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ABSTRACT

The goal of this paper is to find the quantization conditions of Bohr-
Sommerfeld of several quantum Hamiltonians Qi (h), ..., Qi (h) acting on R", de-
pending on a small parameter h, and which commute to each other. That is
we determine, around a regular energy level By € R* the principal term of the
asymptotics in h of eigenvalues \j(h), 1 € j < k of the operators Q;j(h) that
are associated to a common eigenfunction. Thus we localize the so-called joint
spectrum of the operators.

Under the assumption that the classical Hamiltonian flow of the joint princi-
pal symbol go is periodic with constant periods on the one energy level q5 ' (Eo),
we prove that the part of the joint spectrum lying in a small neighbourhood of
Ej is localized near a lattice of size h determined in terms of actions and Maslov
indices. The multiplicity of the spectrum is also determined.
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RESUMEN
La meta de este paper es las dicil de izacién de Bohr-

Sommerfeld de varios cantidades Hamiltonianas Q1 (h), ..., @k (h) actuando en R",
dependiendo en un pardmetro pequeiio h, el cual conmuta a cada uno de los otros.
Determinaremos alrededor de un nivel de energfa regular Eo € R* los principales
términos asintéticos en h de valores propios A;j(h), 1 < j < k de los operadores
Qj(h) que estdn asociados a una funcién de valores propios comtin. De esta forma
localizaremos lo conocido como espectro conjunto de los operadores.

Bajo el supuesto que el Hamiltoniano cldsico fluye de el simbolo principal

j qo, el cual es periédico con peri6dicas en un nivel de energfa
qo‘ (Eo), probaremos que la parte del espectro conjunto se encuentra en una
pequeiia vecindad de Ep que estd localizada cerca del enrejado de tamaiio h y
determinada en términos de acciones y indices de Maslow. Ademds, la multipli-
cidad del espectro es determinada.

Key words and phrases: semiclassical technics, fourier integral
operators, hamiltonian
Math. Subj. Class.: 81Q20, 95550, 47G30

1 Introduction

The joint spectrum of several commuting operators arises naturally if suitable sym-
metries are present. Let us consider for instance the Schrodinger operator, acting on
R.’i

Ai(h) = —h?A + V(z),

and suppose that the potential is realvalued, smooth, and spherically symmetric.
Then A, (h) commutes with the kinetic momentum

Az(h) = —ih (220z, — 730z,).

The bounded states of A; (k) are common eigenfunctions of A;(h) and Ajy(h), and if
we consider a third operator

As(h) = —h? {(z202y — ©30z,)" + (2302, — 710s)" + (218s; — 720:,)" }

which commutes with the other two operators, these bounded states are common
eigenfunctions of A;(h), A2(h) and As(h), and their joint spectrum consists of the
associated 3-uplets of eigenvalues,

A(R) = (M(h), da(h), As(h)) € R

They have a multiplicity equal to 1, the bounded states are said to be completely
separated

- 3
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In fact this example is integrable (the number of operators equals the dimension) and
by the Liouville theorem the hamiltonian flow is periodic, (see [CH3] for the explicite
calculation of the joint flow for the harmonic oscillator). This example can naturally
be extended to all di i Few new les of integrable systems on manifolds,
inspired by the classical case can be found in the works of J.A. Toth [T1] and [T2].

On the other hand with a potential of the form V/(z,y) = f(llz|[*) + g(|lyll*) with
o € R* and y € R"* we can construct examples with less symmetries, and which
are nomore integrable.

1.1 Pseudodifferential calculus

More generally we consider k quantum hamiltonian Qy(h), ..., Qx(h) acting on R",
depending on a small parameter h, and which commute to each other. The Qi (h), ...,
Q(h) are supposed to be h-admissible pseudodifferential operators, as introduced by
B. Helffer and D. Robert in [HR1] and [HR2] (see [robert] for the general theory).
Let p be a weight function on R*" = T*R™, i.e. a continuous function from R*" into
R* which satisfies the following property :

there exist constants C > 0, m > 0 such that

Y(z,6), (', €) € " p(z,€) < Cp(a',€) (1+|z -2 +]€ - €)™ .

We denote by S, the space of all the functions a € C*°(R?") such that for all
(o, B) € N*" there exists Cq g > 0 satisfying

1020 a(2,6)| < Cayp p(z,6) V(z,€) € R*". (1.1)

To such a symbol a we associate a h-pseudodifferential operator A(h) = Op}/(a) acting
on functions ¥ € S(R™), the Schwartz space of smooth functions rapidly decreasing
at infinity together with their derivatives, defined by the Weyl quantization :

A(hy(z) = (2nh)-"//e""“<‘-%‘> a(z—?,f)w(y)dydf-

More generally we may assume that the symbol a depends on h : if there exists a
sequence {a;}ien € Sy such that

a(h,z,6) ~ 3 hiai(z,€) (1.2)

i>0

where ~ means that for all N € N the difference
N1 = ’L_[N'H) a(h,z,€) Zh ai(z,€) )

defines a family Ry41(h) = Opf(rn41), h €]0, ho] of bounded operators which is
bounded (uniformly in h) in £(L*(R™)); then we say that the operator A(h) is h-
admissible.
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We suppose that we have Q;(h) = Op}(g;) are h-admissible, so there exists a
sequence {gi; }ien € Sp such that

Gi(mz,8) ~ Y Wais(z,). (1.3)

20

Then Q;(h) belongs to £(S(R™), S(R")) for each j =1,...,k.

