̂(q).
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It follows that θ̂(p)θ̂(q)+θ̂(q)θ̂(p) = 0 and hence θ̂(p)θ̂(q) = θ̂(p)θ̂(q)θ̂(p) = θ̂(q)θ̂(p). Therefore,

θ̂(p) and θ̂(q) are orthogonal idempotents. Let a =
∑n

j=1 λjpj be a linear combination of mutually

orthogonal projections p1, ..., pn ∈ A. Then,

θ̂(a2) = θ̂
( n∑

j=1

λ2jpj
)
=

n∑

j=1

λ2j θ̂pj =
(
θ̂(a)

)2

for θ̂(p1), ..., θ̂(pn) are mutually orthogonal idempotents. Since every selfadjoint element in A is

the norm limit of finite linear combinations of mutually orthogonal projections and θ̂ is continuous,

θ̂(a2) = (θ̂(a))2 for every selfadjoint element a in A. Replacing a by a+ b in this identity yields

θ̂(ab + ba) = θ̂(a)θ̂(b) + θ̂(b)θ̂(a) for all a, b ∈ Asa. Suppose a = a1 + ia2 with a1, a2 ∈ Asa.

By the above argument

θ̂(a2) = θ̂
(
a21 + i(a1a2 + a2a1) − a

2
2

)

= θ̂(a1)
2 + i

(
θ̂(a1)θ̂(a2) + θ̂(a2)θ̂(a1)

)
− θ̂(a2)

2 = (θ̂(a))2.

This proves that θ̂ is a Jordan isomprphism and (v) holds.

(vi) ⇒ (v). Since ∂σe(θ(x)) ⊆ σle(θ(x)) for all x ∈ A, we have

re(θ(x)) = max
{
|λ| : λ ∈ σle(θ(x))

}

= max
{
|λ| : λ ∈ σle(x)

}
= re(x).

Lemma 3.1 implies that θ(I(A)) ⊆ I(B). The induced map θ̂ : CR(A) → CR(B) is σl-preserving and

by Theorem 3.6, θ̂ is a bijective unital linear map preserving idempotents and hence is a Jordan

isomorphism. (vii) ⇒ (v) and (viii) ⇒ (v) are proved similarly.

The following corollary is a direct consequence of Theorem 4.2 and [7, Corollary 5.3].

Corollary 4.3. Let A be a C∗-algebra of real rank zero and B a C∗-algebra. For a surjective up

to inessential ideal linear map θ : A→ B such that θ(1) = 1(mod I(B)), the conditions (i) − (v) in

the above theorem are equivalent to the following conditions.

(i) There exist α,β > 0 such that αγe(a) ≤ γe(θ(a)) ≤ βγe(a), for all a ∈ A.

(ii) σge(θ(a)) = σge(a), for all a ∈ A.
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