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ABSTRACT
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operators is presented. Persson’s formula is obtained as a corollary.

RESUMEN
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1 Introduction and the Result

It is by now a matter of common sense that the essential spectrum of a Schrédinger
operator H is not influenced by localized perturbations, i.e. it is described by the
potential’s behavior at infinity. There are lots of geometrical descriptions of this
phenomenon; probably the most popular one is the so called Persson formula (see
[P] for the original article). As it is well known, this result expresses the bottom of
the essential spectrum of H in terms of its mean energy on states which are farther
and farther away from the origin. L. Garding used Persson’s result in [G] and gave
a non-combinatorial proof for the “HVZ-theorem” (which describes the bottom of
the essential spectrum for many body Schridinger operators). More recently, G.
Grillo (see [Gr]) generalized Persson’s work to nonnegative, selfadjoint operators L
defined on Hilbert spaces of type L?(X,m), where X is a locally compact, Hausdorff,
separable space and m is positive Radon measure on it of full support. Finally, let
us mention that nice textbook presentations of Persson’s formula may be found in
[C-F-K-S] and [H-S].

Let us stress from the beginning that for simplicity we only deal with operators
of the form “—A + W”, where W is a multiplication operator. Similar results can
be derived for more general second order elliptic differential operators (for example
magnetic Schrédinger operators where W would be a first order differential operator),
but we do not want to discuss this here.

To be more precise, let us fix some notation. First, we start with the potential,
which is assumed to obey the following two conditions:

(A) W : C°(R") = L?(IR™), n > 1, is a symmetric multiplication operator that
admits a continuous extension from H'(IR") (the Sobolev space of square in-
tegrable functions whose distributional derivatives are also in L?) to H~'(IR")
(the dual of H');

(B) W is —A form bounded with bound less than 1.

The object of our study will be the Hamiltonian H = —A + W defined as a form
sum on H'(IR™), n > 1. Denote with K(IR") the set of all compact subsets of R". If
K € K(IR"), then Hg- denotes the Friederichs extension of the symmetric operator
—A + W defined on C§°(K®). In the particular case where K is a closed ball of
radius R > 0 centered at the origin, the corresponding operator is denoted by Hpg,
and K¢ with Qp. We shall naturally consider L?(K°) embedded in L?(IR"). Also,
the H}(K°) functions extended by 0 outside K¢, are H'(IR") functions. Thus, the
resolvents (Hg< — z)~! are bounded operators in L2(IR™).

The last notation we need here is Fx := {¢ € C§°(K°®), ||¢l|lz2(rn) = 1}. Then
the Persson formula reads as:

inf oess(H) = inf (¢, (— 7)p) - p
inf Gegs(H) szpwlenfk(w( A+ W)p) (1.1)

In order to formulate our result, we need two additional conditions on W:

Ve =N
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(C) W = Vp + V and there exists ro > 0 such that supp(Vo) € {x | |x| < ro};
(D) The operator V is —A operator bounded with a bound less than one.

Remark

If the potential V; in (C) is zero, then one can replace the last three conditions
with just one:

(B’) W is —A operator bounded with a bound less than one.
‘We now can give the main result of our paper:

Theorem 1.1 Assume that W satisfies the conditions (A)-(D). Then the essential
spectrum of H admits the following representation:

Oena(H)= () o(Hke). (1.2)
KeK(R")
Moreover,
infoee(H) = lim info(Hg) . (1.3)
R—c0
Remark

We shall prove in Corollary 2.2 that the Persson formula follows easily from the
above theorem. Of course, as we have already mentioned, Persson’s formula is valid
under much weaker assumptions on W (see a proof in [C-F-K-S] only requiring (A)
and (B)), thus it would be interesting to obtain (1.2) without conditions (C) and (D).

