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ABSTRACT

We compute explicitly the Laplace transform and the convolution for more functions on

the real than the continuous functions that obtained as the inverse Laplace transforms

of rational functions on the complex plane vanishing at infinity. We also consider the

algebraic structure with more functions adjoined.

RESUMEN

Calculamos expĺıcitamente la transformada de Laplace y la convolución para más

funciones en los reales que las funciones continuas obtenidas como transformadas de

Laplace inversas de funciones racionales en el plano complejo que se anulan en el in-

finito. También consideramos la estructura algebraica con más funciones adjuntadas.
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1 Introduction

This paper is a continuation from the paper [3] of the author, in which we compute explicitly

the inverse Laplace transform for rational functions on the complex plane vanishing at infinity and

consider the algebraic structure for the corresponding algebra of continuous elementary functions

on the real R for which the Laplace transform on the infinite interval [0,∞) is defined.

In this paper, we compute explicitly the Laplace transform for more functions on the real than

the continuous functions that obtained as the inverse Laplace transforms of rational functions on

the complex plane vanishing at infinity. For this, we compute the convolution product with more

functions adjoined, such as Gaussian functions, the Dirac delta functions, and the shifted delta

functions. We also consider the algebraic structure with more functions adjoined.

This paper after this introduction is organized as follows: 2 Adjoining Gaussian functions; 3

Algebraic structure with Gaussian functions; 4 Adjoining the delta function; 5 Algebraic structure

with the delta function; 6 Adjoining the shifted delta functions; 7 Algebraic structure with the

shifted delta functions; 8 More with the weak derivative.

Our elementary explicit computation results obtained and algebraic consideration results ob-

tained should be useful as a reference.

Refer to [4] or [2] (or [1]) for some basics about the Laplace transform.

Notation. We denote by A(R) the real algebra with convolution, generated by the three sets of

elementary continuous functions on the real line R with t real variable: {tn |n ∈ N = {0, 1, 2, · · · }}
of monomials and {eµt |µ ∈ R} of exponential functions based to e and {sinλt, cosλt | λ ∈ R} of

trigonometric functions and their point-wise multiples such as tneµt sin λt.

The (extended in our sense) convolution product for A(R) (but the same as the usual one by

restriction to [0,∞)) is defined as the (Riemann) integral:

f ∗ g = (f ∗ g)(t) =
∫t

0

f(t− τ)g(τ)dτ, (t ∈ R)

for f, g ∈ A(R), which makes sense and is a commutative and associative operation as well known

as the usual case on the interval [0,∞).

Denote by C the complex plane.

For f = f(t) a suitable function on R (as in A(R)), the (extended in our sense) Laplace

transform of f (but the same as the usual one of f restricted to [0,∞)) is defined by the (Riemann)

integral:

L(f(t)) = L(f(t))(s) =

∫
∞

0

e−stf(t)dt

for s ∈ C (formally or in the domain of convergence).
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2 Adjoining Gaussian functions

Quite well known, but first of all we consider Gaussian functions as follows:

Lemma 2.1. For t ∈ R, s ∈ C and λ ∈ R with λ > 0, we have

L(e−λt2 ) =

√
π

2
√
λ
e

s2

4λ ,

Proof. Check that

e−ste−λt2 = e−λ(t+ s
2λ

)2+ s2

4λ

and then

L(e−λt2) = e
s2

4λ

∫
∞

0

e−λ(t+ s
2λ

)2dt.

Using change of variables and Cauchy’s theorem, we obtain that the integral is computed to be

equal to

∫ s

2
√

λ
+∞

s

2
√

λ
+0

e−u2 du√
λ

with u =
√
λ(t+

s

2λ
))

=
1√
λ

∫
∞

0

e−u2

du =

√
π

2
√
λ
.

Lemma 2.2. For t ∈ R, s ∈ C and λ, µ ∈ R positive, we have

L(e−λt2 ∗ e−µt2) =
π

4
√
λµ

e
λ+µ
4λµ

s2 .

We need to check the convolution explicitly as follows.

Proposition 1. For t ∈ R and positive λ, ν ∈ R,

(e−λt2 ∗ e−µt2)(t) =
1√

λ+ µ
e−λ(1− λ

λ+µ
)t2

∫ µt
√

λ+µ

−λt
√

λ+µ

e−u2

du

= e−λ(1− λ
λ+µ

)t2
∞∑

n=0

λ2n+1 + µ2n+1

(λ + µ)n+1

(−1)n

n!