We also assume that each operator @; (k) admits a self-adjoint estension to L*(R").
It is the case if the principal symbol qo; is itself a weight and if gi; € Sg,, for all i,
and more generally if go; is bounded from below [robert].

In our case, we always can reduce to this situation by means of the functional cal-
culus, if the weight is p = [|go||* + 1, and if the operator Z_’;=1 Q;%(h) is h-admissible :
let f be a C function on R* such that f(z) = z for z € [0,¢], (with0 < c< 1) f
is increasing and asymptotic to 1 at infinity and define g(z) = f(z)/z a C'* function
on R*, equal to 1 on the interval [0,c]. Then, for By € R, the new operators defined
vectorially by

P(h) = g(llQ(R) = Eol)(Q(h) = Eo)
are h-admissible pseudodifferential operators (remark that the operators g(||@(h) -
Eyl|) are bounded) with bounded symbols, so every principal symbol is a weight
bounded from below. Moreover the P;j(h) commute to each other if the Q;(h) have
this property ; furthermore, on the domain {(z,¢), ||g(h)(z,&) — Eq|| < ¢} one has
p(h) = q(h) — Eo, so p(h) is proper if g(h) is.

1.2 Commutativity and Hamiltonian flow
We suppose that the operators @;(h) commute to each other

[Qi(h), Q;(h)] =0on SR™) Vi, j=1,....k, VA>0 . (14)

We denote by go = (go1,qo2,---,qok) : T*R™ — R* the joint principal symbol
of the operator Q(h) = (@1 (), @a(h), .., Qx(h)), and by g1 = (@11, a1z, - -, q1s) it
sub-principal symbol.
As a conseq of the ivity, one has {goi,qo;} = 0, and the associated
symplectic or classical flows ‘Pj also commute.

The tbi are defined as follows : with the canonical symplectic form w of T*R" :
w= Y7, dé; Adz; one can define the Hamiltonian field Hj of go; by :

daoj =-Hj J w (1.5)

then the & are the symplectic transformations satisfying :

a
(0 s i ¢
¢} =1d; z’)—t‘P’_HJO(bJ' (1.6)
We want to look at spectral properties for the operators @; in a neighbourhood of a
value Eg € R on which we make the following assumption :

IS A
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(Hy) Eqg is a regular value of go and qo is proper in a neighbourhood of Eq : there
exists a compact neighbourhood K of Eg in R¥ such that qu"(Kl) s compact.

Note that this assumption is fulfilled for the example above if
=00 < liminf V(z).
2|00

Moreover, the conditions above imply k < n.

The joint spectrum AQM of commuting operators, as Q;(h), has been defined
in [CH1], and it has been proved that, under the hypothesis (H;), the part of the
joint spectrum contained in any compact K included in the interior of K, consists in

finitely many joint eigs lues of finite multiplicity, i.e.

AW (VK = {(Ag(h))ger(ny; IEH € L*(R") : Q;(h) ¥ = N (h)¥E Vj = 1,.,k}
)
where I(h) is finite.

The asymptotics of these eigenvalues can be precised with an assumption of peri-
odicity of the classical flow. We will make a very weak assumption as follows. Suppose
that K is sufficiently small to be composed of regular values of go. As a consequence
of (H,), for all E belonging to K, the set £ = qn"(E) has the structure of a sub-

fold of R*" of codi ion k, Lp is compact and invariant under the action of
the Hamiltonian flow which is symplectic. Moreover the Hamiltonian fields H; are
independant, and H; J w vanishes in restriction to the tangent plane of L, so this
manifold is co-isotropic.

The Hamiltonian fields H; s0 the joint flow defines finally an action pg of
R* on Eg :
PE : REXEZg = ZIg
((t1, .o te),v) = B o...0d(v). (1.8)

We will suppose that the joint flow is periodic with constant periods on one level
Yy = ¥g,. More precisely we make the following hypothesis :

(H3z) All the points of £y = q(;“(E“) are periodic under the action of the joint flow
po = pg, with the same lattice of periods.

Let (e1,...,ex) be a basis of this lattice ; it is a basis of R* verifying for all v € 3¢
and for all z = (z,...,2k) € Z* : po (2772::\.....* zi€j V) = U

S0 po can be regarded as the action of a torus T* on £, that we will still denote by
po. By the last hypothesis this action is free, i.e. without fixed points.