2 The Proofs

Let us briefly describe the strategy of our proof. As H and Hg- only differ on a finite
region, one expects that their essential spectra to be equal, no matter of the choice
we make for K. Even though have such results been known for a long time in the
literature, we decided to give a proof in Proposition 2.1 for pl ‘We mention
here a result of M. Birman (see [B]) who proved that under certain conditions, not
only are the essential spectra equal, but also H and Hg- have unitarily equivalent
absolutely continuous parts.
Now, as

0(Hke) = Oess(Hice) U 0dise(Hice) = Oess(H) U aatisc (Hi<) ,

it, follows that the r.h.s. of (1.2) can be written as

umw)U( n adiu(Hm)).

KEK(R)

Clearly, if one shows that there are no common discrete eigenvalues for all Hg., then
we are done. In fact, it is sufficient to prove that the smaller family {Hgr}, R > 7o
cannot have any common discrete eigenvalues, and this is what we do in the second
part of this section.
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2.1 Invariance of the Essential Spectrum

In this subsection, only (A) and (B) are needed for W. With these assumptions, the
main result here is contained in the following proposition:

Proposition 2.1 For each compact set K in R™ we have:
Oess(H) = s (Hke).

Proof. We shall need the following lemmas.

Lemma 2.2 (a) If u € Dom(Hk<) and supp(u) does not intersect the boundary of
K¢, then u belongs to the domain of Hk; for each compact Ky C K (here K,
may be the empty set, in which case Hx; = H); moreover, Hxsu = Hyeu.

(b) Let u € Dom(H) such that supp(u) C K°. Then u € Dom(Hk<) and Hu =
Hygeu.
Proof. We shall use the next characterization for the domains Dom(H) and
Dom(Hk-):
(i) v € Dom(H) if and only if u € H'(R") and (—A + W)u € L*(R");
(ii) v € Dom(Hk-) if and only if v € H}(K*) and (—A + W)v|g € L*(K°).

Now the statement (b) becomes obvious. For (a), let x € C®(R"), x(z) = 1 on
supp(u) and supp(x) C K°. Then xu = u and, as distributions,

(—=A + W) (xu) = x(~Au + Wu) € L2(R").

Thus u € Dom(Hksg)) [ ]

Proposition 2.1 now follows if we prove the next lemma, which is a straightforward
adaptation of Theorem 3.11 in [C-F-K-S].

Lemma 2.2 (a) A € 0,55(H) if and only if there ezists a sequence {p,} in Dom(H)
such that supp(¢n) € BO, ), llpall = 1, 9n30, [I(H = N)gall = 0;

(b) Let K be a compact inIR"™. Then, A € dess(Hk-) if and only if there exists a se-
quence {¢,} in Dom(Hg-) such that supp(pn) C B(0,nRk) (where K C B(0, Rk)),
and ||al| = 1, 9a30, [|(Hk< = A)pnll = 0.

Proof. We shall prove (b) (the proof of (a) is similar). The implication ”<" is
nothing but an improved Weyl criterion, therefore we are only left with the direct
implication.

Now suppose that A\ € gess(Hg<). The Weyl criterion assures the existence of a
sequence {1} in Dom(Hxe) such that [[1;]| = 1, ¥;530 and ||(Hx< — A)w;]| = 0.
Note at first that, for & € C§°(IR™), the operator ®(Hg-+i)~! is compact in L2(IR").
Let x € C®(IR™), x(x) = 0 for |x| < Rx, x(x) =1for x| > Rk +1,0 < x < 1, and
denote xn(x) = x(x/n). We have

[Ixn#sll 2 1= 112 = xn)¥;l-

B 3
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On the other hand,
I =xn)¥sll = [I(1 = xn)(Hxe +3) 7! (Hke +)05|
< N(Hiee = Nl + 1A+l 11 = xn) (Hree +3) " 44

The first term in the right hand side converges to 0, by the hypotheses on v;. The
second term converges to 0 if n fixed, since (1 — x,,)(Hg< +1i)~" is compact and the
sequence ¥; goes weakly to 0. Therefore, for each n there exists j(n) (which can be
chosen to be greater than n) such that

11 = Xn)Wjm |l < 1/n.