1

2n + 1
t2n+1

Proof. We compute

(e−λt2 ∗ e−µt2)(t) =

∫ t

0

e−λ(t−τ)2e−µτ2

dτ =

e−λt2
∫t

0

e−(λ+µ)(τ− λt
λ+µ

)2+λ2t2

λ+µ dτ = e−λ(1− λ
λ+µ

)t2
∫ t

0

e−(λ+µ)(τ− λt
λ+µ

)2dτ
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with 1− λ
λ+µ

> 0, and the integral is computed by change of variables as:

g(t) ≡
∫t

0

e−(λ+µ)(τ− λt
λ+µ

)2dτ

=
1√

λ+ µ

∫ µt
√

λ+µ

−λt
√

λ+µ

e−u2

du with u =
√

λ+ µ(τ−
λt

λ + µ
).

Using Taylor’s expansion of ey we compute the integral above as:

∫ µt
√

λ+µ

−λt
√

λ+µ

e−u2

du =

∫ µt
√

λ+µ

−λt
√

λ+µ

∞∑

n=0

(−1)n

n!
u2ndu =

∞∑

n=0

(−1)n

n!

∫ µt
√

λ+µ

−λt
√

λ+µ

u2ndu =

∞∑

n=0

(−1)n

n!

µ2n+1 + λ2n+1

(λ + µ)n+ 1
2

1

2n + 1
t2n+1.

Corollary 1. The convolutions e−λt2∗e−µt2 for λ, µ positive reals are point-wise limits of elements

of A(R).

Proof. Note that any Gaussian functions are point-wise limits of elements of A(R) by Taylor

series.

Proposition 2. For λ ∈ R positive, n ∈ N, and t ∈ R,

(1) (tn ∗ e−λt2) =

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τke−λτ2

dτ

with Ik ≡
∫t
0
τke−λτ2

dτ given by

I2k+1 = −e−λt2
k∑

l=1

(2k)!!

(2λ)l(2(k − l+ 1))!!
t2(k−l+1) +

(2k)!!

(2λ)k+1
(1− e−λt2),

and

I2k = −e−λt2
k∑

l=1

(2k − 1)!!

(2λ)l(2(k − l+ 1) − 1)!!
t2(k−l+1)−1

+
(2k − 1)!!

(2λ)k

∞∑

m=0

(−λ)m

m!(2m+ 1)
t2m+1.

Also, for µ ∈ R non-zero and λ ∈ R positive,

(2) (eµt ∗ e−λt2) = e
µ2

4λ eµt

∞∑

n=0

(−1)nλn+ 1
2

n!(2n + 1)
{(t+

µ

2λ
)2n+1 − (

µ

2λ
)2n+1}.
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Also, for µ ∈ R non-zero and λ ∈ R positive,

(3) (sinµt ∗ e−λt2) = sinµt

∫t

0

cosµτe−λτ2

dτ − cosµt

∫t

0

sinµτe−λτ2

dτ

with

∫t

0

cosµτe−λτ2

dτ =

∞∑

n=0

(−λ)n

n!

∫t

0

τ2n cosµτdτ,

∫t

0

sinµτe−λτ2

dτ =

∞∑

n=0

(−λ)n

n!

∫ t

0

τ2n sinµτdτ

and each integral term is computed inductively as:

Ic,2n ≡
∫ t

0

τ2n cosµτdτ

=
1

µ
t2n sinµt+

2n

µ2
t2n−1 cosµτ −

(2n)(2n − 1)

µ2
Ic,2n−2,

Is,2n ≡
∫ t

0

τ2n sinµτdτ

= −
1

µ
t2n cosµt+

2n

µ2
t2n−1 sinµτ−

(2n)(2n − 1)

µ2
Is,2n−2,

and similarly,

(4) (cosµt ∗ e−λt2) = cosµt

∫t

0

cosµτe−λτ2

dτ − sinµt

∫t

0

sinµτe−λτ2

dτ

with the integrals the same as above.

