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ABSTRACT

Previous applications of the enclosure method with a finite set of observation data to a

mathematical model of electrical impedance tomography are based on the assumption

that the conductivity of the background body is homogeneous and known. This paper

considers the case when the conductivity is homogeneous and unknown. It is shown

that, in two dimensions if the domain occupied by the background body is enclosed

by an ellipse, then it is still possible to extract some information about the location of

unknown cavities or inclusions embedded in the body without knowing the background

conductivity provided the Fourier series expansion of the voltage on the boundary does

not contain high frequency parts (band limited) and satisfies a non vanishing condition

of a quantity involving the Fourier coefficients.

RESUMEN

Previas aplicaciones del método de cercamiento con un conjunto finito de datos de

observación para un modelo matemático de tomografia electrica son basados en la

suposición de que la conductividad del cuerpo es homogenea y conocida. Este art́ıculo
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considera el caso cuando la conductividad es homogenea y desconocida. Es demostrado

en dos dimensiones que si el domı́nio ocupado por el cuerpo es encerrado por una

elipse, entonces es aún posible extraer alguna información acerca de la localización de

las cavidades desconocidas o inclusiones inmersas en el cuerpo sin conocimiento de la

conductividad con talque la expansión en series de Fourier del voltaje sobre la frontera

no contenga frecuencias altas (fajas acotadas) y satisfaga una condición de no nulidad

de una cierta cantidad envolviendo los coeficientes de Fourier.

Key words and phrases: Enclosure method, inverse boundary value problem, cavity, inclusion,

Laplace equation, exponentially growing solution.

Math. Subj. Class.: 35R30

1 Introduction

The aim of this paper is to reconsider previous applications [5, 6] of the enclosure method with a

finite set of observation data to inverse boundary value problems related to a continuum model of

electrical impedance tomography [1, 2]. The point is: those applications are based on the assump-

tion that the conductivity of the background body is homogeneous and known. However, from a

mathematical point of view, the problem whether or not one can still extract some information

about unknown discontinuity from the finite set of observation data without knowing the exact

value of the conductivity is quite interesting. Proofs of some previous known uniqueness results

that employ a finite set of observation data, for example, [4] for cracks and [3, 9] for inclusions are

based on the assumption that the conductivity of the background body is known. This is because

they start with applying the uniqueness of the Cauchy problem for elliptic equations.

Besides needless to say, we cannot know the exact value of the conductivity of the background

body. The inaccurate value causes an error on the observation data and therefore on the indicator

function in the enclosure method.

In order to describe the problem more precisely let us start with recalling a typical application

of the enclosure method with a single set of observation data.

Let Ω be a bounded domain of R
2

with Lipschitz boundary. Let D be an open subset with Lipschitz

boundary of Ω such that D ⊂ Ω and Ω \ D is connected. Consider a non constant solution of the

elliptic problem:

△u = 0 in Ω \ D,

∂u

∂ν
= 0 on∂D.

(1.1)

Here ν = (ν1, ν2) denotes the unit outward normal vector field on ∂(Ω\D). The D is a mathematical

model of the union of cavities inside the body.
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In [5] we considered the problem of extracting information about the location and shape of

D in two dimensions from the observation data that is a single set of Cauchy data of u on ∂Ω.

Assuming that D is given by the inside of a polygon with an additional condition on the diameter,

we established an extraction formula of the convex hull of D from the data. The method uses a

special exponential solution of the Laplace equation. The solution takes the form e−τ teτx·(ω+iω
⊥)

where τ(> 0) and t are parameters; both ω and ω⊥
are unit vectors and satisfy ω · ω⊥

= 0.

The solution divides the whole plane into two half ones which have the line {x |x · ω = t} as

the common boundary. In one part {x |x · ω > t} the solution is growing as τ −→ ∞ and in

another part {x |x ·ω < t} decaying. Using this solution, we define the so-called indicator function

Iω, ω⊥(τ, t) of the independent variable τ with parameter t:

Iω, ω⊥(τ, t) = e−τ t

∫

∂Ω

{
−

∂

∂ν
eτx·(ω+iω

⊥)u +
∂u

∂ν
eτx·(ω+iω

⊥)

}
ds.

The enclosure method gives us information about the position of half plane x · ω > t relative to D

by checking the asymptotic behaviour of the indicator function as τ −→ ∞. For the description

of the behaviour we recall the support function hD(ω) = sup
x∈D

x · ω. Moreover we say that ω is

regular if the set {x |x · ω = hD(ω)} ∩ ∂D consists of only one point.

What we established in [5] is: for regular ω there exist positive constants A and µ(> 1/2)

such that, as τ −→ ∞

|Iω, ω⊥(τ, 0)| ∼
A

τµ
eτhD(ω)

(1.2)

provided

diamD < dis (D, ∂Ω). (1.3)

This fact is the core of the enclosure method. Since we have the trivial identity

Iω, ω⊥(τ, t) = e−τtIω, ω⊥(τ, 0),

from (1.2) one could conclude that: if t > hD(ω), then the indicator function is decaying exponen-

tially; if t = hD(ω), then the indicator function is decaying truly algebraically; if t < hD(ω), then

the indicator function is growing exponentially. Moreover from (1.2), we immediately obtain also

the one line formula

lim
τ−→∞

1

τ
log |Iω, ω⊥(τ, 0)| = hD(ω).

However this is the case when the background conductivity is known.

Consider the case when the background conductivity is given by a positive constant γ. In this

case the indicator function should be replaced with

Iω, ω⊥(τ, t) = e−τ t

∫

∂Ω

{
−γ

∂

∂ν
eτx·(ω+iω

⊥)u + γ
∂u

∂ν
eτx·(ω+iω

⊥)

}
ds.

Needless to say we obtain the same result as above if γ is known. However, if γ is unknown, then

the term

e−τ t

∫

∂Ω

γ
∂

∂ν
eτx·(ω+iω

⊥)uds
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becomes unknown and therefore one can use only the term

e−τ t

∫

∂Ω

γ
∂u

∂ν
eτx·(ω+iω

⊥)ds (1.4)

if u = f on ∂Ω is given.

The purpose of this paper is to give a remark on the problem: can one still extract information

about the location and shape of D from the quantity (1.4) in the case when f is given?

In this paper we show that, in two dimensions if the domain occupied by the background

body is enclosed by an ellipse, then it is still possible to extract some information about the

location of unknown cavities or inclusions embedded in the body without knowing the background

conductivity provided the Fourier series expansion of the voltage on the boundary does not contain

high frequency parts (band limited) and satisfies a non vanishing condition of a quantity involving

the Fourier coefficients.

2 Extraction formulae

Let Ω be the domain enclosed by an ellipse. By choosing a suitable system of orthogonal coordinates

one can write

Ω =

{
(x1, x2) |

(x1

a

)2

+

(x2

b

)2

< 1

}

where a ≥ b > 0. In what follows we always use this coordinates system.

Given ω = (ω1, ω2) ∈ S1 set ω⊥ = (ω2,−ω1). Then x · (ω + iω⊥) = (x1 − ix2)(ω1 + iω2). Let

v = eτx·(ω+iω
⊥).

2.1 Preliminary computation

In this subsection first given f = u|∂Ω we study the asymptotic behaviour of the integral

∫

∂Ω

γ
∂u

∂ν
vds.

However, integration by parts yields

∫

∂Ω

γ
∂u

∂ν
vds = γ

∫

∂Ω

u
∂v

∂ν
ds − γ

∫

∂D

u
∂v

∂ν
ds (2.1)

and we have already studied the asymptotic behaviour of the second term as described in Intro-

duction (see (1.2)). Therefore it suffices to study that of the first term. Since

∫

∂Ω

u
∂v

∂ν
ds = τ(ω1 + iω2)

∫

∂Ω

u v (ν1 − iν2)ds, (2.2)

we compute the integral in the right hand side.
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Write

f(θ) = f(a cos θ, b sin θ) =
1

2
α0 +

∞∑

m=1

(αm cosmθ + βm sinmθ)

where

αm =
1

π

∫ 2π

0

f(a cos θ, b sin θ) cosmθdθ, βm =
1

π

∫ 2π

0

f(a cos θ, b sin θ) sin mθdθ.

Define

γ0 = α0/2, γm = (αm − iβm)/2, γ−m = γm, m ≥ 1.

Lemma 2.1. We have: if a = b, then

∫

∂Ω

u v (ν1 − iν2)ds = 2πa2
∞∑

m=0

{aτ(ω1 + iω2)}
m

m!
γm+1; (2.3)

if a > b, then

∫

∂Ω

u v (ν1 − iν2)ds = 2πab

∞∑

m=0

imJm(−i
√

a2 − b2τ(ω1 + iω2))Cm(f) (2.4)

where C0(f) = A−γ1 + A+γ1, for m = 1, 2, · · ·

Cm(f) = (A−γm−1 + A+γm+1)

(√
a + b

a − b

)m

+ (A−γm+1 + A+γm−1)

(√
a − b

a + b

)m

and

A± =
1

2

(
1

a
±

1

b

)
.

Proof. Set z = eiθ. Since

ν(a cos θ, b sin θ) =
1√(

cos θ

a

)2

+

(
sin θ

b

)2

(
cos θ

a
,
sin θ

b

)

and

ds = ab

√(
cos θ

a

)2

+

(
sin θ

b

)2

dθ,

we have

(ν1 − iν2)ds = ab(A−z + A+z−1
)
dz

iz
.

Note also that

f(a cos θ, b sin θ) =

∑

m

γmzm
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and

x1 − ix2 = B−z + B+z−1

where

B± =
a ± b

2
.

Using those expressions, we can write

∫

∂Ω

u v (ν1 − iν2)ds

=
ab

i

∑

m

γm

∫

|z|=1

(A−z + A+z−1
)zm−1

exp
{
τ(B−z + B+z−1

)(ω1 + iω2)
}

dz.

Define

Il(τ) =

∫

|z|=1

zl
exp

{
τ(B−z + B+z−1

)(ω1 + iω2)
}

dz.

Consider the case when a > b. Using the generating function of the Bessel functions, we have

exp
{
τ(B−z + B+z−1

)(ω1 + iω2)
}

=

∑

n

Jn

(
−i
√

a2 − b2τ(ω1 + iω2)

)(
i

√
a − b

a + b

)n

zn

and therefore

Il(τ) = 2πi(−1)
l+1Jl+1

(
−i
√

a2 − b2τ(ω1 + iω2)

)(
−i

√
a + b

a − b

)l+1

.

If a = b, then

Il(τ) = 0, l ≤ −2; Il(τ) = 2πi
{aτ(ω1 + iω2)}

l+1

(l + 1)!
, l ≥ −1.

Since ∫

∂Ω

u v (ν1 − iν2)ds =
ab

i

∑

m

γm (A−Im(τ) + A+Im−2(τ)) ,

we obtain the desired conclusion. 2

2.2 Main result

We denote by E(Ω) the set of all points on the segment that connects the focal points (−
√

a2 − b2, 0)

and (
√

a2 − b2, 0) of Ω. It is easy to see that the support function of the set E(Ω) is given by the

formula hE(Ω)(ω) =
√

a2 − b2|ω1|.

We say that a function f(θ) = f(a cos θ, b sin θ) of θ is band limited if there exists a natural

number N ≥ 1 such that, for all m ≥ N +1 the m-th Fourier coefficients αm and βm of the function

vanish. Then we know that Cm(f) = 0 for all m ≥ N + 2.
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Now we state the main result of this paper.