One now can take 9 = Xn¥j(n)/llXn¥j(n)l, and it is clear that [|¢n|| = 1 and ¢, ~30.
On the other hand, computing in distributions on K¢,

(A + W+ X)(Xn¥j(n) = Xn(=A + W = Nhjn) = 2 X (1/n)Bkx(-/1) 0k 5(n) —
=(1/n)(AX)(-/n)j(n) -
(&)
Since 1;(,) € Dom(H-), the right hand side belongs to L*(K*). This fact, together
with ¢, € H}(K®), ensure ¢, € Dom(Hg-) (see (i) in the proof of the Lemma 2.1).
The first and the third term in the right hand side of (2.1) are norm convergent to 0.
The norm of the second one can be bounded from above by

2 C C;
= 3 10kxleo 1k5 ol < SHI(E e = Nyl + 2 [im | < C/my
k

where 'y, C> and C are constants and we used the continuous inclusion of the domain
Dom(H-) into Hj(K*). Hence, this term also converges to 0 in L.

The equality (2.1) yields ||(Hk< — A)@nl| = 0, since |[xa¥;(n |l = 1. Thus {©n}
satisfies all the needed conditions. [ ]

2.2 Discrete Eigenvalues Cannot be Constant

We start proving that Hp cannot have constant discrete eigenvalues, using a proof by
contradiction. Namely, assume that X is a discrete eigenvalue of Hr_5, —00 < 6 < &g
(where o > 0 is sufficiently small) and denote by Pr the finite dimensional projector
(dim (Pg) = N) of Hg corresponding to [\ — €, A + €], where € > 0 is small enough
such that the interval contains only one eigenvalue, that is A. Then we shall prove
that A either belongs to the resolvent set or to the essential spectrum of Hpg, thus
yielding a contradiction.

In order to motivate the reader for the technical parts which will follow, let us
give a short and less rigorous overview of our strategy. First, we shall prove that
lims~,0 Hr—s = Hg in the norm resolvent sense in B(L?(IR"™)). This implies that for
§ > 0 sufficiently small, the spectrum of Hr_s in [\ — €, A + €] is purely discrete and
n — limg 0 Pr—s = Pr. Moreover, there are exactly N discrete eigenvalues of Hg_s
in this interval and by assumption, A is always one of them. Denote by ¢s one of the
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normalized eigenvectors of Hr_s for which Hr—_s¢s = Aps. Then we shall prove that
when & \, 0, the set {5} admits an adherent point wo € Ran(Pg), ||¢oll = 1, ie.
there exists a sequence {i;} of such eigenvectors such that ||p; — ¢ol| = 0.

Then for any j:

Mepjs po)r2mn) = (Hr-s() %5, P0) L2(m~) = (5, HRP0) 12(R") - (2:2)

Using the Green formula and the fact that W is a multiplication operator, one obtains

B0
0= /le s 2 ds; (2.3)

(here v is the outer unit normal vector at g, v(x) = —x/R).
Since ¢;(x) = 0 if |x| = R — §(j), one expects that for |x| = R, Z‘f(%—) should be
close to ——J-(x) in fact, we shall show that

N20n a‘PJ
4(4)

Clearly, (2.3) and (2.4) imply

3p; g
i /M T

< C ()2 (24)
L2(69R)

=0. (25)

As we know that ||¢; — ¢ol|z2(m~) — 0, we shall use it in proving that

i iy

SRR (28

1'"°°| L?(anﬂ)

We now conclude that %%“ restricted to dQg equals zero; this implies (via the
Green formula) that wo € Dom(H), Hpo = Ao and of course, supp(po) C Qr.
If some unique continuation property holds, then ¢y = 0 (which means Pr = 0);
otherwise, because R > ¢ can be chosen arbitrarily large, we can construct an infinite
number of eig ors for H corresponding to A with their supports going to infinity
(which means \ € Gess(H) = Tess (HR))-

Let us now give rigorous statements and proofs.