Proof. For (1) we compute

(tn ∗ e−λt2)(t) =

∫t

0

(t− τ)ne−λτ2

dτ =

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τke−λτ2

dτ

and the integral is computed by integration by parts as:

Ik ≡
∫t

0

τke−λτ2

dτ =

∫t

0

τk−1

{
1

−2λ
(e−λτ2

) ′
}

dτ

= −
1

2λ
tk−1e−λt2 +

k − 1

2λ
Ik−2
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so that, inductively,

I2k+1 = −
1

2λ
t2ke−λt2 −

2k

(2λ)2
t2k−2e−λt2 −

2k(2k − 2)

(2λ)3
t2k−4e−λt2 − · · ·

−
2k(2k − 2) · · · 4

(2λ)k
t2e−λt2 +

2k(2k − 2) · · · 2
(2λ)k

I1

with

I1 ≡
∫t

0

τe−λτ2

dτ =
1

2λ
(1− e−λt2),

and

I2k = −
1

2λ
t2k−1e−λt2 −

2k − 1

(2λ)2
t2k−3e−λt2 −

(2k − 1)(2k − 3)

(2λ)3
t2k−5e−λt2 − · · ·

−
(2k − 1)(2k − 3) · · · 3

(2λ)k
te−λt2 +

(2k − 1)(2k − 3) · · · 1
(2λ)k

I0

with

I0 ≡
∫t

0

e−λτ2

dτ =

∫t

0

∞∑

m=0

(−λ)m

m!
τ2mdτ

=

∞∑

m=0

(−λ)m

m!

∫t

0

τ2mdτ =

∞∑

m=0

(−λ)m

m!(2m + 1)
t2m+1.

For (2) we compute

eµt ∗ e−λt2 =

∫t

0

eµ(t−τ)e−λτ2

dτ = e
µ2

4λ eµt

∫t

0

e−λ(τ+ µ
2λ

)2dτ.

By change of variables as u =
√
λ(τ + µ

2λ
), the integral above is computed as

∫t

0

e−λ(τ+ µ
2λ

)2dτ =

∫√λ(t+ µ
2λ

)

√
λ( µ

2λ
)

e−u2

du =

∫√λ(t+ µ
2λ

)

√
λ( µ

2λ
)

∞∑

n=0

1

n!
(−u2)ndu

=

∞∑

n=0

(−1)n

n!

∫√λ(t+ µ
2λ

)

√
λ( µ

2λ
)

u2ndu =

∞∑

n=0

(−1)nλn+ 1
2

n!(2n + 1)
{(t+

µ

2λ
)2n+1 − (

µ

2λ
)2n+1}.

For (3) we next compute

(sinµt ∗ e−λt2)(t) =

∫t

0

sinµ(t− τ)e−λt2dτ

= sinµt

∫t

0

cosµτe−λτ2

dτ− cosµt

∫t

0

sinµτe−λτ2

dτ,
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and the first integral is computed as:

∫t

0

cosµτe−λτ2

dτ =

∫ t

0

cosµτ

∞∑

n=0

1

n!
(−λτ2)ndτ =

∞∑

n=0

(−λ)n

n!

∫ t

0

τ2n cosµτdτ

and each integral term is computed inductively as:

Ic,2n ≡
∫t

0

τ2n cosµτdτ

=
1

µ
t2n sinµt+

2n

µ2
t2n−1 cosµτ −

(2n)(2n − 1)

µ2
Ic,2n−2

by using integration by parts. Similarly, we obtain

∫t

0

sinµτe−λτ2

dτ =

∞∑

n=0

(−λ)n

n!

∫t

0

τ2n sinµτdτ

and

Is,2n ≡
∫ t

0

τ2n sinµτdτ

= −
1

µ
t2n cosµt+

2n

µ2
t2n−1 sinµτ−

(2n)(2n − 1)

µ2
Is,2n−2.

Remark. We omit the case of convolutions with general monomials such as multiples tneµt sinµt,

but which are certainly computable by the similar computation technique as above, with some

more integration. Refer to [3].

3 Algebraic structure with Gaussian functions

We denote by Aw(R) the set of all functions on R that are written as point-wise limits in R

of elements of A(R).

Lemma 3.1. Aw(R) is an algebra over R with point-wise multiplication. Also, Aw(R) is an

algebra over R with convolution.

Proof. Suppose that f, g ∈ Aw(R) with f = lim fn, g = limgn (n → ∞) point-wise limits of

fn, gn ∈ Aw(R). Since the limits at any t ∈ R are finite, then

(f · g)(t) = lim fn(t) · limgn(t) = lim(fn · gn)(t) ∈ R,

and hence, f · g ∈ Aw(R).
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Note also that we define the convolution of f, g ∈ Aw(R) as

f ∗ g = lim(fn ∗ gn) ∈ Aw(R),

where it is shown in general ([3]) that A(R) is closed under convolution. This is well defined,

because if f = limhn and g = lim kn another limits with hn, kn ∈ A(R), and since the limits at

any t ∈ R are finite, then

(fn ∗ gn)(t) − (hn ∗ kn)(t) = ((fn − f) ∗ gn)(t) + (f ∗ (gn − g))(t)

+ ((f − hn) ∗ g)(t) + (hn ∗ (g− kn))(t),

and the right hand side goes to zero as n → ∞ by applying the dominated convergence theorem

to each convolution, and hence,

| lim(fn ∗ gn) − lim(hn ∗ kn)|
≤ | lim(fn ∗ gn) − fn ∗ gn|+ |fn ∗ gn − hn ∗ kn|+ |hn ∗ kn − lim(hn ∗ kn)|,

which go to zero as n → ∞.