Comparison with the hypothesis of [CH1] and notations. — 1In this previous work
it was made an assumption of periodicity on a open set of energy. More precisely it
was supposed that there exists a function f € C§°(R*,R*) such that the principal
symbols of the operators f(Q(h)) are periodic in a neighbourhood of the energy level.
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In our case let (¢;)1<j<k be the canonical basis of R* and define a € End(R*) by
e; = a(g;) = TiajEi.
Then the new symbol po = (po1, - - ., Pox) = a(qo) satisfies

dpoj = Bi @i dgoi = =i iy Hy J w

and the corresponding Hamiltonian flow ¥; is 2m-periodic on the energy level a()
in view of (Hz).
Consequently the operators P(h) = a(Q(h)) satisfy the pointwise equivalent of the
hypothesis of [CH1].
We will denote F = a(Ep) and K; = %; a;; H; the Hamiltonian field of po;.

We can now give our main result :

Theorem 1 Let Qj(h) = Opy’(¢;), 1 < j <k bek commutmgh admissibles pscudml
ifferential operators essentially self adjoint and sfying the following h

(H.) the joint principal symbol qo is proper in a netghburhaad of a regular value En

(H2) the classical flow is periodic with constant period on the energy level
%o = 0" (Bu),

(Hs3) the subprincipal g1 vanishes,

(Hy) the surface o is connected.

k
Then the part of the joint spectrum AQ") lying in any k-cube H JEoj—he; , Boj+
=1
hej( centered at Ey is discrete and localized modulo O(h?) near a lattice
1 3 1 @
S (= ki
Eo + a (( T =St +ZN @ ... @ (~uh - oF +Zh)),

where the p; are the Maslov indices of the basic cycles of the torus acting on Zq, a;
are the action of these cycles and a € Gl(k).

Comments The hypothesis (H3) can be weaked in

(H}) The integral of the subprincipal symbol g, on a closed trajectory of the joint
Hamiltonian flow is ind dent of the point on the energy level £y, it depends
only on the period.

see the Theorem 2, subsection 2.6. below.

When the hypothesis (Hy) failes each connected component gives a part of the
discrete spectrum.
About the method We will look at the operators P(h) = a(Q(h)). For these ones
the Hamiltonian flow of each component po; of the principal symbols is 27-periodic,
we remark that y; the Maslov index of the 27-periodic trajectories of the Hamiltonian
flow of py; is constant on £y as an invariant of homotopy ; as well the action of such
a trajectory, a;, is constant on Xo. We will denote by u respectively a the k-vector

defined by the Maslov index, respectively the action, of the basic cycles.
In order to localize the eigenvalues of P(h) lying in the k-cube l'lf=,]F, - ch, Fj +
ch] modulo O(A?) we suppose for the moment that the subprincipal symbols are
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null and look at the following operator ((ﬂbﬂ_—F) 6(P(h)), where ¢ and 6 belong to
C§°(R¥) and #(\) = 1 for A in a smaller neighbourhood of F and compare it with
C(PO=Eyexp — 4 < T, P(h) > 0(P(h)) where T € 2nZ*, the lattice of periods.

We will do this by approaching these operators by Fourier Integral Operator. We
will see that their Lagrangian manifold are identical and their principal symbol differ
by a scalar which is determined by the Maslov index and the action of the closed
trajectories, consequently the L? norm of the difference between ¢( ﬂﬁh_u) 6(P), and
the operator C(ﬂf,—:i)exp — (< T,P(h) > +a + Sph) 8(P) , is only O(h).

This method, consisting on espressing the evolution operator e~th <LP(h)> by
means of the theory of Fourier Integral Operators was initiated by Duistermaat-
Guillemin [DG] and Colin de Verdiere (Cdy] for compact manifolds, and Helffer and
Robert [HR3] in the semi-classical case. We especially tried to make clear the appear-
ance of the Maslov Index. On the other hand one can find in [acl], a construction,
by symplectic geometry, of new symbols with the strong property of periodicity and
which approach the first ones. But the new operators do not commute anymore.

This paper is organized as follows : in the second section we will prove the theorem

1, and in the third one we will look at the multiplicities of the joint eigg 1

2 Proof of theorem 1

Let ¢ be a function belonging to S(IR*) with a compactly-supported Fourier-transform
¢, and @ belonging to C§°(R¥) with a compact support lying in a neighbourhood of
F and verifying #(A) = 1 for A in a smaller neighbourhood of F. We can write

T 6P = e [ e <O 0P

¢
Using the functional calculus developed in [CH1], we consider 8(P(h)) as a pseudod-
ifferential operator with a classical symbol supported in a compact neighbourhood of
-1
Py (F).

2.1 The evolution operator

It is proved in [ChaPo), section 2, that there exists a Fourier Integral Operator (FIO)
Uy which approaches modulo O(h*), for t € [T, T]“, the operator

Upa(t) = e~ <tP(>g(p).

The general “semi-classical FIO" theory used by Charbonnel and Popov in [ChaPo]
is based on the presentation of Duistermaat [Du]. (Remark that, in the context of
first order classical elliptic operators on a compact manifold, Guillemin and Uribe
have developed, in [GUJ, a FIO calculus for systems of commuting operators quite
similar after the pionnier works of Colin de Verdiere [Cdv1] and [Cdv2)).
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More precisely Uy € I7*/4(R2"t*, A; h) with C = A’ the canonical relation
¢ = { (@8, @), ¢) € T"(R™*) =T'R" x T"R" x T'R* ;
T=-p(ym), (28="20wn; @nNe0} (29
where ¥* is the joint flow of py :
U=l oWl
and O = g5 ' (K) is a compact neighbourhood of £ which is invariant by the flow.