2.2.1 2.2.1. A Few Technical Estimates

Lemma 2.3 Let Ry > Ry > 0 be fized. Then there exists C = C(Ry, Ry) such that
llullzr2ap) < CUI = Agull + [lul)). (2.7)

for each R € [Ry, R3], and for all u € Dom(-Ag) = H*(R&) N H}(Qp).

e 42 =N
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Proof. Recall first that the result holds for R = 1 (see [H], Lemma 10.5.1). The
lemma will be proved by the following simple observation. Consider the dilations
Ug : L*(Qg) = L*(®), Urf(x) = R"2f(Rx). Then Ug : H¥(Qg) - H*(),
k = 0,1,2 is bounded and V(Ugu) = RURVu, 8;0k(Uru) = R*Ug(9;0ku) for all
u € H*(QR). Moreover, Ur(H*(Qr) N HY(R)) = H*() N HY () and —AUp =
R*Ur(—=ARg). The lemma now follows from the case R = 1. [ ]

Lemma 2.4 Let Ry > Ry > ry be fized (see assumption (C)). Let 6 be a C§°(IR™)
function, supp(#) C Q,,. Denote by xr the characteristic function of Qr. Then there
exist 0 < a < 1 and M > 0 such that uniformly in R € [Ry, Ry):

lIxr(VE)(=Ar + M) lsa(r2@aa) S a- (2.8)
Proof. Take f € Cg°(IR"); then we have (see e.g. [H-H]):
[(=Ar+M)7' ] (x) < ((-A + M)7f]) (),
for any x € R™. If ¢ € C(R"), then

[(xr(VO@, (-Ar + M)~ framm)l < (xe(IVODIel, (=A + M)~ f]) L2
< llell IVe(=a + M)~ (Il
Using that limas—oc [[VO(=A + M)~ |lpp(L2(r~)) < 1 (see assumption (D)), (2.8) is
obtained after a density argument.

Lemma 2.5 With the same notation as in Lemma 2.4, take ¢ € Dom(Hpg). Then
(a) O € H*(Qr) N HY (QR) for all R € (Ry, Ry);
(1) 10¢llk2@p) < CUIHR@I +llel), YRE [R1,Ra].

Proof. If p € Dom(Hp), then ¢ € H}(Qg). Let 8; be a function 8 like, but 6; =1
on supp(#). Computing in distributions on Qg, one has

(—8 + V0)(0p) = 6(=A + W)p — 2V8 - Vg — (A8)gp, (2.10)

hence the right hand side of the above equality belongs to L*(Qg). Since ¢ €
H}(Qg), we get that @8 belongs to the domain of the self-adjoint operator associated
to the form (—A + t'e.)\,,émnm,‘:m” But by Lemma 2.4 (which says that V6,
is —Ag-bounded with bound less than 1), this domain is the same as the domain of
~Ap, namely H} () N H?(QR). The first part of the lemma thus follows.

Let us now prove the second part. We denote by g the right hand side of (2.10).
Then, with M as in Lemma 2.4 (where # must now be replaced with 6,), we have
0p = (—Ap+ M +V8;) ' (g + M8yp). By Lemma 2.3:

Iebliman S Cll = Ar(~An-+ M+ V0o + MOQ)| +Clogll 5 1)
< Cllgh +ligl): _ ;
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On the other hand,
llgl < C (=4 + W)l + llell + [IVell) - (2.12)

IVl (=Arp,0) < |(Hrp, )| + [(Wo,0)|

< (IHRell + llell)* +b(=Are, @) + Cllell?,
where b < 1 and C do not depend on R. Hence

IVell < C(IlHrell + llell) - (2.13)

Summing up (2.11), (2.12) and (21.3), one gets (b). [ ]