Theorem 2.1. Let γ be a positive constant. Assume that (1.3) is satisfied. Let ω be regular with

respect to D. Let f be band limited and u be the solution of (1.1) with u = f on ∂Ω.

(1) Let a > b. Let ω satisfy ω1 6= 0. Let f satisfy

∞∑

m=1

(sgn ω1)
mm2Cm(f) 6= 0. (2.5)

The formula

lim
τ−→∞

1

τ
log

∣∣∣∣
∫

∂Ω

γ
∂u

∂ν
vds

∣∣∣∣ = max (hD(ω), hE(Ω)(ω)), (2.6)

is valid.

(2) Let a = b. Let f satisfy: for some N ≥ 1 αm = βm = 0 for all m with m ≥ N + 1 and

α2
N

+ β2
N

6= 0. The formula

lim
τ−→∞

1

τ
log

∣∣∣∣
∫

∂Ω

γ
∂u

∂ν
vds

∣∣∣∣ = max (hD(ω), 0), (2.7)

is valid.

• We say that a D is behind the line x · ω = t from the direction ω if the D is contained in

the half plane x · ω < t. One important consequence of the formula (2.6) is: one can know

whether the unknown cavity D is behind the line x · ω = hE(Ω)(ω) from the direction ω,

however, in that case one cannot know the line x · ω = hD(ω) itself from the formula. This

shows the limit to extract the whole convex hull of D without an additional assumption.

• The assumption that f is band limited is just for a simplicity of the computation and can

be relaxed. It is possible to apply directly the saddle point method to study the asymptotic

behaviour of the integrals in Lemma 2.1 for a f that is not band limited. Moreover we want

to point out that in a practical situation, one cannot produce highly oscillatory voltages on

the boundary. This is due to the limit of numbers of electrodes attached on the boundary of

the body.

• A typical example of a band-limited f that satisfies (2.5) for all ω with ω1 6= 0 is the f given

by

f(θ) = A cosNθ + B sin Nθ

where N ≥ 1 and A2 + B2 6= 0. See Remark 2.1 below for this explanation. In general we

have to choose two fs corresponding to whether ω1 > 0 or ω1 < 0.

Proof of Theorem 2.1. When a = b, the (2.7) is an easy consequence of (1.2), (2.1), (2.2) and

(2.3). The problem is the case when a > b. We employ the compound asymptotic expansion (see
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page 118 of [8] for the notion of the compound asymptotic expansion) of the Bessel function due

to Hankel(see (9.09) and 9.3 of page 133 in [8]):

Jm(z) ∼

(
2

πz

)1/2

×
{

cos

(
z −

mπ

2
−

π

4

) ∞∑

s=0

(−1)
s
A2s(m)

z2s
− sin

(
z −

mπ

2
−

π

4

) ∞∑

s=0

(−1)
s
A2s+1(m)

z2s+1

}
(2.8)

as z −→ ∞ in |arg z| ≤ π − δ for each fixed δ ∈ ]0, π[ where A0(m) = 1 and, for s = 1, 2, · · ·

As(m) =
1

s!8s
(4m2

− 1
2
)(4m2

− 3
2
) · · · (4m2

− (2s − 1)
2
).

First we consider the case when ω1 > 0. From (2.8) in the case when z = −i
√

a2 − b2τ(ω1 + iω2)

we obtain

Jm(z) =

(
1

2πz

)1/2

eiz
(−i)me−iπ/4

{
1 −

4m2 − 1

8iz
+ O

(
1

τ2

)}
(2.9)

as τ −→ ∞. Since f is band limited, one can find N ≥ 1 such that, for all m ≥ N + 1 the m-th

Fourier coefficients αm and βm of f vanish. Then Cm(f) = 0 for m ≥ N + 2 and from (2.4) and

(2.9) we obtain

∫

∂Ω

uv(ν1 − iν2)ds = 2πab

(
1

2πz

)1/2

eize−iπ/4

×

{(
1 +

1

8iz

)N+1∑

m=0

Cm(f) + i
1

2z

N+1∑

m=1

m2Cm(f) + O

(
1

τ2

)}
.

