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ABSTRACT 
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l. Bel ti~~. H.D. Cornean 

1 Introduction and the Result 

It is by now a matter of common sense that t he essential spectrum of a Schródinger 
operator H is not influenced by localized perturbations, i.e. it is described by the 
potent ial's behavior at infinity. Thcre are lots of geometrical descriptions of this 
phenomenon; probably t he most popular one is the so called Persson formula (see 
[PJ for the original article) . As it is well known , this result expresses the bottom of 
the essent ial spectrum of H in tcrms of its mean energy on states which are farther 
and farther away from the origi n. L. Gii.rding used Persson 's result in [G) and gave 
a non-combinatoria! proof far the "HVZ-theorem" (which describes the bottom of 
the essential spectrum for many body SchrOdinger operators) . More recently, C. 
Grillo (see [Gr]) generalized Persson's work to nonnegative, selfadjoint operators l 
defined on Hilber t spaces of type L 2 (X , m), where X is a locally compact, Hausdorff, 
separable space and m is positive Radon measure on it of full support. Finalty, Jet 
us mention that ni ce textbook presentations of Persson 's formu la may be found in 
[C-F-K-SJ and [H-SJ. 

Let us stress from the beginning that for simplicity we only <leal with operators 
of the form "-6. + W ", where W is a multiplication operator. Similar resu lts can 
be derived for more general second order elliptic differential operators (far example 
magnetic SchrOdinger operators where W would be a first arder <lifferential operator), 
but we do not want to discuss this here. 

To be more precise, let us fix sorne notation. First , we start with t he potential, 
which is assumed to abey the following two conditions: 

(A) W : Cg:>(IR") i-t L2 (1R"), n 2': 1, is a symmetric multiplication operator that 
admits a continuous ex tension from H 1(llln) (the Sobolev space of square in­
tegrable functions whose distributional derivatives are also in L2) to H - 1(IRn) 
(the dual of H 1 ); 

(B) W is -ó. form bounded with bound less than l. 

The object of our study will be t he Hamil tonian H = - ó. + W defined as a form 
sum on H 1 (IRn) , n ;:: l. Denote with A:(IR.n) the set of ali compact subsets of IR". lf 
K E A: (lll"), then HK• denotes the Fricderichs extens ion of the symmetric operator 
- ó. + W defi ned on Cg=> (l<c). In the particular case where K is a closed hall of 
radius R > O centere<l a.t t he origin , the corresponding operator is denote<l by HR , 
a.nd g e with On . We shall natu rally consider L2(J<c) embedded in L2 (JR" ). Also, 
the HJ( I<c) functions extended by O outside /(e, are H 1(IR.n) functions. Thus, the 
resolvents (HK · - z)- 1 a.re bounded operators in L2(JRn). 

The las t notation we need hcre is FK := {ip E C8°(l<c), lllPIJL~(Dln) = l}. Then 
the Persson formula reads as: 

;nf u.., (H ) = sup ;nf (<¡>, (-ó + W)<¡>). 
K ipE:FK 

(1. 1) 

ln arder to formulate our result , we need two additional conditions on W : 
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(C) W = V0 + \f and there exists r0 > O such that supp(V0 ) ~ {x l lx! < r0 } ; 

(D) The operator V is - L\. operator bounded with a bound less than one. 

R em ark 
lf the potential V0 in (C) is zero, then one can replace the last three conditions 

with just one: 

(O') \V is - ñ operator bounded with a bound less than ene. 

We now can give the main result of our paper: 

Theore m 1.1 Assume that W satisfi es the conditions (A)-(D). Tlicn the essential 
spectrom o/ H admits tlie following represcntation: 

u.,,(H ) = íl u(ifK•). ( 1.2) 
K E.({IRn ) 

Mon~ouer, 

inf ueu(H) = lim infu(H R) 
R~oo 

(13) 

Re m ark 
We shall prove in Coroll ary 2.2 t.hat the Persson formula follows easily frorn the 

above theorem. Of course, as we have already mentioned , Persson's fo rm ula is valid 
under much weaker assumpt ion!:I on W (see a proof in !C-F-K-S] only requiring (A) 
and (B)), thus it would be interes Ling to obtai n (1.2) without conditions (C) and (D). 

2 The Proofs 

Let us briefly describe the strategy of our proof. As H and H K < only differ on a finite 
rcgion , one expects that their essential spectra to be equal, no matter of the choice 
we ma.ke for K. E ven though ha ve such results been known far a. long time in the 
literatu re, we decided to give a proof in Proposition 2. 1 for completeness. We mention 
here a result oí M. Birman {see [B]) who preved that under certai n conditions, not 
only are the essential spectra equal, but also H and H K~ have unitarily equivalent 
absolutely continuous parts. 

Now, as 

a(HK~ ) = Uesa( H 1< 0 ) UUdisc(HK~) = Um( H ) U C1diad HK•), 

it follows that lhe r.h.s. of (1.2) can be written as 

u,.,( H) U ( íl •• ,.,(HK·)) 
K EK:(Dl_n ) 

Clearly, if one shows that there are no common discrete eigenvalues for ali H i«, thcn 
we are done. ln fact, it is sufficient to prove that the sma11er farn ily {Hn}, R > ro 
ca.nnot have any common discrete eigenvalues, and this is what we do in the second 
part of this section . 
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2.1 Invariance of t he Essential Spectrum 

In this subsection, only (A) and (B) are needed for W. With these a.ssumptions, the 
main result here is contained in the following proposition: 

Proposition 2.1 For each compact set K in !Rn we have: 
a.,.(H) = a,.,(HK• ). 

Proof. We shall need the following lemma.s. 

Lemma 2.2 (a) /fu E Dom(HKc) and supp(u) does not intersect the bov.ndary o/ 
K c, then u be/ongs to the domain o/ HKf for each compact K 1 ~ K {here K 1 

may be the empty set, in which case H Kf = H ); moreover, HKíU = Hxcu . 

(b) Let u E Dom(H) sv.ch that supp(u) C K c. Then u E Dorn(Hx<) and Hu = 
H x cu . 

Proof. We shall use the next characterization for the domains Dom(H) and 
Dom(HK·)' 

(i) u E Dom(H ) if and only if u E H 1(1R" ) and (-Ll + W )u E L2 (JR"); 

(ii) v E Dorn(Hw ) if and only if v E HJ(Kc) and (-L.\+ W )vl x < E L2(Kc) . 

Now the statement (b) becomes obvious. For (a) , !et x E c co(Illn), x(x) = 1 on 

supp(u) and supp(x) e K c. Then xu =u and, as distributions, 

(-Ll + W)(xu) = x(-Llu + Wu) E L2 (R"). 

Thus u E Dom(Hxí)) • 
Proposition 2.1 now follows if we prove the next lemma, which is a straightforward 

adaptation of Theorern 3.11 in [C-F-K-S]. 

Lemma 2.2 (a) ). E u eu(H) i/ and only if there exists a sequence {'Pn} in Dom(H) 

such that supp('l'n) ~ B(O, n) , il'l'nll = 1, 'l'n~O, ll(H - >.) 'l'nll --+O; 

(b) Let K be a compact in IR n. Then, ). E u eu ( H x c) i/ and only i/ there exists a se­

quen ce {'Pn } in Dom(Hxc) sv.ch that supp('Pn) ~ B(O, nRx ) {where K ~ 8(0, RK )}, 
and ll'l'nll = 1, <¡>,.-"ÍO, ll(HK< - >.) 'l'n ll--+ O. 

Proof. We shall prove (b) (the proof of (a) is similar). The implication "{::::" is 
nothing but an improved Weyl criterion, thcrefore we are on ly left with the direct 
implication. 

Now suppose that A E <less (Hx<). The Weyl criterion a.ss ures the existence of a 
sequence {.P, } in Dom( HK• ) such that 11.P;ll = l , tP;-"ÍO and ll(H K< - >.) .P;ll--+ O. 
Note at first that, for 4'! E Ccf( Ill") , the operator <f? (Hx• +i) - 1 is compact in L2 (1R11 ). 

Let X E C00 (IR.n), x(x) = O for lxl :::; RK , x(x) = 1 fa r lx l;?: RK + 1, O :::; X:::; l , ami 
denote Xn(x) = x(x / n ). We have 

llx,, .P;ll 2: 1 -11( 1 -x,, ).P;ll. 
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On the other hand , 

11( 1 -x").P;ll = ll( l - x")( f/K, +W ' (flK· + i).P;ll 
S ll(ff K , - >.).P; ll + i>. + il 11(1 - x" )(fl K ' + W ' .P;ll· 

The first term in the right hand side converges to O, by the h)•potheses on 1/lj. The 
second term converges to O if n fixed, since (1 - x,.)( H K• + i>- 1 is compact and the 
scquence "1; goes weakly to O. T hcrefore , for each n t here exists j(n) (which can be 
chosen to be grcater t han n) such that 

11( 1 - x .. ).P;¡n¡ll s l / n 

One now can take r.p,. = Xn 1Í1j( ri i/ llx,.1Jij( nJll. and it is clear that ll'Pnll = l and r.p ,, ~ 0. 
On the other hand , computi ng in distributions on K c, 

(-A+ W + >.)(x .. .P;¡"¡) = x .. ( - ó + W - >.).p,1,.1 - 2f;,(1/ n){i.x(-/n)8,,µ,,,.1-
- (1/ n2)(Ax)(-/n).P;1 "1· 

(2. 1) 
Since 1/11¡,.¡ E Dom(H K • ), t he right hand side belongs to L2 (K c). This fact , togcther 
with r.p ,. E HJ (J( .. ), ensure cp., E Oom(H K·) (see {ii) in the proof of t.hc Lcrnma 2.1). 
The first and the third term in thc right hand sidc of (2.l ) are norm convergcnt to O. 
T he norm of the second oue can be bounded from above by 

where C 1 , C2 and C are constants and we used the continuous inclusion of t.he domain 
Dom(HK· ) imo HJ (K c). Hencc 1 t his term a1so converges to O in L2. 

The equality (2. l ) yields ll(IJK, - >.)'P"ll-+ O, since llx" .P'¡"¡ll-+ l. Tinos {'Pn) 
satisfies ali the needed conditions. • 

2.2 Discre te Eigenvalues Cannot be Constant 

\Ve start proving that H 11 cannot have constant discrete eigenvalues, using a proof by 
contradiction. Na.mely, assume that Á is a discrete cigenvaJue of H R- 6, -oo < ó $ ó0 

(whcre Óo > O is sufficicntly small ) and denote b)' Pn thc finite dimensional projector 
(dim (Pn) = N) of Hu corrcsponding to [A - f, A+ fj, where t > O is small enough 
such that the interval cont.aius only one eigenvalue, that is A. Then we shall provc 
that A either belongs to t he rcsolvent set or to the essential spectrum of H n. t hus 
yielding a contradiction. 

In order to motiva te t he render far the technica1 parts which will fo llow , let us 
give a short and less rigorous overview of our strategy. First, wc shall preve t hat 
lim"'-º H R- d = H R in thc norm resolvent sense in B(L2(IR.11 )). This implies t hat far 
ó > O sufficiemly small, t hc spectrum of H n - 6 in !A - l , Á + lJ is purely cliscrete and 
n - liln,1,0 Pn-.i = Pn. Moreover, t hcrc are exactly N discrete eigenva1 ues of H¡¡ _6 

in this intervaJ and by assumption, A is always one of t hem. Denote by C,06 one of t hc 
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normalized eigenvectors of H R- li for which Hn-¡¡l(J6 = Ál(J¡¡. Then we shall prove t.hat. 
when ó ~O, the set {lfJ¡¡ } admit.s an adherent point. l(Jo E R.an(Pn), 11.Poll = 1, i.e. 
t.here exists a sequence { IP; } of such eigenvect.ors such that. ll lP; - <poi! --+ O. 

Then for any j: 

Using the Green formula and the fact that W is a multiplication operator , one obtains 

¡ ª"'º 0 = <p¡-8 ds, 
lxl=R 11 

(2.3) 

(here 11 is the outer unit normal vector at 8íln , v(x) = - x / R). 
Since IP;(x ) =O if lxl = R - ó(j), one expects that fo r lx l = R, ~ should be 

clase to -~(x); in fact , we shall show that 

(2.'1 ) 

Cleady, (2 .3) and (2.4) imply 

lim 1, ª"'i ª"'ºd··I = º. }-+oo } lxl=R 8 v 8v 
(2.5) 

As we know that !llP; - l(JollL~( IR") --+O, we shall use it in proving that 

lim 11 &<po - &<p; 11 = O . 
j-+oo av Ov P(80R) 

(2.6) 

\Ve now conclude that ~ restricted to 8fln equals zero; this impl ies (via the 
Green formula) that l(Jo E Dom(H) , H ipo = Aip0 and of course, supp(rp0) e íln. 
lf sorne unique continuation property holds, t hen rp0 :: O (which means Pn = O); 
otherwise, because R > r 0 can be chosen arbitrarily large, we can construct an infinite 
number of eigenvectors for H corresponding to >.. wi th their supports going to infini ty 
(which means >.E '1css{H) = CTcss(Hn)). 

Let us now give rigorous statements ancl proofs. 

2.2.1 2.2. 1. A Few Technical Estimates 

Lemma 2.3 Lct R1 > R2 > O be fixed. Then there erists C = C (R 1 , R2) su.ch tlrnt 

llull11'(0") ~ C(ll - t>null + llull}, (27) 

for ench R E [R1 , R2], and /01· ali u E Dom(-.ó.n ) = H2 (0n) n HJ (O n ). 
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Proof. Recall first. t.hat. the rcsult. holds for R = 1 (see IHJ, Lemma 10.5. 1). The 
lcmrna will be proved by thc fol lowing simple observat.ion. Consider t.he dilations 
Un : L'(!ln)-+ L'(!11), Unf(x) = R"i2!( R.x ). Then UR: H'(!ln ) -> H '(!11), 
k = O, 1, 2 is bounded ancl 'V (Unu) = RUR'Vu, 8j81r (URu) = R2Un(8/hu) for ali 
u E H 2 (0n). Moreover , Un(H2(01¡ ) n HJ(On)) = H 2 (0 l) n HJ(01 ) and - ó.1 Un = 
R2 Un(-ó.n). Thc lemma now follows from thc ca.se R = l. • 

Lc mma 2.4 Let R2 > R1 > r 0 be fixed (see assumption (C)J. Let 8 be a Ctf (lll" ) 
Jm1ctio11, supp(8) C Oro· Denote by XII the characteristic functio n o/ On . Thcn the1·e 
exist O ~ a < 1 rrnd Al > O sucl1 that unifon11/y in R E IR1, R2]: 

(2.8) 

Proof. Takc f E Ccf{IR11 ); then we have (see c.g. [H-HJ): 

IC-ó11 + kW 1 ! I (x) $ ((- ó + Af) - 11/ 1) (x), 

for any x E IRn. lf ip E Ccf(Dl'1) , t.hen 

1( \11(\'8)1', (- ón + M )- ' f)' '( m•1I $ (x 11 (1 V8l)l'l'l.(- ó + M ) - 11/l)l'<n< " I 
$ 111'1111118(-ó + AW 1 ll ll / ll. 

(2.9) 
Usi ng that litnM -oo ll \ .8( - ó. + M )- 11\eo(l, (Dl." )) < l (see assumpt.ion {D)) , (2.8) is 
obtai11cd aft.cr a density argumcnt . • 

Lc mma 2.5 With the same notation as in Lemma 2.4 , take ip E Dom(Hn). Then 

(a) 0'1' E H'(!l R) n HJ( !111 ) fm· al/R E [R1, R,[; 

(b) 110'1'11 11>¡0.1 $ C(llH 11 '1'll + ll'l'lll. Y R E [R1 , R2] . 

Proof. lf ..¡;E Dom( H 1?) , thcn ip E HJ(On). Let 81 be a fu nction O likc, but. 81 = 1 
on supp(8) . Computi ng in distri but ions on On , one has 

(-A + V91 )(0'1') = 0( - ó + W)'I'- 2v8 V'I'- (ó9)'1', (2. 10) 

hcnce the right hand sidc of the abovc equality bclongs to L2 (0n). Sincc r.pO E 
!íJ (On) , we get that r.¡;8 bclongs to t hc domain oí t.he self-adjoint. opcrat.or ru.;sociat.ed 
to the form (- ó. + V8i)\ 11J( fl,. )x llJ{ fln )· But by Lemma 2.4 (which says t.haL V01 
is - ó. n-bounded wit.h bouncl less t.han 1), this domain is the same as thc domain of 
- ó.n , namely HJ(fln ) n H 2 (0n ). The first. part. of t.he lemma thus follows. 

Let us now provc the second part . We denote by g the right. hand sidc of {2.10). 
T hcn , with .\/ as in Lcmma 2.4 (whcrc O must now be rcplaced with 01 ), we lunrc 
Or.p = (- ..). n + M + V8 1 )-1(9 + M8ip). By Lemma 2.3: 

11"811H' {O• ) $ Gii- ó n(-ón + M + V91)-1(g+ M0,,,)11 + c110,,,11 
$ C(llgl l +111'11) 

(2.1 l) 
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On the other hand , 

11911 ~ C (11(-A + W)'l'll + 11'1'11 + llY''l'llJ (2.1 2) 

But 
llY''l'll' = (-An<p,<p) ~ l(Hn<p,<p)I + l(W<p,<p)I 

~ (llHn'l'll + ll'l'lll' + b(-An<p, <p) + Cll'l'll'. 
where b < 1 and C do not depend on R. Hence 

(2.13) 

Summing up (2.11), (2.12) and (21.3), one gets (b). • 
2.2.2 Norm Convergence of the Resolvents 

Lemma 2.6 Let r 0 < R 1 < R2 (see (C)) and define R := (R 1 + R2 )/2. The11, /01 · 

O~ Ó ~ Óo , Óo < (R2 - R1)/2, one has R ± Ó E (R1 , R2) . Fia: íl constant M >O 
as that one obtained in Lemma 2.4, and such that Hn- 6 ~ -M + 1 /or O~ ó ::; ó0 . 

Then as operators in 13(L2 (1Rn)), 

n - lim(Hn-6 + M)-' = (Hn + M)-' 
6~o 

Proof. Befare anything, let us mention that assumption (B) and Lemma 2.4 a.ssure 
the ex.istence of M with all the required properties. 

The proof of this lemma will have two parts. In the first one we prove that 
(xn - l)(Hn_6 + M)- 1 -+O, while in the second one we show that 

(2. l•l) 

The firs t step is easy, since 

(xn - l )(Hn - • + M) - ' = (xn - Xn-6)(1- An)-'f'(l - An)' f '(Hn- 6 + M )- ', 

where lf{ l - ó.n )112(Hn- 6 + M) - 1 11 ~ C and (xn- XR- 6Hl - ó.n) - 1! 2 converges to 
O, in norm. 

Let us now prove t he second step. Define d{x) = lxl - 1 on n1 . We sha ll recall a 
few fac ls concerning the continuity 0f the multiplica tion operator d- $, s E (O , 1/2) in 
Sobolev spaces on n1• 

Let f! 1,2 = {x E fl1 / lxl < 2} . Then 

(2 .1 5) 

is boundcd , by Th. 11. 7, Ch. I [L-M]. The Remark 11.7, Ch. 1 [L- M] says t hat by 
interpolating HJ(flu) and L2 (!1 1,2 ) we geL the indusion 

[HJ(n ,,,),L'(n,,,))y ~ {u E L 2(Du) 1 d- (•+•l,, E L'(n,,,) ). (2. 16) 
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On the other hand, (by Theorems 11.6 and 11.5, [L- M]) , if s < 1/ 2 

H;"(íl, ,2) = [HJ(n,,,),L2(íl,,,)J ir 2 H2(íl,,,) n HJ (íl..,)' (2 .17) 

If u E H2(íl ,,, ) n HJ (ílu), then 

ll Di(d-• r,)111..2(0 1•2) ~ lld- •- 1 ull1..2 {n •. 2 ) + Clld- 'Diull1..2(0 1•2 ) 

,O CllullH'(n,,,¡ -

T he closed graph theorem, (2 .15) and (2. 18) Msure that t he operat.or 

is bouncled. 

(2. 18) 

Consider " E C,\"'( IR") , supp (") E B(O , 2) , and "(x ) = 1 on B (O, 3/2). If u E 
H 2 (íl i) n HJ(íl1 ), t hen 'I u E H 2(íl 1,2) n HJ (íl 1,2 ). Therefore 

IW'nll 11•¡n,¡ ,O IW ' (,¡u)i1 1P ¡n, ,,¡ + IW ' ( l - •¡)ullu •cn,¡ ,O Cllull H'(O>l· (2.19) 

Thus, the operator c1- • : H 2(íl 1 ) n HJ (íl 1) t-t H 1(íl 1) is bounded. 
Set D := Dom(- .ó. 1l) n C 00 (ílñ); it is known that D is an essential domain for 

- .ó.n ancl from Msumpt ion (B) and Lemma 2.5 one concludes that D is an essential 
domain for Hn, too. As a consequcnce, J := (Hn + M )D is dense in L2 (0n). 

Let g E / , f E L2 (1R11 ) and denote /1 = (Hn-6 + Ai/)- 1 / , g1 = (Hn + M) - 19. 
Thcn 0/1 E H 2(íln-6) fo r ali O E Ccf (ílr0 ) (see Lemma 2.5). Take O E Ccf (íl ,.0 ), 

O= 1 if lx l E IR1o R2 ]. Then, using t he Green formula, one bas 

i([xn( Hn-• + M )- ' - (fin + M) - 'lf,g)i'¡ n ·1I = 1 / (Of ,) 8~~,) ds.1- (2.20) 

lxl= R 

Set 91 = 891 , h = Ofi. With s < 1/2, one has 

1 J ¡,--:;;: ds,¡ ,o Có'il([x[ - (R - óW' /, [[ H• (n._,¡ · llY21i u' (O,.¡ 

(•(: R 

As in Lemma 2.3, we have 

ll(lxl - (R - óW' h1111• ¡n. _,¡ oó Cll(lul- W' f,(( R - ó)·)l l11• cn,¡ 

Oy (2. 19, the right hand side can be bounded from above by Cllh ((R - J) !l i·F{íl d , 

and he.nce by C llhll u~(O n - d · Thus 
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where for the second inequality one uses Lemma 2.5 Using the density of l and thc 
fact that llXR(HR- 6 + M)- 1 - (HR + M)-1 11 '.>e, it follows that if o < s < 1/2, 
there exists C(s) >O with 

which concludes the lemma. • 
Remark Far other results of this type, see e.g . [S]. 

The next corollary is a direct consequence of the convergence in the norm resolvent 
sense (see e.g . [K]): 

Corollary 2. 7 Let A be a discrete eigenvalue of H R and denote by Pn its correspond­
ing finite dimensional projector. If ó > O is sufficiently small, then H n- 6 has purely 
discrete spectrnm near A, n - lim.;--.o llPn-6 - Pnll =O and dim (P1ü = dim (P11 -d)· 

2.2.3 Construction of !{Jo 

Proposition 2.8 Let P00 be a finite dimensional orthogonal projector in a Hilbert 
space 11. and let { Pk} be a sequence of orthogonal projectors such tl1at 

n- lim Pk = Poo . 
k-+oo 

Choose any <f!k E Ran(Pk) with ll'f'.1;ll = 1; then the sequence {¡p.1;} has an fldh erent 
point in Ran(P00 ) . 

Proof. Star t ing from sorne ko, the norm convergence condition implies that íor 
k 2: k0 , !I P.1; - P 00 ll < 1, hence dim Pk = dim P00 • Moreover, one can write clown (sce 
[K]) the Nagy unita ry operator Uk which intertwines Pk and P00 (Le. UkPk = Poo U1:): 

u, = [l - (P, - Poo )'r112 [Poo Pk + (1 - Poo)( l - P, )] (2.2 1) 

Define i/J J: := Uk\()k; then 1/J.1; E Ran(P00 ) and ll 1/J.1; ll = l. 
Because Ra :n (P 00 ) is finite dimensional , the sequence {t/lk} admits an adherent 

point 'Poo E Ran(P00 ), ll\Poo ll = l. In other words, there exists a subsequence {tlik(n)} 

such that li mn-+oo 1/JJ: (n) = 'Poo · 
From (2.21) , o:ne can see that n - limk -+oo Uk = 1, hence lim1; _,.oo 111/1 11 - <p1;ll = O. 

T herefore lim n-+oo ll<r'k(11J - <r'oo ll = O a nd we are done. • 

R e m ar k ln o ur case, we h ave to replace Pk wit h PR-li(k)• P00 wit h Pn a nd tf'oo with 

'f'O· 

Propos it io n 2.9 Let A E m.. Suppose that there. exists a sequence {1P6) 6e 1, l ~ 
{0, 60 J such that ll1P6ll = 1 rm d \()6 is a H n - ti eigenfunction corresponding to A. More· 
over, suppose that tp6 -> !f!o in L 2 (IR.11 ), ll1Pol l = 1 and 1fJo is a Hn eigenfm 1ction 
corresponding to A. Then 

(2.22) 
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Proof. Note first t.hat. 

(2.23) 

for each 8 E C0 (Or0 ), where C is a constant which does not depend on ó (see 
Lemma 2.5(b}). F'rom now on we shall denote such consLants by C. Since 'Pd and r.p0 

are eigeníunctions corres ponding to t he same >., one has 
((- <'. + IV )<¡>6,'1'0) 1,>¡ Dl• ¡ - (<¡>,,(-<'. + W)'l'o)L'l""l = 0. 

Choose {tb1 } C D a seq ucncc such that llt/Ji -1pol17 + ll HR(IJI, - r.p0 )ll 2 -+ O. Let. 
8 E C«f'(ílr0 ), 8 = 1 if l.rl E !R1 , R2]. Then accordingl}· to Lemma 2.5, (}<Po E H2{0 u) 
and 1181/>o - (}~11 11 1P (O n )-+ O. Usi ng thc Green formula , one has: 

((- <'. + 111 )'1'6,WJ) l.'(Dl" ) -('1'6,(- 1'. + 1-V )</J;)i•¡n•¡ = J \'68! ds, . (2.24) 

""· 
Rcpladng tj11 with 81/J,, lendi ng j to the limi t and d ividing by ó, we gct: 

O= l. J ~ 8(8'1'0) d 1 {Jr.p,J 811 s,, . 
J0 11 

(2.25) 

\Ve shall show that Í'P61t,. l= ll converges to -~ll,.l=R in L-2(80 R). We bcgi n rhis 
by proving lhat 

Far i.p E C x; (i'lR- 6) n Dom( - ilu-&), set r.P(r,w) = r.p(rw}, if r > O and w E BS"- 1 

(t hc function r.P is just r.p in po lar coordinates). We have 

l (Rw) + (%;) (Rw) t.P( R,w)- 8,.¡;( R ,w) 
n t f 111,.¡;(t,w) - &,.¡;(R,w)] dt. 

R-6 

Then, 

J \l (z) + (%'; ) (x)l 2 ds 
ºº" 

R"" ' J ll f ¡a,.¡;(t,w) - a,.¡;( R ,w)i dtl 2 
dsw 

l"'J:: L H-6 
n 

S l J J n·-• 118,.¡;(t,w) - a,.¡;(R,w)JI' dsw dt 

s i 7'";' n·-· ¡; 8f.(r,w) dr l
2 

ds .., dt 
R-61wl=l l 

" n S t f (R -t) f n•-• f 18[.¡;(r,w)l'drdswdt 
R-6 li.rl= l 1 

$ Cóll!pll7P(R-6 <171<R) '.5 Cóll!pll¡/~(O n -4l' 
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where we have repeatedly empleyed. the Cauchy-Schwarz inequality. We now ap­
proximate (Ji.p6 in H 2(flR-.s) n HJ(On -6) with a sequence {¡p;} of C00 (íln-.s) n 
Dom( - ó.R _6) functions. Then, we use the above esbimate far (Jrpi , and !et j--+ oo. 
Weget · 

ll J"'' + ª;:•11 s Có11'11e.,,,11H'<º•-•• S Có'1' 
ll L~(8fln } 

(by (2 .23)) . Thus, 

On the other hand, far any 3/2 < s < 2: 

(2.26) 

To handle this, one uses the interpolation inequality (Prop. 2.3. íL-M)) , that is 

llO(<po - 'P•lllH•¡n,¡ S C(s)llO(<po - <p1)ll~;¡~:¡llO(<po - 'P•) ll:fi1n.¡• (2.27) 

since H $( Dn) = [H2 (!1n), L2(11n)]i_,12 . Here llB('Po - rp,!")ll~;t~!)--+ O when ó--+ O, 

and llO( ipo - ip,f)¡¡;{;(íln) ~ C. Thus 

f lª:VºI' d.-.O, 
an. 

which concludes the proposition. • 
2.3 Proof of (1.3) 

As we have already said, (1 .3) is nota new result, but a reformulation of a part oí the 
"classical" proof of the Persson formula (see e.g. IC-F-K-SJ) . Nevertheless, witihoul. 
including it in Theorem 1.1, Perssbn 's formula would not be a consequence of the 
theorem. 

In order to simplify notation, set ). := inf O'cn(H). Denote by EH the spectral 
measure associated to H. From now on, l and ó denote infinitesimally small positive 
numbers. 

Fix ó > O. We know that for every é >O the projector P := Eu((-oo, ). - e]) 
is compact , therefore there exists R( l) sufficiently large such that for any R 2: R(f ), 
one has (xn denotes the cha racteris tic function of nn) 

llxnPll S <. 

Then for any normalized ip E Fn", 

= (<p, H<p)1,•1m.· ¡ ~ (,\ - <)11(1 - P )Xn'P/12 - I,\ - <lllPXn'Pll ' 
~ (,\ - •)( ! - •l - ¡,1 - •I•' 
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Now choose ( = (6 small enough so that the r.h.s. of the above inequality is larger than 
,\ -ó. Usi ng the min-max principie, we have inf u(HR ) ~ ,\-6; because {inf q( HR )} 
is an incrcasing sequcnce with R, t hen 

lim inf u(Hn) ~ ,\ 
/i -too 

The reversed inequality comes from the inclusion uUIJ( H ) C u(H n ). • 

Corollary 2.10 The Persson fonnula is a direct consequence o/ Theorem 1.1. 

Proof. Firstly, a.s Om( H ) e u(HKc) for any K , one ha.s 

infoeaa (H) ~ supinf u( HKc). 
K 

Secondly, from the obvious inequa.lity infu(Hn) ~ supKin.fu(HK~ ) and (1.3): 

inf <le88 (H) ~ supinf u(HK• ) , 
K 

and we are done. • 

Recei ved June 2003. Revised Oct 2003 
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