We denote by G(R) the algebra generated by A(R) and the set {e−λt2 | λ ∈ R, λ > 0}, with

either point-wise multiplication or convolution as a product.

Corollary 2. The algebra G(R) is contained in Aw(R) and is a subalgebra of Aw(R) with either

point-wise multiplication or convolution.

We denote by R0(C) the algebra of rational functions on C vanishing at infinity with point-wise

multiplication and by E(C) the algebra generated by both R0(C) and the set {eλs
2

| λ ∈ R, λ > 0}

of inverse Gaussian functions on C with s complex variable.

Corollary 3. The algebra G(R) with convolution is isomorphic to the algebra E(C) by the Laplace

transform and by the inverse Laplace transform.

Proof. Note that L(f ∗ g) = L(f) · L(g) and L is injective for continuous functions on R.

4 Adjoining the delta function

We consider the Dirac delta function. Define the delta function as

δ(t) = lim
λ→∞

gλ(t) ≡ lim
λ→∞

2

√

λ

π
e−λt2 =

{
∞ t = 0

0 t 6= 0

with λ ∈ R positive. Note that the delta function has the meaning in integration only in the weak

sense, i.e. as the weak limit of gλ(t) by taking the inner product or the convolution with test
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functions, and the delta function is also viewed as a distribution, i.e., a functional (or a scalar-

valued linear map) on the linear space of test functions. Also, one can take other functions of

different types to define the delta function.

Note that
∫
∞

−∞
gλ(t)dt = 2 but we need to have the next:

Lemma 4.1. The functions gλ are in G(R), and for s ∈ C,

L(gλ)(s) = e
s2

4λ ,

which goes to 1 as λ → ∞.

Proof. Use Lemma 2.1.

Lemma 4.2. For s ∈ C, we have

L(gλ ∗ gµ)(s) = e
(λ+µ)s2

4λµ ,

which goes to 1 as λ → ∞ and µ → ∞.

Proof. Use Lemma 4.1 and L(gλ ∗ gµ) = L(gλ) · L(gµ).

Proposition 3. For positive µ, λ ∈ R,

(1) lim
λ→∞

(e−µt2 ∗ gλ)(t) =






e−µt2 if t > 0,

0 if t = 0,

−e−µt2 if t < 0;

and for n ∈ N and λ > 0,

(2) lim
λ→∞

(tn ∗ gλ)(t) =






tn if t > 0,

0 if t = 0,

−tn if t < 0;

and for µ ∈ R and λ > 0,

(3) lim
λ→∞

(eµt ∗ gλ)(t) =






eµt if t > 0,

0 if t = 0,

−eµt if t < 0;

and for µ ∈ R and λ > 0,

(4) lim
λ→∞

(sinµt ∗ gλ)(t) =






sinµt if t > 0,

0 if t = 0,

− sinµt if t < 0;
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and

(5) lim
λ→∞

(cosµt ∗ gλ)(t) =






cosµt if t > 0,

0 if t = 0,

− cosµt if t < 0.

Proof. The first equation (1) follows from the first equation in Proposition 1 by taking the limit

with respect to λ.

For (2) we next use Proposition 2. It follows that

lim
λ→∞

(tn ∗ gλ)(t) = lim
λ→∞

tn
∫t

0

gλ(τ)dτ,

namely, other terms in the convolution go to zero as λ → ∞, and then

∫t

0

gλ(τ)dτ =

∫√λt

0

2√
π
e−u2

du (u =
√
λτ),

which goes to 




1 if t > 0,

0 if t = 0,

−1 if t < 0,

as λ → ∞.

For (3), it also follows as in parts of the proof of Proposition 2 that

(eµt ∗ gλ)(t) = e
µ2

4λ eµt

∫t

0

2

√

λ

π
e−λ(τ+ µ

2λ
)2dτ

= e
µ2

4λ eµt

∫√λ(t+ µ
2λ

)

µ

2
√

λ

2√
π
e−u2

du (u =
√
λ(τ +

µ

2λ
)),

which goes to 




eµt if t > 0,

0 if t = 0,

−eµt if t < 0,

as λ → ∞.