(2.10)

Here we claim that
N+1∑

m=0

Cm(f) = 0. (2.11)

It suffices to prove the claim in the case when

f(a cos θ, b sin θ) = αj cos jθ + βj sin jθ (2.12)

for each fixed j = 1, 2, · · · , N . Since
∑

∞

m=0 Cm(f) = Cj−1(f) + Cj(f) + Cj+1(f) and we have

Cj+1(f) = A−γj

(√
a + b

a − b

)j+1

+ A+γj

(√
a − b

a + b

)j+1

,

Cj(f) = 0,

Cj−1(f) = A+γj

(√
a + b

a − b

)j−1

+ A−γj

(√
a − b

a + b

)j−1

,
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we get

∞∑

m=0

Cm(f) =

{
A+ + A−

(
a + b

a − b

)}
γj

(√
a + b

a − b

)j−1

+ γj

(√
a − b

a + b

)j+1


 .

Since

A+ + A−

(
a + b

a − b

)
= 0,

we see that the claim (2.11) is valid. Therefore (2.10) becomes

∫

∂Ω

uv(ν1 − iν2)ds = iπabz−1

(
1

2πz

)1/2

eize−iπ/4

{
N+1∑

m=1

m2Cm(f) + O

(
1

τ

)}
. (2.13)

Set ω1 + iω2 = eiϑ with −π/2 < ϑ < π/2. Then z1/2 =
√

τ (a2 − b2)1/4ei(ϑ−π/2)/2. Since

eiz = eτhE(ω)(ω)eiτ

√

a2
−b2ω2 , from (1.2), (2.1), (2.2) and (2.13) we obtain the compound asymptotic

formula:

∫

∂Ω

γ
∂u

∂ν
vds

∼ −γ

√
π

2
ab(a2 − b2

)
−3/4e−iϑ/2τ−1/2eτhE(Ω)(ω)eiτ

√

a2
−b2ω2

N+1∑

m=1

m2Cm(f) − γeτhD(ω) A

τµ
.

From this we know that the quantity

exp
{
−τ max (hD(ω), hE(Ω)(ω))

} ∣∣∣∣
∫

∂Ω

γ
∂u

∂ν
vds

∣∣∣∣

is truly algebraic decaying as τ −→ ∞. Note that we have used the lower bound of µ: µ > 1/2.

Therefore we obtain the formula (2.6). Next consider the case when ω1 < 0. Write Rω(τ ; f) =∫

∂Ω

fv(ν1 − iν2)ds. Then we have Rω(τ ; f) = −R−ω(τ ; f∗) where f∗(x) = f(−x). Since the m-th

Fourier coefficients of f∗ are given by (−1)m times those of f and the first component of −ω is

positive, we can derive the corresponding result in the case when ω1 < 0 from the result in the

case when ω1 > 0 by replacing Cm(f) in the condition (2.5) with −(−1)mCm(f). 2

Remark 2.1. Fix j = 1, 2, · · · , N and let f be given by (2.12). Then a direct computation similar

to the proof of the claim (2.11) yields

∞∑

m=1

m2Cm(f) = (j − 1)
2Cj−1(f) + (j + 1)

2Cj+1(f)

= −
2

ab
j(a2 − b2

)
−(j−1)/2{(a + b)jγj − (a − b)jγj}.
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This yields also
∞∑

m=1

(−1)
mm2Cm(f) = (−1)

j−1
∞∑

m=1

m2Cm(f)

= (−1)
j

2

ab
j(a2 − b2

)
−(j−1)/2{(a + b)jγj − (a − b)jγj}.

These yield: a f whose Fourier coefficients αj and βj vanish for all j ≥ N + 1 with some N ≥ 1,

satisfies the condition (2.5) if and only if

N∑

j=1

(sgn ω1)
jj(a2 − b2

)
−(j−1)/2{(a + b)jγj − (a − b)jγj} 6= 0. (2.14)

It is clear that there are many fs satisfying the condition (2.14).

Remark 2.2. In (1) the case when ω1 = 0 is not treated. In this case ω2 = ±1. If ω2 = 1, then

from (2.8) we have

Jm(z) =

(
1

2π
√

a2 − b2τ

)1/2

×

{
eiτ

√

a2
−b2

(−i)me−iπ/4

(
1 + i

4m2 − 1

8z

)
+ e−iτ

√

a2
−b2imeiπ/4

(
1 − i

4m2 − 1

8z

)}
+ O(τ−5/2

)

where z = −i
√

a2 − b2 τ(ω1 + iω2). Then from (1.2), (2.1), (2.2) and (2.4) the problem can be

reduced to the study of the asymptotic behaviour of the quantity

N+1∑

m=0

{
eiτ

√

a2
−b2e−iπ/4

(
1 + i

4m2 − 1

8z

)
+ (−1)

me−iτ

√

a2
−b2eiπ/4

(
1 − i

4m2 − 1

8z

)}
Cm(f) (2.15)

as τ −→ ∞. This seems very complicated for general τ . However, if we choose

τ =
lπ

√
a2 − b2

, l = 1, 2, · · · , (2.16)

then (2.15) becomes

(−1)
le−iπ/4

{
N+1∑

m=0

(
1 + i

4m2 − 1

8z

)
Cm(f) + i

N+1∑

m=0

(−1)
m

(
1 − i

4m2 − 1

8z

)
Cm(f)

}

=
(−1)le−iπ/4i

2z

N+1∑

m=1

m2{Cm(f) − iCm(f∗

)}.

Note that we have used the claim (2.11) for f and f∗. Therefore if f satisfies the condition

∞∑

m=1

m2{Cm(f) − iCm(f∗

)} 6= 0 (2.17)
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instead of (2.5), then for τ given by (2.16), the formula

lim
l−→∞

1

τ
log

∣∣∣∣
∫

∂Ω

γ
∂u

∂ν
vds

∣∣∣∣ = max (hD(ω), 0),

is valid. By replacing f with f∗, we know also that: if ω2 = −1, then the same formula is valid

provided
∞∑

m=1

m2{Cm(f) + iCm(f∗

)} 6= 0 (2.18)

instead of (2.17). From the computation in Remark 2.1 one can sum the conditions (2.17) and

(2.18) up in the single form:

N∑

j=1

{
1 + (−1)

j
(sgn ω2)i

}
j(a2 − b2

)
−(j−1)/2{(a + b)jγj − (a − b)jγj} 6= 0

where N ≥ 1 and chosen in such a way that, for all m ≥ N + 1 the m-th Fourier coefficients of f

vanish.

2.3 Uniqueness

As a corollary of Theorem 2.1 we obtain a uniqueness theorem.

Corollary 2.1. Let γ be a positive constant. Assume that D satisfies (1.3).

(1) Let Ω be a domain enclosed by an ellipse. Let f+ and f− be band limited and satisfy

∞∑

m=1

(±)
mm2Cm(f±) 6= 0.

Let u± be the solution of (1.1) with u± = f± on ∂Ω. Then the Neumann data γ∂u+/∂ν and

γ∂u−/∂ν on ∂Ω uniquely determine the convex hull of D ∪ E(Ω).

(2) Let Ω be a domain enclosed by a circle. Let f be band limited and non constant. Let u be

the solution of (1.1) with u = f on ∂Ω. Then the Neumann data γ∂u/∂ν uniquely determines the

convex hull of D ∪ {0}.

We emphasize that γ is unknown. This makes the situation difficult definitely. Assume that we

have two unknowns (D, γ) = (D1, γ1), (D2, γ2) and solutions u1 and u2 both satisfying (1.1) and

the boundary condition u = f on ∂Ω. The key point of a standard and traditional approach

is to prove that if γ1∂u1/∂ν = γ2∂u2/∂ν on ∂Ω, then u1 = u2 in a neighbourhood of ∂Ω. If

γ1 = γ2, then the conclusion is true because of the uniqueness of the Cauchy problem for the

Laplace equation. However, if γ is unknown, i.e., the assumption γ1 = γ2 is dropped, one can not

immediately get the conclusion (note that we are considering a finite set of observation data not

the full Dirichlet-to-Neumann map). Our approach skips this point by using an analytical formula

that directly connects the data with unknown discontinuity.
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The proof of Corollary 2.1 is based on: given D the set of all directions that are not regular

with respect to D is a finite set; the formulae (2.6) are valid for f = f± in (1); the formula (2.7) is

valid for f in (2). Therefore, for example, in (1) we see that the Neumann data uniquely determine

the values of max (hD(ω), hE(Ω)(ω)) which is the support function of the convex hull of D ∪ E(Ω)

at the directions ω except for a finite set of directions. Since the support function hD and hE(Ω)

are continues on the unit circle and so is max (hD( · ), hE(Ω)( · )). A density argument yields the

desired uniqueness.

Remark 2.3. If ∂D is smooth, then (2) of Corollary 2.1 does not hold. Let Ω be the unit open

disc centered at the origin of the coordinates system and for 0 < R < 1 let D(R) be the open disc

centered at the origin with the radius R. Let 0 < R1, R2 < 1. Fix an integer m ≥ 1. For each

j = 1, 2 let uj be the weak solution of the problem (1.1) with D = D(Rj) and the Dirichlet data

uj(r, θ)|r=1 = cos mθ where (r, θ) denotes the usual polar coordinates centered at the origin. Then

we know that

u1(r, θ) =
1

1 + R2m

1

(rm
+ R2m

1 r−m
) cos mθ, u2(r, θ) =

1

1 + R2m

2

(rm
+ R2m

2 r−m
) cos mθ.

This yields

1 + R2m

2

1 − R2m

2

∂u2

∂ν
= m cos mθ =

1 + R2m

1

1 − R2m

1

∂u1

∂ν
on∂Ω.

Since R1 and R2 are arbitrary chosen, this means that one cannot uniquely determine D(R) from

the single set of the Dirichlet and Neumann data f(θ) = cos mθ and γ∂u/∂ν on ∂Ω in the case

when γ = (1+R2m)(1−R2m). This suggests that the singularity of ∂D is essential for the validity

of (2) in Corollary 2.1.

3 An application to the inverse conductivity problem

The idea in the proof of Theorem 2.1 can be applied to the case when the unknown domain D is

a model of an inclusion.

We assume that the conductivity k = k(x) of the body that occupies Ω is given by k(x) = γ

if x ∈ Ω \ D; k(x) = γ̃ if x ∈ D. It is assumed that the γ and γ̃ are positive constants and

satisfy γ 6= γ̃. The voltage u inside the body satisfies the equation ∇ · k∇u = 0 in Ω. Given

ω = (ω1, ω2) ∈ S1
set ω⊥

= (ω2,−ω1). Let τ > 0 and v = eτx·(ω+iω
⊥)

.