We parametrize C' by (t,y,7) € [T,T]* x O; then the principal symbol of Uj is
written :

o (Un)(t, y,m) = exp (ih=" (= (po(y,m), 1) + A(Y (¥, 1)) 01 ® 02 (2.10)

where oy is the half density |dt A dy A dn|'/? and o, is a “fixed section of the Maslov
bundle”, see below, 7¢(y,n) is the path

7y, n) = {¥*(y,n);0 < s <1}

and A is the action of the path in T*(R") : A(7*) = f7. &dz.

Note that the function 6 does not appear either in the Lagrangian manifold, nor in the
principal symbol of Ug x(t), for §(P) is a pseudodifferential operator, so its Lagrangian
Manifold is the graph of the identity, and its principal symbol is equal to one in a
small neighbourhood of .

2.2 The action

The manifold R*.(y,n) = {¥4(y,n); t € R*} generated by the flow from one point is
isotropic, because its tangent space admits the Kj, 1 < j < k as a basis ; on the other
hand d(édz) = w the symplectic form of T*(R") ; we conclude then from the Stokes
formula that the action is constant on the homotopy class of a path in R¥.(y,7) and

=k

AWM y,m) = 3 A% (1))
i=1

ift=(t,..0tk) 5 21 = (U,0); viaa = U5 () and 75 () = {¥3(1); 0 < 5 < ).
But ¥ is a connected manifold and two points o, ;1 € £y can be connected by a path
vs. On ('l';’(u,); t; € R,0 < s < 1} the symplectic form is null ( because K; Jw =0
on %y). Now if T; € 277 is a period the Stokes formula gives that the action of the
path v (v), t; € [0,T}] does not depend on s € [0, 1] and we have proved the

Lemma 2.1 For all pair of points vo and (y,n) in Eo and for all periods
IR (s Ty) € 2nZ* we have

i=k
AQ"(y,m) = 3 AG™ (vo))- @11)

i=1

R
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2.3 The Maslov bundle

We first recall the results of Arnol’d [arnold]. Let L(n) be the Grassmannian manifold
of the Lagrangian subspaces of T*R" and make the identification L(n) = U(n)/O(n).
The application Det? is well define on L(n). It is proved in [arnold] that any path
5 : S' = L(n) such that Det? oy : S! — S! generates II; (S) gives a generator of
11, (L(n)). Consequently II; (L(n)) ~ Z and the cocycle po defined by

Vy € L (L(n)) po(y) = Degree(Det* o)

gives a generator of H'(L(n)) ~ Z. We can define a canonical Maslov bundle M(n)
on LL(n) by the representation exp(i3 o) = i of IT; (L(n)). This bundle is a bundle
of torsion because M(n)®* is trivial.

Now the Maslov bundle of a Lagrangian submanifold £ of T*R™ is the pull back
of M(n) by the natural map

on:L = L(n)
V. = DL

Arnol’d shows actually that p = ¢,* o is the Maslov index of £. It can be written

ORI () SR 7
7] = < po,pn o7 >= Degree(Det? o pn 0 7). (2.12)

We have to take care of the structural group of this bundle. As a U(1) it is always
trivial. But we will concider it at a Zs = {1,7,—1, —i}-bundle. Actually we can see
with the expression of the Maslov cocycle ajx given in [Ho2] (3.2.15) that the Maslov
bundle has a trivial Chern class but ¢jx can not be in general writen as a coboundary
of a constant cochain.

We recall now the result of the Proposition 3.2. p.132 of [GS].

Proposition 2.1 (Guillemin, Sternberg) Let A be an isotropic subspace of di-
mension m in T*R"*™) and define Sa = {\ € L(n +m)/ A D A}. Then Sa is a
submanifold of L(n + m) of codimension (n +m), and if the map p is defined by

Lin4+m) 5 L(n)
A = ANAY/ANA

(A denote the orthogonal of A for the canonical symplectic form w) then p, which
is not continue on L(n + m) itself, is smooth restricted to L(n + m) — Sa and make
this space as a fiber bundle on L(n) with fiber R(™m),

Moreover the image of the generator of I, (L.(n+m)) is sent by p to the generator
of Ty (L(n)).

This last result is easily seen if one choose symplectic coordinates (x,£) such that
A = {x = 0,¢ = 0}. A generator of Iy (L(n+m)) is given by Ugn1m)(t)(Xo), 0 < 2 < 1

T
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where g = {£ = 0} and U(n4m)(t) is given in the complexe coordinates z; = x; + if;
by Unsm)(®)(21,- - - 1 Z(n4m)) = (e“’”zl,zz,u.,z(,.“,,)). The (z',&') give symplectic
coordinates of T*R™ and p(Un4m)(t)do) = Un ()Xo

If we return now to A, we remark, as [Ho4] p. 264 following [DG] p.65, that

Lemma 2.2 the Maslov bundle of A is trivial (as a Zs-bundle).

Proof. Actually hy(t,y,n) = (st,y,n) for 0 < s < 1 makes a retrack A of A on Ay
such that Aj = {(u, v, (0, —qo(v))) ;v € T*R"} and Ap can be seen as a Lagrangian
manifold in T*R2", We now apply the proposition 2.1 with A = {(o,o, (, V)) d

T*R™ x T*R™ x T'IR"}. The image @an4x(As) never meets Sa so the Maslov bundle
of A is as well the pull-back by po@anyk of M(2n), but there is an homotopy between
p o antk(A) and p2n(Ao) and the application ¢, is constant on Ap C T*R*". m

Then o3 = 1 in the formula of the principal symbol (2.10).

2.4 Composition

Now we have to compose the FIO Un(t) with the operator B(h) defined by :
B u@ = gy [P0 ey (2.19)
(2m) 1

B(h) is a Fourier Integral Operator from R¥ to RO if we take z as a parameter. lts
canonical relation is equal to

Cp=Ay = { (t,7) € T*(R*) ;7 =—F}. (2.14)

We remark that the Maslov bundle of Cg is trivial because the application @k is
constant on it. Its principal symbol is equal to (¢, —F) = ﬁk 8""_‘<1'F>((t)|d’|l/2
and B(h) € I"*/4(R* , Ag; h). We have now to compose this two FIO.

Proposition 2.2 We can approzimate modulo O(h*) the operator ((F;—P) 4(P) by
a FIO in I7¥/2(R?", Ay h) with

A= CoCp= {(m&y,m) € T"R") xT"(R") ;3 € R :
(z,6) = ¥'(y,n), po(y,n) = F} (2.15)

and if we write for (y,n) fived, applying the hypothesis (H3),

{t; (,6) = U'(y,m)} = to + B1<j<k27L

(T
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the principal symbol is
1 —n/2 ik~ 3
oo(w,&y,m) = Di T (@mh) /2 W <UF> Gy x
{ti (z.)=¥*(v,m}

exp (th™' (= < po(y,m),t > +A(1"))) exp (i3u(r' —7")) o

1 a
= O, ——— (2mh)™"/2 {(t)x
gy 0"
exp (ihPA(y")) exp (iFu(7" = %)) o1. (2.16)

The sum in (2.16) is discrete and locally finite, because the support of C is compact ;
oy is the canonical half density.

Proof. To understand the introduction of the Maslov term we have to make some
recall on the composition of canonical relations.

If C) is a canonical relation in T*R™ x T*R" and C, a canonical relation in
T*R™ x T*RP the composition C) o C2 can be defined as a canonical relation in
T*R™ x T*RP if Cy x C; intersects transversally T*R™ x Ap.gn x T*RP (with the
notation Ap-gn = {(Y,Y);Y € T*R*} C (T*R™)?). In fact it can be defined
when the intersection is clean but in our case this intersection is transversal: let
(¥4(y,n), (y,n), (t,—F),(t,—F)) be a point of this intersection. We will first cal-
culate the orthogonal, for the canonical scalar product, of the sum of the tangent
spaces. If (X,Y,T,T') € T(T*R") x T(T*R") x T(T*R*) x T(T*R¥) is orthogonal
to T(T*R™ x T*R™ x Aq.g«) then it is of the form (0,0,7, —T) now if it is orthogo-
nal to (3> u;K;,0,(U,0),0) obtained by moving only the variable ¢ on A, and writing
U = (uy,...,ux) then T = (0, T,), finally by moving only (y,7) our vector must be or-
thogonal to (d¥*(V),V, (0, —dpo(V)),0) for any V € T, ,)T*R™ but dpy is surjective
by hypothesis (H1) so T> = 0. We will then follow [Ho2].

If we denote by C.Cp this intersection, then C' o Cp = w(C.Cg) where

m DRI T*RE o ToR?"
XYT,7) = (X,Y)
and
m:C.Cp—CoCp
is a covering map.
Indeed in our case
CCp = {(¥(n), w0, t~F),t-F); poly,n) = F}
CoCp = {((x,),®:); po(y;n) = F and 3¢; (z,€) = ¥ (y,n)}

So the fiber of 7 is isomorphic to 2xZ* (ie. C o Cp = C.Cp/27Z*) by hypothesis

(H3), and 7 realizes an injection of Il; (C.C) in II; (C o Cp) denoted by ,. We have
then an exact sequence :

0= I, (C.Cp) B3 I (C o Cp) — 27 ZF — 0. (2.17)
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(See Theorem 3, Ch 4 19 in [DNF].)

Now if Mc, Mc, and Mcoc, are the Maslov bundles of C, Cp and C o Cp re-
spectively, one can make the following construction on C.Cp : denoting by my, m; the
projection of C' x Cg on each factor, let

M =} (Mc) ® m5(Mcy)jc.cn
be the restriction to C.Cp of nj(Mc) ® m5(Mcs), which is the Maslov bundle of
C x Cp. By construction the bundle M corresponds to the repr ion i* of
11;(C.Cg) in C* with :
Yy € IL(C.Cp) i A() = p(my ©7) + plz 0 7)-

But we have noted that Mc and Mc,, are trivial, it means that A(7) = 0 in our case.

Lemma 2.3 There is a natural relation
M ~7*Mcocs-
Proof. We can consider this result as Theorem 21.6.7 in [Ho3] ; actually define
A C T*R2n+2K
A ={(0,0,V,V) € T*R™ x T*R" x T*R* x T*R¥}
A is isotropic, one can identify A¥/A ~ T*R?" as a symplectic space and we can
apply the proposition 2.1. Consider the following diagram
C,.C, Iy Ci10C,
<P2n+2kl ‘Pan
L@2n+2k) 4  L(2n)
where @an42k(¥) = T,(C x Cp). The map p is defined as follow : p(\) = AN
A¥/AN A for A € L(2n + 2k). This map makes the diagram commutative.
So the lemma is proved if one can see that the range of @sn2k is included in

L(2n + 2k) = Sa. Indeed for v = (¥!(y,7),(®:7), (t,~F), (t,~F)) a vector in
T,(C x CB) = T, (v)C X Try(»)Ch is a sum of terms of three types:

(s (¥, ). 0, (0,0),(0,0)) for @ € R, (d4(Y), Y, (0, ~dm(¥)),(0,0)) for
Y € Ty, T*R" and (0,0,0,(8,0)) for # € R*. But it is impossible to write an
element of A in such a way and we have @zn42x(¥) N A = {0}. [

Consequence of the lemma :
V7 € IL(C.Ch) 5 plma() = A(y) =0. (2.18)
Then all the non triviality of Mcoc, comes from the action of the Hamiltonian flow,

by (2.17). It means, using the exact sequence (2.17) that any section of Mgocy can be
represented by a C-value function f on C.Cp which satisfies the equivariant relation:

(2.19)

VT € 2nzk;  f(t+T,y,n) =i"0"f(t,y.m)
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if we parametrize C.Cp by (t,y,n) € RF x 3y and if we notice that, because of the
connexity of Lo, the Maslov index of the loop v* = {(¥*7(y,7), (¥,7),0 < s < 1}
is independent of the point (y,7) ; because of the homotopy of the loops 47 and
y2rTien fo. g 2 Then §f T = 21(Tyey + -+ + Thex) we can write :

j=k

VT € @1c;<k2Z ; p(7") = Tjny with p; = u(y*™). (2.20)
i=1

Let now ((z,€),(y,n)) € C o Cp. At each time that we choose t € R* such that
(x,€) = ¥'(y,n) we have a natural local isomorphism between M and Mcoc, as
described in [Ho2] p.181 ; but when we change t, say we take to and o + T with T a
period of our lattice, it corresponds to a change of trivialisation of the bundle Mcoc,
around our point. By definition of the Maslov bundle, the transition function is i#(7)
where v is the loop

As) = (¥ T (), (y,m) v =90tT =

Notice that () does not depend on the path that we draw in C.Cp joining the point
((,8), (y,m), (to, =F), (to, = F)) to ((,8), (y,m), (to + T, =F), (to + T, —F)) because
of (2.18).

The conclusion is that to define the product of the two symbols, we fix ¢ and then
multiply the product of the two symbols at ((z,£), (y,7), (to + T, —F), (to + T, —F))
by #('**"="*) and make the sum for all periods 7. The result of this calculus is
just (2.16) in the sens that the function o (to,y,7) defined by the formula (2.16) is a
C—value function on C.Cp witch satisfies the equivariance (2.19). [ ]

Remark This lemma 2.3 is certainly the way to understand that “there is an iso-
morphism between the two bundles” (with our notations M and Mcoc,) as in [Ho2]
p.181 : in our case one is trivial but the second is not trivial in general so they cannot
be really “isomorphic”. It would be compared also with Lemma 4.2 of [BU] given
without proof for the Maslov factor.

2.5 End of the proof

Let Ty be a period of our lattice ; we want now to compare ((F—M)G(P) with
C(E=F ™) exp —£(< To, P(h) >)(P). One has
((E=Et)ye-k<To.Ph)> g(P) = ;*ﬁi?'zf e K<tHTO(P(N=F)>((£)0(P)dt

= SR> [ ek <t(PN=F)>((t — Ty)8(P)dt.
We can conclude by the previous calculus that ((w)exp —4 < To,P(h) > 6(P)

can be approached by a FIO with the same Lagrangian than ((F——PM—)B(P) and with
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principal symbol

ony(@, & ym) = e K<ToF> —— (2mh)~2 {(t—~Ty) x
(£ (2= ()} (2")
exp (ih™ A(y* ))exp( SH(* —7‘“))

= B~i<To.F> 1 (2mh)~ n/2 C(l)

P = A
exp (i A7) exp( T u(ytTo _740)) o (221)

= AT <TI0 PR+ 30T g (5 £y ). (222)

We conclude that the two FIO

e—i(hH(AGT)-<To, F>)Fu(r70)) ¢ (E= P('Il) —£(<To,P()>)g(P) and ((”' )g(p)
have the same Lagrangian and the same principal symbol, if we remark t.hat A(y™)
and p(v™) are numbers depending only on Tp but not on (y,7) € Zo. So their dif-
ference is a FIO for which the amplitude has a compact support and a factor h ; we
conclude by the theorem of L, continuity (we can use the theorem of Asada-Fujiwara
[asa]) that there exists a constant C' > 0 such that

||((¥(_)L)) (Id o E—H<To,F(h)—F>+A(‘YT°)+hi’#h’“))) 0(P)llL, <hC.  (223)

Remark We will give a precise estimate of the constant C below with Lemma 3.2.

Now if f is a commun eigenfunction of our P;(h) with joint eigenvalue A =
(A1,---,A) and if we suppose ||[F — A|| < ch and [¢| > d > 0 on the set {z €
R¥; [|z]| < ¢}, the previous evaluation gives

|1 = e~ H(SToA=F>+A(T0)+hFu(70))| < h%.
This gives the theorem by taking for Tp the basis of the lattice. L]
g Y g

2.6 Extension

What happens if one relaxes the hypothesis (H3) ? Following the formula (2.11) of
[ChaPo] we see that appears a new term in the principal symbol of the evolution
operator :

1
exp (—1/ <p (Tt (y,m),t > dS)
)
& F—P(h)y i
and in the comparison between the principal symbol of ((F=EB )=k (<TuP(>)g(p)
and ((£= ”"\) 6(P) will appear a new term which a priori depends on (y,7) :

exp (-i/l < pu (T To(y,m)i E > 43) .
0
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The hypothesis (Hj) assures that this term is constant, let us denote it by e=(To),
Following the preceding proof we obtain

Theorem 2 Under the assumptions Hy, Hy, Hj and Hy, the part of the joint spec-
k

trum A9 lying in any k-cube H JEoj — hej , Eoj + he;[ centered at Ey is localized

j=1
modulo O(h*) near a lattice
& a 4)
=122 By, X 9K (2 By Ok
By + a (((27r Dh= 2l o, @ (7 - B)h 2ﬂ+zn)),

where &; are the integral of the subprincipal symbol on the basic cycles of the torus
acting on Yo, the p; are the Maslov indices of these cycles and a; are the action of
these cycles.

3 Multiplicity
For simplicity we maintain in this section the hypothesis (H3).
Theorem 3 For n € Z* denote by In(h) the k-cube with size 2Ch* centered at Eo +
a~!(=g — &h + nh) and suppose that In(h) C ﬁ]Eg, — ¢jh, Eoj + c;h[. Then the
number =2

Na(h) = §(In(h) 0 Spec(P(h)))

admits the following behaviour on h : there exists a sequence (lj(n)) N such that
jé!
for anym € N
m—1

Na(h) = ¥ 3 L)k + O(h™") (3.24)
0

and lp(n) =1y = E%F f,:u dv where dv denote the Liouville density of .

As before, we work with the new operators P(h). The Liouville density of S is
defined as follows : the map po : T*R™ — R* is a submersion on a neighbourhood
of By because of hypothesis (H;) and then defines a density on £y by “dividing” the
euclidean density dzp-g~ by the pullback pf(dzgs) of the euclidean density of R¥ by
the submersion. Actually pj(dzge) is a well defined density on a transversal of £o
and dv must satisfy at the points of £

drp-gn = dv A py(dzge).

If we use the Riemannian structure of the submanifold £, of the euclidean space
T*R"™ and denote by dS the associated Riemannian density, then

dS = ||dpoy A -+ A dpox||dv.
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Proof. We will just sketch it because we just follow [kn:D] herself inspired by [BU].
We want to approach Ny(h) by a trace
F— P(h) 1 o a
£ L) Ty (e $<t,(P(h)=F)>

) = () 0P ) = (e [ e Cwa(Pm))
with ¢ to be chosen satisfying two conditions : ¢ (0) = 1 and the support of ( isa sAmall
compact such that 0 is the only one period of the joint flow belonging to Supp(().

On one hand we can calculate Tr¢(h) using the stationnary phase theorem and
obtain the development (3.24) with the expression of lo as mentioned in [ChaPo|
Theorem 5.2.

On the other hand we cut Tr¢(h) in three terms

mm=( Y w3 R

A VilA =FjI<he;  xi vilaj-Fyi<al=ce;  A3jIA;—F5|>h1=<c;
3jIA; = Fj|2he;

and we will choose € and ¢. The third term can be controlled by O¢(h*Y) for any N
because ¢ € S(R¥). We just have to take N such that eN > m+k —n when ¢ is fixed.
If we want that the first term approaches Nn(h) we must choose (.

Lemma 3.1 For any N € N there exists a function gy : R* — R satisfying
én € CR(RY), o (t) 2 1+0(ld|Y) and (3:25)
3c, Ym € Z* — (0} |on(t)] < cllt —m||N. (3.26)
Proof. Remark first that for a function f, f € Cg°(R) and £(0) = 1, the function
o(z) = f(z) 2522 satisfies
$ECTR) p(@) 21+0(al); 3c>0;¥n € Z— {0}, lp@)] < clz=1]
(see Lemma 2.5.1 of [kn:D]). The function

k MmN
en(ty o) =TT (1- @-e)")

i=1
satisfies the properties of the lemma. L]
Define now for any m € Z*
1 1 7 |
Bm = s it T and ((t) = pn(t - fn) (3.27) ‘
then, by the Theorem 1 |
F-) F-)
(=200 = =200
A: Yi|A;—F;|<he; mezZ* \Xi[[A—(F—hBm)[|<Ch?

= Y e +omt

AlIA=(F=hBa)[|<Ch2 ‘
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if we use (3.26) to bound each other term and Lemma 5.4 of [ChaPo] to bound the
number of such terms by O(h*~"). Then using (3.25) we obtain

Corolario 1 For any m € N if we define ¢ by the formula above with N > m then

| Na(B) - 37 c<—> (A) | < Chmrk=n
X VilAj—Fj|<he;
For the second term we need a refined version of Theorem 1 by the control of the
constant C in the inequality (2.23).
Lemma 3.2 For a function ¢ such that { € C°(R¥) and b € R>® define G(t) =
C(£). There exists bo, ho,C > 0 such that for any h < ho and b > by,

I (19 - e H<T P>+ 40485070 g(P), < 141,

Proof. We will write here the kernel of the evolution operator as an oscillatory
integral. If we remark that (y(t) = ((bt), the kernel of the operator

(o(%ﬁ) (Id - e‘*‘<T"-"(")‘F>+A(‘VT°)*‘"3"‘(77")]) 6(P) can be written (locally in
(a,9))

/é(f)f)r'f-’“"""”'"’*<"F>’a(t,1,y,0,h)dt do = /e*‘f’"vl-%“a(t,z,y,e,h)dz df.

The relation between the phase function and the amplitude with the geometric objects
already described are : C' = {(z,y,t, ¢, ¢, ¢}); dy(t,z,,6) = 0}. The amplitude
a has compact support and by the previous section we know that a(t,z,y,60,h) =
h=™ S hia;(t,z,y,0) and ao(t,,y,0) vanishes on the canonical relation of our oper-
ator : A}. Moreover for any integer [ there exists a constant C; > 0 such that
[|D'dg|le0 < H'C (3.28)
where D! is any composition of [ partial derivatives. Finally we can remark that,
the phase function ¢ is non-degenerated in the sense that the function (z,y,t,0) —
(¢} + F,¢yp) is a submersion. This fact is a consequence of the description of ¢ given
in [ChaPo] Theorem 4.2.
Because the phase function is non-degenerated and o vanishes on Aj which can be
described as Ay = {(z,y, 8, }); #1(t,2,9,6) = 0,;(t,z,y,6) = 0}, there exist C*-
functions with compact support v; and x; such that @, =< 78 >+ < x,% >,
and as they are defined in terms of derivatives of @o and as a satisfies (3.28) their
derivatives of order I are controlled by b'*!. Finally an integration by parts gives

/Eﬁc‘su.z.yﬂ) (< Y dh >+ < x, B >)
h v; i -
Fé(t.z,, H) A E == = Pk

_/P 3! T 691) ol

if we remember that Supp(y) c]‘T‘, e
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Corolario 2 For any € << 1/2 if X = X(h) is a joint eigenvalue of P(h) such that
|IA = Fllc € ch*=¢ then there exist C > 0 and m € Z* such that

I = (F = hfm)]| < Ch?*=*¢

with B defined by (3.27).
Proof. We use Lemma 3.2 with b = h~¢ remarking that [(;(t)| > h{— if [|tloe < be. It
follows that if ||\ — Flle < ch*~¢ then
1 = em H<ToA=P>HAGTOHAERO™))| < hl—z;%_
The conclusion goes as for Theorem 1. (]

Consequence If )\ is a joint eigenvalue occurring in the second term of Tx (k) for the
special ¢ defined by (3.27), then it can be written F — hfim + O(h*~%) with m #n
an (((52)8()) = O(hV(1=29) by (3.25) ; as previously we can bound the number of
terms occurring in this sum by O(h¥~"), we obtain finally

I Z C(F_;L\)G()\) | < CRNA-20+k=n

i YilAs=Fjl<hi=Ce)
35| = Fy|2he;

it can be written as O(h™*+¥=7) if N(1 — 2¢) > m. Therefore we have proved that for
any integer m there exist C' > 0 and a function ¢ such that ((0)ﬂ= 1 and 0 is the only
period of the joint flow belonging to the (compact) support of ¢ and such that

| Tre(h) = Na(h) | < Ch™H-="

for h small enough. This concludes the proof of Theorem 3. ]

Received: April 2003. Revised: June 2003.
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