For (4) we next compute by allowing complex coefficients for this case and using the Euler

formula as:

(sinµt ∗ gλ)(t) = (
eµti − e−µti

2i
∗ gλ)(t)

=
1

2i

∫t

0

eµ(t−τ)igλ(τ)dτ −
1

2i

∫t

0

e−µ(t−τ)igλ(τ)dτ

=
eµti

2i

∫ t

0

e−µτigλ(τ)dτ −
e−µti

2i

∫t

0

eµτigλ(τ)dτ
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and the first integral is converted to

∫t

0

2

√

λ

π
e−λ(τ+ µi

2λ
)2−µ2

4λ dτ

= e−
µ2

4λ

∫√λ(t+µi
2λ

)

iµ

2
√

λ

2√
π
e−u2

du (u =
√
λ(τ +

µi

2λ
))

which goes to 




1 if t > 0,

0 if t = 0,

−1 if t < 0

as λ → ∞ via Cauchy integral theorem. Similarly, the second integral above is converted to

∫t

0

2

√

λ

π
e−λ(τ− µi

2λ
)2−

µ2

4λ dτ

= e−
µ2

4λ

∫√λ(t−µi
2λ

)

iµ

2
√

λ

2√
π
e−u2

du (u =
√
λ(τ −

µi

2λ
))

which goes to 




1 if t > 0,

0 if t = 0,

−1 if t < 0

as λ → ∞. Therefore, we obtain one of the last two equations in the statement. The other case

(5) is obtained similarly, by cosµt = eµti+e−µti

2
.

5 Algebraic structure with the delta function

We denote by Gδ(R) the algebra generated by G(R) and the delta function δ(t) with convo-

lution, where we assume that f ∗ δ = f on [0,∞) for any f ∈ G(R) and δ ∗ δ = δ on [0,∞), which

follows from our definition of the delta function in the weak sense, so that Gδ(R) restricted to

[0,∞) is isomorphic to the unitization of G(R) by R, restricted to [0,∞), as a real algebra. We

define the Laplace transform for δ as

L(δ(t))(s) = 1(s)

the unit function on C.

Note that Gδ(R) is also viewed as the generated by G(R) and the point-wise limit function of

Gaussian functions on R.

We denote by E1(C) the algebra generated by E(C) and the unit function 1 on C with point-

wise multiplication.
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Corollary 4. The algebra Gδ(R) with convolution, restricted to [0,∞), is isomorphic to the

algebra E1(C) by the Laplace transform and by the inverse Laplace transform.

Remark. Our Proposition 3 says that the convolution f ∗ δ on R for f ∈ Gδ(R) is defined as

(f ∗ δ)(t) =






f(t) if t > 0,

0 if t = 0,

−f(t) if t < 0.

6 Adjoining the shifted delta functions

It is also defined as that for t ∈ R and s ∈ C,

L(δ(t − µ)) = e−µs

for µ > 0. We extend this definition for µ ∈ R. Indeed, check that

Lemma 6.1. We have

lim
λ→∞

L(gλ(t − µ))(s) = e−µs

for any µ ∈ R.

Proof. We compute

L(gλ(t− µ))(s) =

∫
∞

0

e−st2

√

λ

π
e−λ(t−µ)2dt

= e−µse
s2

4λ

∫
∞

0

e−λ(t+ s
2λ

−µ)22

√

λ

π
dt

and changing variables as u =
√
λ(t + s

2λ
− u) and using Cauchy integral theorem and taking the

limit as λ → ∞ we obtain the result in the statement.

Lemma 6.2. We have

lim
λ→∞

L(gλ(t− µ) ∗ gλ(t− ρ))(s) = e−(µ+ρ)s

for any µ, ρ ∈ R. It follows by defining the left hand side to be equal to

L(δ(t − µ) ∗ δ(t− ρ))(s) = e−(µ+ρ)s.

Proof. Note that

L(gλ(t− µ) ∗ gλ(t− ρ))(s) = L(gλ(t− µ))(s) · L(gλ(t− ρ))(s)

and the both factors are computed in the proof of Lemma 6.1.
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Proposition 4. For positive µ, λ ∈ R and ρ ∈ R, if ρ > 0, then

(1)+ lim
λ→∞

(e−µt2 ∗ gλ(t− ρ))(t) =






2e−µ(t−ρ)2 t > ρ,

1 t = ρ,

0 t < ρ,

and if ρ < 0, then

(1)− lim
λ→∞

(e−µt2 ∗ gλ(t− ρ))(t) =






0 t > ρ,

−1 t = ρ,

−2e−µ(t−ρ)2 t < ρ;

and for n ∈ N and ρ ∈ R, if ρ > 0, then

(2)+ lim
λ→∞

(tn ∗ gλ(t− ρ))(t) =






2tn t > ρ,

ρn t = ρ,

0 t < ρ,

and if ρ < 0, then

(2)− lim
λ→∞

(tn ∗ gλ(t− ρ))(t) =






0 t > ρ,

−ρn t = ρ,

−2tn t < ρ;

and for µ ∈ R, if ρ > 0, then

(3)+ lim
λ→∞

(eµt ∗ gλ(t− ρ))(t) =






2eµ(t−ρ) if t > ρ,

1 if t = ρ,

0 if t < ρ,

and if ρ < 0, then

(3)− lim
λ→∞

(eµt ∗ gλ(t − ρ))(t) =






0 if t > ρ,

−1 if t = ρ,

−2eµ(t−ρ) if t < ρ;

and for µ ∈ R, if ρ > 0, then

(4)+ lim
λ→∞

(sinµt ∗ gλ(t − ρ)(t) =






2 sinµ(t− ρ) if t > ρ,

0 if t = ρ,

0 if t < ρ,

and if ρ < 0, then

(4)− lim
λ→∞

(sinµt ∗ gλ(t− ρ)(t) =






0 if t > ρ,

0 if t = ρ,

−2 sinµ(t− ρ) if t < ρ;
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and if ρ > 0, then

(5)+ lim
λ→∞

(cosµt ∗ gλ(t− ρ))(t) =






2 cosµ(t− ρ) if t > ρ,

1 if t = ρ,

0 if t < ρ,

and if ρ > 0, then

(5)− lim
λ→∞

(cosµt ∗ gλ(t− ρ))(t) =






0 if t > ρ,

−1 if t = ρ,

−2 cosµ(t − ρ) if t < ρ.

Proof. For (1)± we compute

(e−µt2 ∗ gλ(t− ρ))(t) =

∫t

0

2

√

λ

π
e−λ(t−τ−ρ)2e−µτ2

dτ

= e
−λµ
λ+µ

(t−ρ)2
∫t

0

2

√

λ

π
e−(λ+µ)(τ−

λ(t−ρ)

λ+µ
)2dτ

= e
−λµ
λ+µ

(t−ρ)2
∫√λ+µ(t−

λ(t−ρ)

λ+µ
)

−
λ(t−ρ)
√

λ+µ

2

√

λ

π(λ+ µ)
e−u2

du

where u =
√
λ + µ(τ−

λ(t−ρ)

λ+µ
) and if τ = t, then u = µt+λρ√

λ+µ
, which goes to ∞ as λ → ∞ for ρ > 0.

If t > ρ, then −
λ(t−ρ)√

λ+µ
goes to −∞ and if t < ρ, then it goes to ∞. Therefore, if ρ > 0, then

lim
λ→∞

(e−µt2 ∗ gλ(t− ρ))(t) =






2e−µ(t−ρ)2 t > ρ,

1 t = ρ,

0 t < ρ,

and if ρ < 0, then

lim
λ→∞

(e−µt2 ∗ gλ(t − ρ))(t) =






0 t > ρ,

−1 t = ρ,

−2e−µ(t−ρ)2 t < ρ,

For (2)± we next compute

(tn ∗ gλ(t− ρ))(t) =

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τk2

√

λ

π
e−λ(τ−ρ)2dρ

and the following integrals are converted as:

∫t

0

τke−λ(τ−ρ)2dτ =

∫√λ(t−ρ)

−
√
λρ

(ρ+
u√
λ
)ke−u2 du√

λ
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where u =
√
λ(τ− ρ). We then use Proposition 2 and it follows that if ρ > 0, then

lim
λ→∞

(tn ∗ gλ(t− ρ))(t) =






2tn t > ρ,

ρn t = ρ,

0 t < ρ,

and if ρ < 0, then

lim
λ→∞

(tn ∗ gλ(t− ρ))(t) =






0 t > ρ,

−ρn t = ρ,

−2tn t < ρ.

For (3)± we next compute

(eµt ∗ gλ(t− ρ))(t) =

∫t

0

eµ(t−τ)2

√

λ

π
e−λ(τ−ρ)2dτ

= e
µ2−4λρµ

4λ eµt

∫t

0

2

√

λ

π
e−λ(τ+µ−2λρ

2λ
)2dτ

= e
µ2−4λρµ

4λ eµt

∫√λ(t−ρ+ µ
2λ

)

µ−2λρ

2
√

λ

2√
π
e−u2

du (u =
√
λ(τ +

µ− 2λρ

2λ
)),

which goes to, if ρ > 0, then 




2eµ(t−ρ) if t > ρ,

1 if t = ρ,

0 if t < ρ

as λ → ∞, and if ρ < 0, then 




0 if t > ρ,

−1 if t = ρ,

−2eµ(t−ρ) if t < ρ.

For (4)± we finally compute by allowing complex coefficients for this case and using the Euler

formula as:

(sinµt ∗ gλ(t − ρ))(t) = (
eµti − e−µti

2i
∗ gλ(t − ρ))(t)

=
1

2i

∫t

0

eµ(t−τ)igλ(τ − ρ)dτ −
1

2i

∫t

0

e−µ(t−τ)igλ(τ − ρ)dτ

=
eµti

2i

∫t

0

e−µτigλ(τ − ρ)dτ −
e−µti

2i

∫t

0

eµτigλ(τ − ρ)dτ
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and the first integral is converted to

e−ρµi−µ2

4λ

∫t

0

2

√

λ

π
e−λ(τ−ρ+ µi

2λ
)2dτ

= e−ρµi−µ2

4λ

∫√λ(t−ρ+µi
2λ

)

√
λ(−ρ+µi

2λ
)

2√
π
e−u2

du (u =
√
λ(τ− ρ+

µi

2λ
))

which goes to, if ρ > 0, then, 




2e−ρµi if t > ρ,

e−ρµi if t = ρ,

0 if t < ρ

as λ → ∞ via Cauchy integral theorem, and if ρ < 0, then,






0 if t > ρ,

−e−ρµi if t = ρ,

−2e−ρµi if t < ρ.

Similarly, the second integral above is converted to have the similar limits as above, where e−ρµi

is replaced with eρµi since u is replaced with u =
√
λ(τ − ρ − µi

2λ
). Therefore, we obtain one of

the last two equations in the statement. The other case (5)± is obtained similarly, by cosµt =
eµti+e−µti

2
.

Remark. The Heaviside unit function u(t) on R is defined by u(t) = 1 if t > 0 and u(t) = 0 if

t < 0 as well as u(0) = 1
2
. For ρ ∈ R positive, the shifted Heaviside unit function u(t − ρ) is

defined similarly. It is known that

L(u(t − ρ))(s) =
e−ρs

s
.

We may extend the definition of u(t− ρ) for ρ < 0. But we always have

L(u(t − ρ))(s) =
1

s
, ρ ≤ 0.

Note also that

L−1(
1

s
· e−ρs) =

∫t

0

1 · δ(τ− ρ)dτ =

{
1 t > ρ,

0 t < ρ,

where note that this shifted delta function comes from the usual Gaussian functions, not equal to

ours multiplied by 2.
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7 Algebraic structure with the shifted delta functions

We denote by Gsδ(R) the algebra generated by G(R) and the shifted delta functions δ(t− µ)

for µ ∈ R, with convolution.

For convenience, we define Gsδ(R+) to be the algebra generated by Gδ(R) and the positive

shifted delta functions δ(t−µ) for µ > 0, restricted to [0,∞). We define the following convolution

as

(f ∗ δ(t− µ))(t) = u(t− µ)f(t− µ)

for f ∈ Gsδ(R+) and µ > 0, where u(t − µ) is the shifted Heaviside unit function on [0,∞). Note

that this definition is not perfectly compatible with Proposition 4 but either changing gλ(t − µ)

with it multiplied by 1
2
on [0,∞) or cutting off functions to be zero on (−∞, 0) make sense almost

everywhere. In fact, such a scalar multiplication is allowed to define the convolution with the

shifted delta functions in the weak sense.

We denote by Es1(C) the algebra generated by E1(C) and the set {e−ρs | ρ > 0}, with pointwise

mulitiplication.

We define the Laplace transform L(f ∗ g) to be L(f) · L(g) for f, g ∈ Gsδ(R+).

Note that it is known as the first shift law that

L(u(t − µ)f(t − µ)) = e−µsL(f)(s)

and L(δ(t− µ)) = e−µs.