2.2.2 Norm Convergence of the Resolvents

Lemma 2.6 Let 7o < Ry < Ry (see (C)) and define R := (Ry + R2)/2. Then, for
0 <38 <do, b0 < (R — R1)/2, one has R+ 6 € (Ry,R,). Fiz a constant M > 0
as that one obtained in Lemma 2.4, and such that Hr_s > =M + 1 for 0 < § < &.
Then as operators in B(L*(IR™)),

n = lim(Hp_s + M)~ = (Hp + M)~" .
50

Proof. Before anything, let us mention that assumption (B) and Lemma 2.4 assure
the existence of M with all the required properties.

The proof of this lemma will have two parts. In the first one we prove that
(xr — 1)(Hr—s + M)~ — 0, while in the second one we show that

lIxr(Hr-s + M)~ = (Ha+ M)~ =2 0. (2.14)
The first step is easy, since
(xr = D)(Hr—s + M)™" = (xa = xr-0)(1 = Ap)™/*(1 = Ap)!/*(Hps + M),

where ||(1 — Ag)2(Hr—s + M)~"|| < C and (xr — xr—3s)(1 — Ar)~"/* converges to
0, in norm.

Let us now prove the second step. Define d(x) = |x| — 1 on ;. We shall recall a
few facts concerning the continuity of the multiplication operator d=*, s € (0,1/2) in
Sobolev spaces on Q.

Let 22 = {x € O | x| < 2}. Then

4= H(Qy) = L3 () (2.15)

is bounded, by Th. 11.7, Ch. I [L-M]. The Remark 11.7, Ch. I [L-M] says that by
interpolating Hg (9 2) and L?(Qy,2) we get the inclusion

[H (2,2), L* (U 2)]15e € {u € L) | d=CHu € L2(Qu2)). (2.16)
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On the other hand, (by Theorems 11.6 and 11.5, [L-M]), if s < 1/2
Ht (Q2) = [H (Q2), LP(Q,2)] 150 D HA(Q,2) N Hp (Qu2) - (217)
If u € H*(Q,2) N HY (Q,2), then

1D; (= Wlle2 @z < A= ullLa, o) + Clld™*DjullLa(a, )
(2.18)
Cllullz, 2)-
The closed graph theorem, (2.15) and (2.18) assure that the operator
a7 HA(Q2) N H Q1) = H' (Q,2)

is bounded.

Consider € C§°(IR"), supp(n) € B(0,2), and n(x) = 1 on B(0,3/2). If u €
H?(Qy) N H (), then n u € H*(Qy,2) N H(R1,2). Therefore

lld=*ull ) < 1A= ()l @u,a) + 147 = D)ull @y < Cllullizg,).  (2:19)

Thus, the operator d=* : H*(Q) N H§ () = H'(Q,;) is bounded.

Set D := Dom(—Ag) N C®(fR); it is known that D is an essential domain for
—Ap and from assumption (B) and Lemma 2.5 one concludes that D is an essential
domain for Hg, too. As a consequence, I := (Hg + M)D is dense in L*(Qg).

Let g € I, f € L*(IR") and denote f; = (Hr—s + M)~'f, g = (Hr + M)~'g.
Then 0f, € H*(Qp—s) for all 6 € C°(Qy,) (see Lemma 2.5). Take 6 € C§° (o),
6 = 1if |x| € [Ry, Ry). Then, using the Green formula, one has

Q
(s + M)~ = (i + M)y sdoaae] = | [ 01 202 ase). 220
IxI=R
Set g2 = 8¢y, fo = 0f,. With s < 1/2, one has
e

| [ hgemds] < C8lel = (R0 allwsiancs - lonlran

IzI=R
As in Lemma 2.3, we have

lI0lz] = (B = 8))~* foll s (@g-s) < Cll(lwl = 1) f2((R = 6))|151(021)-

By (2.19, the right hand side can be bounded from above by C || fa((R = 0) - ||z2(a1)
and hence by C|| f2| g2 ). Thus

| [ n%ds| < Colfallaans - lollm@n

Ix|=R
< COlflleaame llgllzagrn)s
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where for the second inequality one uses Lemma 2.5 Using the density of I and the
fact that ||xr(Hr—s + M)~ — (Hr + M)~!|| < C, it follows that if 0 < s < 1/2,
there exists C(s) > 0 with

lixr(Hrs + M)~ = (Hr + M)™!|| < C(s) &°,
which concludes the lemma. "
Remark For other results of this type, see e.g. [S].

The next corollary is a direct consequence of the convergence in the norm resolvent
sense (see e.g. [K]):

Corollary 2.7 Let X be a discrete eigenvalue of Hp and denote by Pg its correspond-
ing finite dimensional projector. If § > 0 is sufficiently small, then Hp_s has purely
discrete spectrum near A, n — lims—o || Pr—s — Prl| = 0 and dim (Pg) = dim (Pg_).

2.2.3 Construction of yg

Proposition 2.8 Let Py, be a finite dimensional orthogonal projector in a Hilbert
space H and let { Py} be a sequence of orthogonal projectors such that

n— lim P, = Py .
k=00

Choose any @x € Ran(Py) with ||pk|| = 1; then the sequence {¢k} has an adherent
point in Ran(Pw).

Proof. Starting from some ko, the norm convergence condition implies that for
k > ko, ||Px — Pl < 1, hence dim P = dim Po,. Moreover, one can write down (see
[K]) the Nagy unitary operator Uy which intertwines Py and Pe (i-e. UpPx = PeaUr)

Uk = [1= (Pk = Poo)2] ™/ [PooPi + (1 — Poo)(1 = Py)]. (2.21)

Define ¢k := Urk; then 1 € Ran(Pw) and ||| = 1.

Because Ran(Ps) is finite dimensional, the sequence {3y} admits an adherent
point .. € Ran(Pw), [|¢eoll = 1. In other words, there exists a subsequence {¥x(n)}
such that limp o0 Pk(n) = Poo-

From (2.21), one can see that n — limy—co Uk = 1, hence limg_,o0 [ — @[l = 0.
Therefore lim, o0 [|#k(n) = Pooll = 0 and we are done.

Remark In our case, we have to replace P with Pr_s(k), Peo With Pr and @o with
$o-

Proposition 2.9 Let A\ € IR. Suppose that there ezists a sequence {ps}ser, I C
(0,80) such that ||@s|| = 1 and @s is a Hr—s eigenfunction corresponding to A. More-
over, suppose that ps = wo in L*(R"™), |lpoll = 1 and go is a Hr eigenfunction
corresponding to \. Then
a0
v

= (2.22)
|x|=R

1 /—_—m
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Proof. Note first that

1808l 2 @n_s) < C, sl @as < C, (2.23)

for each 8 € C§°(fy,), where C is a constant which does not depend on § (see
| Lemma 2.5(b)). From now on we shall denote such constants by C. Since s and g
are eigenfunctions corresponding to the same A, one has
(=2 + W)ps, po) L2mn) = (s, (A + W)go)12m=) = 0.
1 Choose {¥);} C D a sequence such that ||); — wol|* + || Hr(¥; — ¢o)|[* = 0. Let
0 € C§°(,), 0 = 1if |z| € Ry, Ry). Then accordingly to Lemma 2.5, 8¢y € H*(Qg)
and ||8¢o — 8¢5 || 72 (0x) = 0. Using the Green formula, one has:

: o
;‘ (=84 Won ihian) = (0sn (-8 + W = [ el dsn. (220
Mg

Replacing v/, with 8¢, tending j to the limit and dividing by 4, we get:

] SN
_| 71 96w
O_L/ Bice v Ll
L

We shall show that %Wllzﬂ:R converges to —-ﬂ%}fﬂl’!’:n in L*(09g). We begin this
by proving that
‘ 1 9(0ps)

A

(2.25)

< Cs'/2.
L2(092R)
For ¢ € C*(Qr—s) N Dom(-Ag_s), set ¢(r,w) = p(rw), if r > 0 and w € BS"~!
(the function ¢ is just ¢ in polar coordinates). We have

bo(Ro) + (52) (Rw) = }o(R,w) - Bi(R,w)

R
in{ Do) — g (R,w))dt.

2
dsy,

—
=
51
&
¥
s
o
A
g

3
S
I

Rn-1 f

Ar |w|=1

R
%Rf‘ [O15(¢,w) — 81 (R, w)] dt

< z‘;kf f R (915 (t,w) — B16(R, w))|? ds dt
R 2
< % f RRoT f8f¢(r,u)dr ds,, dt
n 5|.,| 1
< f (R-1t) f 174 'flal(p (7,w)|? dr ds,, dt
(o %

C6||'P||n=(n s<lzl<R) < Cﬁ"%’"m(nn o
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where we have rep dl ployed the Cauchy-Schwarz i lity. We now ap-

proximate 65 in H*(Qr—_s) N H (Vr—s) wn,h a sequence {ip;} of C®(Qr—g) N
Dom(—ARg—s) functions. Then, we use the above estimate for fi;, and let j — co.
We get

1 05
5%t o
(by (2.23)). Thus,

< C82||6ps||r2(@p-y < COV2
L2(0%R)

Oips Bipo 1/2
225000 gl :
/ = ds| < C§
0p
On the other hand, for any 3/2 < s < 2:

|5 -5

C(s) 11600 = ©8)ll = ()~ (2.26)

L“(f’ﬂn)
To handle this, one uses the interpolation inequality (Prop. 2.3. [L-M]), that is

1820 = @8)llz»(n) < C()II6(00 — wo)leany 18000 = 0)I}fany  (227)

since H*(Qr) = [H*(QR), L*(Qr))1-4/2- Here ||(¢o — <p5)I|L;('éi) — 0 when § — 0,

and [16(0 — W)”H’(nn) < C. Thus

/

g

Ao 2
Fn ds =0,

which concludes the proposition. [ ]

2.3  Proof of (1.3)

As we have already said, (1.3) is not a new result, but a reformulation of a part of the
“classical” proof of the Persson formula (see e.g. [C-F-K-S]). Nevertheless, without
including it in Theorem 1.1, Persson’s formula would not be a consequence of the
theorem.

In order to simplify notation, set A := inf ges(H). Denote by Ep the spectral
measure associated to H. From now on, € and § denote infinitesimally small positive
numbers.

Fix § > 0. We know that for every ¢ > 0 the projector P := Eg((—00, A — €])
is compact, therefore there exists R(e) sufficiently large such that for any R > R(e),
one has (g denotes the characteristic function of Qz)

IIxrPll < €.
Then for any normalized ¢ € Fq,,

(0, Ho)p2rr) 2 (A = Ol|(1 = P)xrell* = |A = €ll|Pxrepll?

(e HrY)L2(0p) =
> (A=) (l—e€)? = |\ —¢le.

a2\
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Now choose € = €5 small enough so that the r.h.s. of the above inequality is larger than
A — 4. Using the min-max principle, we have inf o(Hg) > A — 8; because {inf o(Hg)}
is an increasing sequence with R, then
lim info(HR) > A .
R-y00
The reversed inequality comes from the inclusion dess(H) C o(HR). [ ]
Corollary 2.10 The Persson formula is a direct consequence of Theorem 1.1.
Proof. Firstly, as geg(H) C 0(Hge) for any K, one has
inf gess (H) > supinf o(Hge) -
K
Secondly, from the obvious inequality inf o(Hg) < supg info(Hk-<) and (1.3):
inf geus(H) < S:Pi"fa(HK‘) )

and we are done. [ ]

Received June 2003. Revised Oct 2003
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