In [6] we have already proved that if u is not a constant function and D is polygonal and

satisfies the condition (1.3), then for a given direction ω that is regular with respect to D the

formula

lim
τ−→∞

1

τ
log

∣∣∣∣
∫

∂Ω

(
γ

∂u

∂ν
v − γ

∂v

∂ν
u

)
ds

∣∣∣∣ = hD(ω),

is valid. Note that k = γ on ∂Ω and we do not assume that the conductivity γ̃ of D is known.
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Here we propose the same question as that of Introduction. Assume that we do not know k

in the whole domain. Given a non constant voltage f = u|∂Ω on ∂Ω is it possible to extract some

information about the location of D from the corresponding current density k∂u/∂ν on ∂Ω?

The answer is yes in the case when the Ω is enclosed by an ellipse. It starts with recalling the

equation ∫

∂Ω

γ
∂u

∂ν
vds =

∫

∂Ω

γ
∂v

∂ν
uds − (γ − γ̃)

∫

∂D

u
∂v

∂ν
ds. (3.1)

Recall Key Lemma in [6]: there exist positive constants B and λ(> 1/2) such that, as τ −→ ∞

∣∣∣∣
∫

∂D

u
∂v

∂ν
ds

∣∣∣∣ ∼
B

τλ
eτhD(ω). (3.2)

Then from (2.2), (3.1), (3.2) and Lemma 2.1 we see that the completely same statements as those

in Theorem 2.1, Corollary 2.1 and Remarks 2.1 and 2.2 are valid.

Remark 3.1. In [7] we employed the difference of the values of the voltage at arbitrary fixed two

points on the boundary of a general two-dimensional bounded domain Ω with smooth boundary.

More precisely we introduced the operator

Λk(P, Q) : g 7−→ u(P ) − u(Q)

where P and Q are two arbitrary points on ∂Ω; g satisfies

∫

∂Ω

gds = 0; the u is a solution of the

equation ∇ · k∇u = 0 in Ω and satisfies the Neumann boundary condition k∂u/∂ν = g on ∂Ω.

Given ω = (ω1, ω2) ∈ S1 set ω⊥ = (ω2,−ω1). Let τ > 0 and v = eτx·(ω+iω
⊥). What we have

proved is: if g = ∂v/∂ν on ∂Ω and D is polygonal and satisfies the condition (1.3), then for a given

direction ω that is regular with respect to D the formula

lim
τ−→∞

1

τ
log | {Λk(P, Q) − Λγ(P, Q)} (g)| = hD(ω), (3.3)

is valid. Note that we have used the relationship

{Λk(P, Q) − Λγ(P, Q)} (g) =
1

γ

{
Λk/γ(P, Q) − Λ1(P, Q)

}
(g).

If γ is unknown, then one cannot use the term Λγ(P, Q)(g) in (3.3). However, that has the

simple form

Λγ(P, Q)(g) =
1

γ
{v(P ) − v(Q)}

for g = ∂v/∂ν on ∂Ω. Using this form, Proposition 3.1 and Lemma 3.1 in [7], one immediately gets

the following formulae provided D is polygonal and satisfies the condition (1.3) and ω is regular

with respect to D:

• if ω is not perpendicular to the line passing through P and Q, then

lim
τ−→∞

1

τ
log |Λk(P, Q)(g)| = max

(
hD(ω), h

{P, Q}
(ω)
)
;
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• if ω is perpendicular to the line passing through P and Q, choose, for example,

τ =
π

|P − Q|

(
1

2
+ 2l

)
, l = 0, 1, 2, · · · ,

then

lim
l−→∞

1

τ
log |Λk(P, Q)(g)| = max

(
hD(ω), h

{P, Q}
(ω)
)
.

4 Conclusion

We confirmed that: in the case when the background conductivity is homogeneous and unknown

the enclosure method still works provided:

• the domain that is occupied by a background body has a simple geometry;

• the Fourier series expansion of the voltage on the boundary does not contain high frequency

parts (band limited) and satisfies a non vanishing condition of a quantity involving the Fourier

coefficients.

However, the method yields a less information about the location and shape of unknown

cavity or inclusion compared with the case when the conductivity is known. We found an explicit

obstruction that depends on the geometry of the background body.
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