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ABSTRACT
One can prove fairly sharp results on the existence of weak solutions to the
complex Monge-Ampére equation applying the methods based on the concept of
the positive current. We survey those results both in a strictly pseudoconvex
domain and on a compact Kihler manifold.

0. Introduction

A function u defined on an open subset 2 of C" with values in [—00, +00), and not
identically ~oc is called plurisubharmonic (shortly psh) if it is upper semicontinuous
in €2 and subharmonic on any intersection of  with a complex line. When a psh
function is of class C? then the complex Hessian (,—,:'—':ﬁ“_.—.) is positive semidefinite,

that is o
u
A wWiwk 20
§ 02,05, ’
for any vector w € C". The last inequality says that the differential form
dd*u = 2i00u
defined by means of the operators

d=0+0, &=id-0), 8=}:,%.b=z%,
s gy
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is positive. Let us observe that a psh function is subharmonic and the positivity of the
Hessian is the complex analogue of the condition defining smooth convex functions.
So psh functions share not only all the propertles of subharmomc Iuncuom but also
their behavior often resembles that of the convex fi , in plurip

theory we rather use methods which are not derived neither from theory of convex
functions nor classical potential theory.

The plurisubharmonic functions have been investigated since 1942 when P. Lelong
and K. Oka independently introduced them in their studies of some problems in several
complex variables. An excellent historical account of the development of pluripotential
theory (theory of plurisubharmonic functions) the reader will find in C.0. Kiselman's
survey [KI2]. Plurisubharmonic functions constitute the natural class of solutions of

the complex Monge-Ampére equation

9*u

= 0.1
(le(( 0% )= (0.1)
where u is unknown and f is a nonnegative function on a given domain in C". In
particular the Dirichlet problem for this equation is well posed if we require u to be
psh. Recall that in the study of the real Monge-Ampere equation

2

u
B = 02)

det( s
we (usually) look for convex solutions. One way of attacking equation (1) is to apply
the methods of fully nonlinear elliptic equations which give good results in solving (2)
(see [ONS|[GT)). This approach proved to be successful at least in the non degenerate
case f > 0 (see CKNS] ). In this article, however, we shall look at (1) from a different
viewpoint. As it is explained below the equation (1) makes sense also for non smooth
u with a positive Borel measure on the right hand side. Our focus will be on finding
out which measures yield solutions in prescribed families of psh functions. It is easy

to compute that for u € C?

)aV = (dd°u)",

const. deL(B 8'
where the power on the right is taken with respect to the wedge product and dV'
denotes the Lebesgue measure. We shall see that the form on the right hand side
is well defined also for locally bounded psh functions if we legalize differential forms
with distribution coefficients (or currents). This is possible due to the fact that dd®u
is positive. The generalized definition of (dd°u)" is consistent with the classical one
since if we take a sequence of smooth psh functions u; decreasing to the given locally
bounded psh function u then the measures (dd°uy)™ converge to (dd“u)™ in the weak-
star topology. The definition can be extended to some classes of unbounded functions
as well

The study of those generalized solutions of the complex Monge-Ampere equa-
tion, initiated by E. Bedford and B.A. Taylor in [BT1)[BT2] (and prior to the results
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mentioned above) is intimately related to the study of certain properties of psh func-
tions, especially the convergence properties of sequences of psh functions. We shall
discuss the results from [BT1] and [BT2] after a brief review of the properties of
positive forms and currents. Bedford and Taylor solved the Dirichlet problem for
the complex Monge-Ampére ion in a strictly pseud domain for contin-
uous data. Section 3 and Section 4 are devoted to the presentation of more general
existence theorems with certain classes of Borel measures on the right hand side.
Those results are taken from the papers of U. Cegrell [CE2][CE3] and the author
[KO1][KO2][KO3]|[KO4][KO6)]. We can give fairly sharp sufficient conditions on the

to obtain conti i If we look for solutions in certain classes
defined by Cegrell then it is possible to characterize measures for which the Dirichlet
problem is solvable.

The Monge-Ampere equation is also intensively studied on Kahler manifolds since
its solutions give Kihler metrics with prescribed Ricci curvature. If (g,;) is a Kéhler
metric and f is a positive function on the manifold then the Monge-Ampére equation
has the form

0*u
det(m +9;5) = fdet(gz). (0.3)

Solutions of a little bit more general equation of Monge-Ampére type, with the
right hand side depending also on u, yield Kéhler-Einstein metrics. The latter are,
in a sense, canonical metrics on a given complex manifold. Their metric tensor is
proportional to the Ricci curvature tensor. The works of E. Calabi [CA] , T. Aubin
[AU1} and S-T. Yau [YA] are milestones in the complex geometry. They solved the
above equations for smooth non degenerate data. It is possible to generalize those
results dropping the smoothness and non degeneracy assumptions ([KO3](KO7]). For
example, if (suitably normalized) f > 0 belongs to LP(M) for p > 1 then there exists
a continuous solution of (3). In the last two sections we discuss those results.

For more background on pluripotential theory we refer to [BE] [KI2] [KL]. Most
of the proofs of the results presented below can be found in [KOS8]. They are too long
to be included in this survey.

1. Positive forms and currents

Let us denote by C(“:”(ﬂ) the set of all smooth differential forms of bidegree (p,p)

defined in an open set 2 C C". