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ABSTRACT

In this expository article we present the characterizations proved by J. Chung,
S.-Y. Chung and D. Kim, and by S.-Y. Chung, D. Kim and S. Lee, of the Schwartz
space & and of the Beurling-Bjorck space &,,. For the most part we follow the
original proofs, only adjusting the estimates as necessary in order to prove not
only set-theoretic equalities, but also topological equalities. These results show
that the space G, is, as a set as well as topologically, a direct generalization of
the space &. Minor modifications of the original arguments allow us to obtain
explicit linear estimates.

1 Introduction

One of the great achievements of the theory of generalized functions devised by Lau-
rent Schwartz was to provide a satisfactory framework for the Fourier transform ([17],
[18]). The space & of test functions and its topological dual &’, the space of tempered
distributions, allow to formulate extensions of the classical definition and properties
of the Fourier transform, including in a natural way results stated for LP spaces.
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The space &, as defined by Schwartz, consists of C*° functions that decay rapidly
at infinity, jointly with all their derivatives. This means that each function and its
derivatives of any order decay at infinity faster than the reciprocal of any polynomial.
Jaeyoung Chung, Soon-Yeong Chung and Dohan Kim proved in [3] that & can be de-
scribed as the set of C'™° functions that decay rapidly at infinity while their derivatives
remain bounded. Their very nice proof uses induction and three steps that involve
an L? estimate, an L' estimate, and an L™ estimate that resembles the proof of the
Sobolev embedding theorem. In the same paper, they also give a second character-
ization of & in terms of the rapid decay of the function and its Fourier transform.
Soon-Yeong Chung, Dohan Kim and Sungjin Lee obtained in [4] a second shorter
proof of the first characterization of &. It is based on Landau’s inequality ([14], [5])
and it is also a very nice proof.

In [4], the authors formulate and prove by a similar argument a characterization
of the Beurling-Bjorck space &,,, a subspace of &. The topological dual &, of &,
is a space of generalized functions, called tempered ultradistributions, that are not
necessarily tempered distributions. The spaces &, and &/, were defined by Goéran
Bjorck in [2]. He took up and expanded the work of Arne Beurling ([1]), in order to
extend work by Lars Hérmander ([10], [11], [12], [13]) and Avner Friedman ([6]), on
various formulations of convexity, ellipticity, hypoellipticity, and existence of solutions.

One of the characterizations of & and &,, given in [3] and [4] respectively, allows
us to see immediately that the space G,, is an extension of the Schwartz space ©.
This characterization imposes separate conditions on the function and on its Fourier
transform. This can be interpreted as treating time and frequency independently. Al-
though we will not go into the details, we want to point out that Karlheinz Grochenig
and Georg Zimmermann have obtained in [7] and [8] joint time-frequency characteri-
zations of G and &,, using the short-time Fourier transform.

The main purpose of our exposition is to discuss all the results presented in [3]
and [4]. A careful analysis of the proofs shows that they produce non-linear recursive
inequalities between appropriate norms. When these recursive inequalities are written
in closed form, they give the topological equivalence of various sets of norms. A minor
modification of one of the proofs shows that this topological equivalence can be given
in terms of explicit linear estimates, which more appropriately reflect the linearity of
the problem at hand. Certainly, in all the cases, an straightforward application of
the Open Mapping Theorem for Fréchet spaces will give linear estimates, although
without an explicit dependence of one set of norms on the other.

Our exposition is organized in three sections. In Section 2 we include some pre-
liminary definitions and results. The characterizations of & are presented in Section
3, while Section 4 is dedicated to the characterization of &,,.

The notation we use is standard. The symbols C*°, C§°, LP, etc., indicate the
usual spaces of functions defined on R™, with complex values. We denote |-| the
Euclidean norm on R", while ||-||,, indicates the norm in the space LP. When we do
not work on the general Euclidean space R", we will write L? (R), etc., as appropriate.
Partial derivatives will be denoted 9%, where « is a multi-index (ayq, ..., a,). If it is
necessary to indicate on which variables we are taking the derivative, we will do so
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by attaching sub-indexes. We will use the standard abbreviations |a| = a1 + ... + ay,
x® =zt 2. With a < 8 we mean that o; < 3 for every j. The Fourier transform
of a function g will be denoted F (g) or g and it will be defined as [, e~>"*¢ g (z) dz.
The inverse Fourier transform is then 7! (g) =[5, €™ g (¢) d¢. The letter C will
indicate a positive constant, that may be different at different occurrences. If it is
important to indicate that a constant depends on certain parameters, we will do so
by attaching sub-indexes to the constant. We will not indicate the dependence of
constants on the dimension n or other fixed parameters.