Corollary 5. The algebra Gsδ(R+) with convolution is isomorphic to Es1(C) with pointwise

multiplication, as a real algebra, via the Laplace transform and the inverse Laplace transform.

Proof. The Laplace transform L is injective on Gδ(R). The injectiveness of L extends to Gsδ(R)

by definition. Also, Gsδ(R+) is mapped onto Es1(C) by L as an algebra homomorphism, by

definition.

Note that, by definition, Gsδ(R+) contains discontinuous functions such as the shifted Heavi-

side unit functions.

Lemma 7.1. For f, g ∈ Gsδ(R+) and for µ, s > 0, we have

(u(t − µ)f(t− µ) ∗ u(t− s)g(t− s))(t)

=

{
0 if t < µ or t < s,
∫t−u

s
f(t− τ − µ)g(τ − s)dτ if t > µ and t > s.

Note that in the second non-trivial case, the integral is just the sub-integral of (f(t−µ)∗g(t−
s))(t) =

∫t
0
f(t − τ − µ)g(τ − s)dτ restricted to the sub-interval [s, t − µ] of [0, t], so that we may

call the convolution in the statement the sub-convolution. Therefore,
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Corollary 6. The convolution in Gsδ(R+) generates such sub-convolutions, which generate the

algebra.

Remark. However, the convolution product in Gsδ(R+) is somewhat difficult to see what it is,

but the corresponding point-wise multiplication in Es1(C) is relatively easy to see what it is. As

well known in applications to solving ordinary differential equations with initial values, a problem

related to Gsδ(R+) is relatively easily solved in Es1(C) via the Laplace transform, and then the

last task is to compute the corresponding convolution via the inverse Laplace transform.

8 More with the weak derivative

Recall that

Lemma 8.1. We have

L(δ ′(t)) = s

in the weak sense, i.e., as a functional or a distribution, so that we may define L−1(s) = δ ′(t) for

t ∈ R and s ∈ C.

Proof. We compute

L(δ ′(t)) =

∫
∞

0

e−stδ ′(t)dt

=

∫
∞

0

(−1)
∂

∂t
e−st · δ(t)dt by definition

= sL(δ(t)) = s.

Note that the algebra G(R) is closed under the usual derivative and that G(R) is contained in

C∞(R) the algebra of all infinitely many times differentiable (or smooth) functions on R.

Lemma 8.2. For f ∈ G(R), we have

(f ∗ δ ′)(t) = f ′(t)

in the weak sense.

Proof. We compute

(f ∗ δ ′)(t) =

∫t

0

f(t− τ)δ ′(τ)dτ

=

∫t

0

(−1)
∂

∂τ
f(t− τ) · δ(τ)dτ = (f ′ ∗ δ)(t) = f ′(t).
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We define the n-th derivative δ(n) to be the n-times convolution with δ. For f ∈ G(R), we

define f ∗ δ(n) to be f(n) the n-th derivative of f. We also define L(δ(n)) to be sn for s ∈ C.

We denote by DA(R) the algebra generated by A(R), the delta function δ, and the set

{δ(n) |n ∈ Z, n ≥ 1}, with convolution. We also denote by R(C) the algebra of all rational functions

on C with point-wise multiplication.

Proposition 5. There is an algebra isomorphism by the Laplace transform from DA(R) to R(C).

We denote by DG(R) the algebra defined by replacing A(R) with G(R) in the definition of

DA(R). We also denote by RE(C) the algebra generated by R(C) and E(C).

Proposition 6. There is an algebra isomorphism by the Laplace transform from DG(R) to RE(C).

Lemma 8.3. For f ∈ Gsδ(R+) and µ > 0, we have

(f ∗ δ ′(t− µ))(t) = u(t − µ)f ′(t)

almost everywhere in the weak sense.

Proof. We compute

(f ∗ δ ′(t− µ))(t) =

∫t

0

f(t− τ)δ ′(τ− µ)dτ

=

∫t

0

(−1)
∂

∂τ
f(t− τ) · δ(τ− µ)dτ = (f ′ ∗ δ(t− µ))(t)

= u(t − µ)f ′(t)

for f ∈ Gsδ(R+), where note that f ′ is defined almost everywhere (except some finite points of

R+).

We denote byDGsδ(R+) the algebra generated byGsδ(R+) and the weak derivatives δ(n)(t−µ)

for n positive integers and µ > 0 reals. We also denote by REs1(C) the algebra generated by R(C)

and Es1(C).

Proposition 7. There is an algebra isomorphism by the Laplace transform from DGsδ(R+) to

REs1(C).
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