2 Preliminary definitions and results

In this section we will collect a few definitions and results that we will use later. We
start with the definition of the space & of Schwartz ([17], [18]).

Definition 2.1 ([17], [18])
6= {ga R" - C:¢is C* and ||xa8BgaHLoo < oo for all a,ﬁ} (1)

We can give to & an structure of Fréchet space by means of the countable family

of norms
o0

S={pk,m(<p)= sup |w°‘35<p||m} : (2)

|a|<k,|B]<m om0

Remark 2.2 By a Fréchet space we mean a Hausdorff locally convex topological vec-
tor space that is metrizable and complete.

Lemma 2.3 Given a C*° function ¢ : R" — C, the following statements are equiva-
lent.

1. ||:va8'@g0||Loc < oo, for all a,B.

2. Haﬂ (xaap)HLW < 00, for all a, .

3. ‘(1 1) 0

< o0, for all k, 3.
LOO

The proof of this lemma, based on multi-variable versions of the Leibniz’s rule and
the binomial theorem, is quite straightforward and we will omit it.

Remark 2.4 As a consequence of Lemma 2.3, the topology of the space & can be
described by other families of norms. Namely,

oo

S = {ﬁk,m (p)= sup 0" ($“¢)|Lm} , (3)

lal <k, |8|<m kom0
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_ k
— im0 = s [ (1412 0%
|B]<m

} : (4)
Lee k,m=0

The equivalence of the norms defined by (2), (3) and (4) can be given in terms of
explicit linear estimates.

k
Corollary 2.5 Given ¢ € &, the function (1 + |x|2> 0Py is integrable for every
k=0,1,2,... and every multi-index 3. Moreover, the Fourier transform @ is a C*
function.

Proof. The proof of this corollary uses basic results on differentiation under the
integral sign and it will be omitted. |

Before we define the space &,, we need to introduce the space M, of admissible
functions w. The original definition of M_. is stated in [2] p. 363. However, it will be
necessary for us to consider functions w (z) that are radially non-decreasing. That is
to say, w(z) < w(y) when |z| < |y|. For this reason, we will use the slightly more
restrictive definition stated in [16] p. 14.

Definition 2.6 ([16]) With M. we indicate the space of functions w : R" — R of
the form w (x) = Q (|z|), where

1. ©:[0,00) — [0,00) is increasing, continuous and concave,

2. Q(0) =0,

Q)
3. f]R mdt < o0,

4. Q(t) > a+blog (1 +t) for some a € R and some b > 0.

Definition 2.7 ([2]) Given w € M,, we denote by &,, the space of functions ¢ :
R"™ — C such that ¢ € C* and

Q,m () = sup Hekw(?ﬂ@HLoo < o0, (5)
[BI<m
Qim0 F () = sup [[e"0°@], . < oo, (6)
[BI<m

for all k,m =0,1,2,....

We observe that (5) implies that ¢ € L' and $ € C*. So, the formulation of
(6) makes sense. The space &,, is a Fréchet space with the topology defined by the
family of norms {qk m, qr,m © F }iom:(r The two most important examples of functions

w in M, are w(z) = log (14 |z|) and w(z) = |z|* for 0 < d < 1. The conditions
imposed on the function w assure that the space G,, satisfies the properties expected
from a space of testing functions. For instance, there is a suitable version of the
space C§° that contains partitions of unity and it is dense in &,,, the operators of
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differentiation and multiplication by z“ are continuous from &,, into itself, the space
G, is a topological algebra under pointwise multiplication and convolution. We refer
to [2], and [16] p.16 for discussions on the significance of each of the conditions 1.
through 3. in Definition 2.7.

Remark 2.8 When w (x) = log (1 + |z]), the conditions qim (¢) < 00, qkmoF () <
oo reduce to

sup H(l + |x|)k a%H _ < oo,
18I<m L

sup H(l—+—|£|)]C 0[’2@“ < 00.
|8]<m Lee

It is known from the theory of tempered distributions ([17],[18]), that these two sets of
conditions are redundant, due to the very special role that the function (1+ |z|) plays
with respect to the Fourier transform and its inverse. The characterizations of & and
Sy proved in [3] and [4] avoid this problem, by formulating conditions that turn out
to be the same for both spaces.

For future reference, we end Section 1 with a version due to Jacques Hadamard
([9]) of Landau’s inequality ([14]), as it appears in [5].

Lemma 2.9 ([14], [5]) Let f : R = R be a continuous function with continuous
derivatives of order < 2. We assume that there exist P,Q > 0 so that

[f (@) < P,
If" (@) <@,

for all x € R. Then
[f' (@)l < V2PQ

for all x € R.

Proof. Given h € R, h > 0, we can write

Fa+h) =1 @)+ @ h+ )
Floh)=F@) - f@h+ ()

where y and z are between = and x + h, and = — h and z, respectively. Thus,

Fleth) = fla—h) =27 @) h+ (" ()~ 1" () o
r@l< et @
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for every x € R, h > 0. If we assume momentarily that P, > 0, we can see that the

right side of (7), as a function of h, has a global minimum at h = %. Thus,

[f" (=) < V2PQ, (8)

which is also true when P or @ are zero.
This completes the proof of Lemma 2.9. [ |

Remark 2.10 Although it will not be of importance to us, Hadamard showed that
V/2 is the best possible constant in (8). The original Landau’s inequality ([14]) was
proved by Edmund Landau ([14]) for functions defined on (0,00) with best constant
equal to 2. If we use in (8) the inequality /PQ < %, we obtain a linear estimate

of the form
7@l <2 P+q).

This estimate can be deduced from (7) by choosing h = /2. Of course any other
positive value of h will also result in a linear estimate.

3 Two characterizations of the Schwartz space &

In this section we will state and prove two characterizations of the space &, following
the methods used in [3], [4]. We now state the first characterization.

Theorem 3.1 ([3], [4]) The space & defined by (1) can be described as a set as well
as topologically by

S={¢:R"=>C:¢is C* and ||z°¢| - < o0,

86<,0||L0c < oo for all a, B} (9)

We will present two proofs of this characterization, as given in [3] and [4]. These
proofs are quite different, as shown by the type of estimates obtained from each of
them. We will only make minor adjustments to the original proofs, with the purpose
of showing that there is a topological equality as well as a set-theoretic equality, and
to establish topological equivalences by means of linear estimates, whenever possible.
We start by presenting the proof of Theorem 3.1 as given in [4].

Proof. For now, let us denote 2 the family of functions introduced in (9). We can
give to 2 a structure of Fréchet space by means of the countable family of norms

o0

A= {Pk,o (¢) = sup [|£%¢ll L s P0,m (¢) = sup |8%I|Lm}

Jal<k |B1<m P

In order to prove the theorem, we need to show that G =2 as sets, and that the
identity map is an isomorphism of Fréchet spaces between (&, .S) and (2, A).

Since A C S, we can immediately deduce that & C 2 and that the identity map

is continuous from (&, .S) into (A, A). To prove the other inclusion, we fix a function
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¢ € A. We will show by induction that ||x0‘85<pHLw < oo for every a, 3. This

assertion is clearly true for every o and for f = 0. We assume that it is true for

every a and for |3| < m. We now prove that it is true for every «, for |3 = m + 1.

We fix a multi-index 8 with |3| = m + 1. To simplify the notation, let us assume

that 8 = (B1+ 1,82, ..-,8n), with 1 + Ba+ ... + B = m, m = 0,1,2,.... Let us

indicate ' = (B, B2, v, Bn), 50 P = 0,,0% ¢. We write fur (z1) = 0% ¢ (21,2),
with 2’ = (za, ..., x,) fixed. So, P = f. (21).
As in the proof of Lemma 2.9 we can write

h2

for (@14 h) = fur (1) + for (x1) b+ f20 (41) >

where h # 0, and y; is a number between z; and x1 + h. We have

|far (@1 + h)| + | far (1)

A

Now given N =0, 1,2, ..., there exists C' = Cny > 0 such that

|[for (@1)] <

h
A

N N ,
(111 + ")) Ufor (@14 )] = (14 @1+ bya)P) |07 (o1 + o)
< Cn panym (9) 5

and

2\ ¥ AR PNY

(1+1al*) " 1or @)l = (1+12) " |07 0 (@)] < Cw ponm ().
Moreover,
| far ()| < Pomt2 () -
Selecting h with the same sign as x1, we can write
|21+ h,2)* = |af* + 2] B+ 1* > o]

Thus, we have

1 N |h
|8I8§0 (.’L‘)‘ S WCN P2N,m (90) (1 + |ZL‘|2> + %po,m—iﬂ (‘P) . (10)

Minimizing the right side of (10) as a function of |h| we have

—N/2
%% (@) < Ony/pawan () poma () (1+ 12

For |a| < k, k = 1,2, ...we obtain

—N+k

290%¢ (z)| < Cnk \/p2N,m () Po,m2 (©) (1 + |l"|2>

If we choose N = k, we finally can write

Prmt1 () < Cy \/P2k,m (¢) po,m+2 (), (11)
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for k,m = 1,2, .... This estimate suffices to conclude by induction that % C & as sets.
To show that these two spaces are topologically equal, we observe that the recursive
inequality (11) yields the following closed form.

9—m—1

m i1
Pk,m+1 (p) < Ch [p2m+1k,0 (90)] H [Po,m+2—j (90)]2 )
j=0

which we can simplify if we observe that the norms pg ,,+2—; are decreasing functions
of j. So, we can write

2~m—1

Pk,m+1 (90) < Cy [pzm+11c,0 (50)} [Po,m+2 (80)]1_2ﬁm—1 . (12)

This estimate is enough to conclude that the identity is continuous from (2, A) onto
(6,S5) , thus completing the proof of Theorem 3.1. |

Remark 3.2 We observe that the right side of (12) is a non-linear function of the
norms in A. A quick way to get around the non-linearity of (12) is to use the Open
Mapping Theorem. In fact, we know now that (S,S) and (&, A) are both Fréchet
spaces for which the identity map from (&,S) onto (&, A) is continuous. Thus, the
Open Mapping Theorem for Fréchet spaces (see for instance [15] p. 48), implies that
the identity is an open map as well. The drawback of this approach is that it does not
have an explicit quantitative formulation. Another way to obtain an explicit linear
estimate is to proceed as in Remark 2.10. From (11), we can write

Pr,m+1 (©) < Cr (D2,m (@) + Po,m+2 (¢)) -

Solving this linear recursive inequality we have

Prm+1 (9) < Ck | pamtigo (9) + Zpo,erQ*j ()
j=0

If we observe that the norms pg ., are non-decreasing functions of the parameter m,
we finally have the linear estimate

Prm+1 (@) < Cr (pam+1k,0 (©) + (M + 1) poma2 () -

We now present the second proof of Theorem 3.1 as given in [3]. It is also a
very interesting proof, although it is a bit longer and less straightforward. A minor
modification will allow us to obtain again a non-linear recursive inequality between
appropriate norms.

Proof. We will keep the same notation used in the first proof. It is enough to show
that A C & and that the identity map from (2, A) into (&, S) is continuous. The
proof will be accomplished in three steps, using induction. We fix a function ¢ € 2
and m = 1,2, ..... The assertion ||z%97¢||, ., < oo is clearly true, regardless of the
dimension n of R™, for every «, and for 5 = 0. We assume that it is true, regardless
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of the dimension n of R", for every a and for 0 < |3| < m. We now prove that it is
true, regardless of the dimension n of R™, for every a and for 0 < || < m+ 1. Given
k=1,2,... we fix multi-indexes a and 8 with 0 < |a| < k, 0 < |8 < m+ 1. The first
step in the proof is to obtain an L2-estimate for z®9%¢.

Since |8| > 0, we can write d°¢p(z) = 8;0° ¢ (z), with |3'| < m and
' = (x1,...2j-1,Tj41, ..., Ty) for some 1 < j < n. So,

o0y, = [ a0% (0) ¢ (a)da

M B = ———
- ,/Rn—l A/}l—r{loo M 'TQQ@BQO (:I?) 8'880 (x)d.’L'jd:c’

_ / lim [22°0%¢ (2) 9% ¢ ()| My~
R

n—1 M — 00

By the inductive hypothesis, the function 22*9% ¢ (x) goes to zero as |z;| — oo,
uniformly on z’. Moreover, since ¢ € 2, 9%y is bounded in R™. Thus,

lim xzaa% () 0% ¢ (w)IA-JM =0

M—o0

uniformly on z’. So,
Hx“&%”iz = —/ 9; (2229 () 0P ¢ (z)dz.
Rn
We use repeated integration by parts to obtain

||:U‘X8'Bgo||iz = (_1)\ﬂ\/ 9 (a:2a8’8g0(:r)) de. (13)

n

Using Leibniz’s rule, we can write (13) as

= Z Ca)ﬁﬁ/ 2229 (z) o (x)da
0<y<B R

n+1

< CrmpPo,2(| (#) Pok4nt10 (@/ (1 1af) 7

n

Finally, we obtain

1 1
|2¥07¢]| . < Crp [Po21s) (©)]* [P2ktnr1.0 (9)]2 - (14)

This completes the first step in the proof. The second step consists of proving an
L'-estimate for the same function 2*9°¢. For N € N to be chosen later, we write

N
2

=07 ¢|| ., :/ (1 + |x|2)% |z*0P ¢ ()| (1 + |a7|2>_ dz.

R
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Using Cauchy-Schwartz’s inequality we can estimate this integral as
N 3 N 3
< </ (1 + |:1:|2) |x0‘85<p (95)|2 da:) </ (1 + |m|2) dx)
R™ Rn
For N = [%] + 1 we write
1
2\V | a B 2 : at+y 5p
(1+12P) 20 @) dz) < 30 (o207,
! 0<|y|I<N
Thus, according to (14) we have
1 1
[220P¢|| 1 < Cr.p [Po215) (9)] 2 [P2rrants0 (9)]7 (15)

which completes the second step. The third and last step is to estimate ||aca8ﬁgoHLm.
Since |a| > 0, the multi-index o must have at least one component that is positive.
We fix one such component, say «;, for some 1 < i < n. Then we write

(@°9%¢ (2))” = /0 "o, [y2a (9 w(y))z} dy;,

where y = (L1, -+ Tiz1, Yiy Tit1yery Tn)e SO,

‘ (z*0%¢ ‘ = i {yza (85<P(y))2} dy;
[ b oo
§2ai/_oo y2 (0% )|y
+2/_Z ‘yza (0%¢ () (aﬁ‘*eisﬂ(y))‘dyi, (16)
where e = (0,...,0,%,0,...,0). If we indicate ' = (@1,...,Tim1,Lig1, ey Tn),

o = (Q1y ey A1, A1y ey ) and B = (B, ey Biz1, Bit1s -, Bn), We can estimate
(16) as

< 20, ()"

g (o)

o (7

LGl N

o (aﬂlw) HLoo(R) ‘

L'(®)

o)

LY(R)
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If 0 < 8; <m+ 1, using (15) in the ith variable, we obtain

2
‘(xaa%(x)) ‘ < Ca, 5 P0,mt2 (9) § sup
0<v<28;
yi ER

o (07¢) )

4o
x < (') sup
0<w<4a;+5
y; ER

v (07) (w)

So, when 3; > 0 we have

1 1
(0% (2))| < Cr.m [Po.m+2 (©)]2 [Po2m+1) (9) Pak+s.m (9)] T - (17)
If 8; = 0, then we can write
R I
(9% @)°] < 20 (@) P e 19 4.
e o) 0
+2() g (8 90) L= (R) vi 0% L1(R)
n2a’ w 3’
S Cuip0,7n+2 (QO) (.Z' ) sup yz (a 90) (yz)
0<w<2a;+1
yi ER
So, when 3; = 0 we have
1 1
|(z29°¢ ()] < Ck [po,m+2 ()12 [Part1,m (9)]2 . (18)
As a consequence we can write
1 1
Pk,m+1 (90) S Ck,m [p0,7n+2 (‘P)] 2 {[p2k+1,7n (QP)} 2
1
+ [p0,2(m+1) () Pak+5,m (80)] ‘1 (19)

According to the inductive hypothesis, this estimate implies that |(ma85<p (:c)) | < 00,
thus showing that 2 C & as sets. Since the other inclusion is obvious, we can invoke
again the Open Mapping Theorem to conclude that the identity map from (&, A)
onto (&,5) is continuous. In principle we could try to write (19) in a closed form,
providing an explicit estimate that shows that the identity map from (2, A) into
(6,5) is continuous. But it would be a fairly complicated formula, so we will not do

it.
This completes the second proof of Theorem 3.1. |

Remark 3.3 We do not know if there is a modification of this proof that will give
explicit linear estimates. We see that the first proof we presented is shorter and does
provide explicit linear estimates. In this sense we would say that it is a better proof.
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We now present the second characterization of the space &.

Theorem 3.4 ([3]) The space & defined by (1) can be described as a set as well as
topologically by

S — { @ :R™ —» C: ¢ is continuous and for }

all k=0,1,2,..., pro (@) < o00,pro0oF (p) <0 (20)

Proof. For now, we denote B the space defined in (20). We observe that the
condition py o (¢) < oo for all k = 0,1,2,... implies that ¢ € L', so the formulation
of the condition py o o F (¢) < co makes sense for all £ =0,1,2,... and implies that
@ € L' also. Furthermore, ¢ and @ are C*° functions. We can give to B a structure
of Fréchet space by means of the countable family of norms

B = { pro(¢) < 00,pr0 0-7:(40)}2020-

Using Lemma 2.3, Corollary 2.5,_and Theorem 3.1, we will prove that & =B and
that the identity map from (6,§> to (B, B) is an isomorphism of Fréchet spaces,
with S defined by (4).

Given ¢ € G, if we fix £ = 0,1,2,... and a multi-index o with |a] < k, we can
write

otars (veef) " (1)

< Ck1:7k+n,0 (SO) :

¢ @)] < Ciino () (14 |2°)

In particular, these inequalities show that the function ¢ is indeed integrable. More-
over,

€23 (©)] = |(=2m)! (8°9)" ()|

(141287 1) o],
< CiPy i, () -

Conversely, if we fix ¢ € B, we observe that £ is integrable for every multi-index
B. Then, we can write

< Cq

0 (@)= [ et amit)” 5(¢) .
Thus, the function 9°¢ (z) is continuous and bounded. Moreover,

‘8690 (sc)| < ConPmsnt1,00 F (9).

for every multi-index 3 with || < m. So, according to Lemma 2.3 and Theorem 3.1,
¢ € G and the identity map from (98, B) to (6,?) is continuous.
This completes the proof of Theorem 3.4. [ |
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Remark 3.5 This short proof of Theorem 3.4 relies on Theorem 3.1. It is worth
noticing that in the first proof of Theorem 3.1 we could obtain explicit linear estimates.
Moreover, we are actually using in & two equivalent sets of norms, S and A, for which
the equivalence can be formulated in terms of explicit linear estimates.

Remark 3.6 The characterization of the space & given by Theorem 8.4 impose sep-
arate conditions on the function and on its Fourier transform. This characteriza-
tion could be interpreted as treating time and frequency independently. Karlheinz
Grdchenig and Georg Zimmermann have obtained in [7] and [8] joint time-frequency
characterizations of & and &,, using the short-time Fourier transform.

4 A characterization of the space G,

We consider in this section the spaces M. and &,,, as defined in Section 2, and we
present the following characterization of &,,.

Theorem 4.1 ([4]) Given w € M., the space &,, can be described as a set as well
as topologically by

S, = { ¢ :R" = C: ¢ is continuous and for all } (21)

k= 07 ]-527 w5 4k0 (90) < OOva,O 0-7:(<10) < o0

Proof. Let us indicate B,, the space defined in (21). The condition g o (¢) < oo for
each k = 0,1,2,... implies that ¢ € L', so the formulation of the second condition
qr0 © F (¢) < oo makes sense for all £ = 0,1,2,.... Moreover, (21) implies that ¢
and @ are C™ functions. The space 9B, becomes a Fréchet space with respect to the
family of norms

Bu = {qr,0,qr,0 © F} ey -

From the definitions, it is clear that &,, C 9B,, and that the inclusion is continuous.
We will prove the converse by using induction on m and the general idea of Landau’s
inequality as given in Lemma 2.9.

We fix ¢ € B, not identically zero. We want to show that ||e**®8%¢| _ and
|‘e]“"(5)(’95@||mo are finite, for every £k = 0,1,2, ... and every multi-index 3. It is true
for all k£, when 3 = 0. We assume that it is true for all k, when |3| < m, and we want
to prove it for all k£ and for |3| = m + 1.

We start with ||ek“’(m)6ﬁcp||Lw. As in the first proof of Theorem 3.1, we as-
sume for simplicity that § = (51 + 1,82, ..., Bn) with S1 + B2 + ... + B, = m, m =
0,1,2,...We also indicate 8’ = (B1, B2, ..., Bn), 00 = 85,0 ¢, for (x1) = 8" ¢ (21, ")
for ' = (w2, ...,x,) fixed, 3%p () = f!, (x1). Moreover, if h # 0, we have

o (1) = for (21) + Fir (ea) B 2 () B,

where y is some number between z; and x1 + h. Thus,

For () h= fur (214 ) = for (e2) = 32 () 2,
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or,

|[for (x1 4+ )| + | far (21)]
|h|

17 @)l < g .

We can write
FET) o 4 1) < g ().
‘6'“”(0”)12/ (m)‘ < qm () -
If we pick h with the same sign as x1, we have
|1+ hy)* = ol + 2| Bl + 12 > |
Moreover, the assumptions on w imply that w (z) < w (x1 + h,z’). So,
| for (@1 + D) + | far (20)] < Conttiim () €™,

We need to estimate f”, (y) = 9.,0°¢ (y). For r = 0,1,2, ... to be fixed later, we have

J.

Using Definition 2.6, we can write

o€, (2mi€)? @(g)‘ dé < Cpm /R (14 [¢))" 2 e @@ |5 () de. (22)

e_rw(g) < e—r(a+blog(1+|§|)) EX (]. + |£|)—br .

Thus, we can estimate the integral on the right side of (22) as

< Chmaro o F (9) / (14 €)™ de,

n

which is finite when m + 2 — br < —n. Thus, we have
102,07 ()| < Congmpsay 90 F ()

SO
= m k’,7n [ n ] 1,0

for every ¢t > 0. As a function of ¢, the right side of (23) has a global minimum at

1
2

= (10 (90e) (smspeages 007 ()

Thus, we obtain the inequality

Nl

|a’890 ($)| < Crm (q,m (9)) (q[m+:+2]+170 o f(@)) 2 e—%w(ac)7
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or

2

‘ekww)aﬁ@(m)‘ < Con (g21m (9))? (Q[%]H,o OF(@) ' @9

The way to estimate e**(©) 983 (¢) is similar to what we have just done, so we write
the final estimate without going into details.

N

1

‘ekw(oa%(g)‘ < O (Gam © F (9))* (q[%]ﬂ,o (90)) . (25)

Using (24) and (25), the inductive hypothesis implies that ¢ € &,,. The Open
Mapping Theorem can provide once again the continuity of the inclusion. However,
solving the recursive inequalities (24) and (25), we can obtain an explicit proof, al-
though non-linear in nature. Indeed, reiterating the two recursive inequalities m times
and recalling that the norms gy, and gj., o F are increasing functions of k£ and m
separately, we finally have

g-m—1 1—2-m-1
[E @07 (@)] < Co (@rmrin0 ()" (qpusgn) 100 F () :
w R g-m=—1 1—2-m~1
[ @095 (€)] < O (2100 F ()T (g (9)
This completes the proof of Theorem 4.1. |

Remark 4.2 Estimating in (24) and (25) the geometric mean with the arithmetic
mean, we obtain the linear recursive inequalities

qkym+1 (p) < Oy <q2k,m () + qpmansz]yg g © f(@)) )
qrmt1°0F (p) < Cn <q2k,m oF () + q[miptz] 1 (‘P)) :

If we write these recursive inequalities in closed form we have the linear estimates

q km+1 (80) <Cp gom+1p 0 (‘P) + Z Q[M]H,O o -7:(@) ;
Jj=0
qkm+1 0 F (9) < Cp | gemtrg o0 F (p) + ZQ[LI—C)M]+1’Q (©) |
j=0

or,

qkmt1 () < Cp (QQm+1k,0 () +(m+1) q[mtnt2]yq 0 © ]:(90)) ,
qkmt10F (p) < Cm <Q2m+1k,0 oF(p)+(m+1) q[mipt2]in 0 (‘P)) .

When w (z) = log(1+ |z|), the characterization of &,, given by Theorem 4.1
reduces to the second characterization of S given by Theorem 3.4. So it is obvious
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that &,, becomes & for this choice of w. For a proof of this fact using Definitions 2.1
and 2.7, see [2] p. 375.

If we try to adapt the second proof of Theorem 3.1 to the space G, it becomes
clear very quickly that we need to impose too strong smoothness and size conditions
on the weight function w.

Received: O0October 2003. Revised: December 2003.
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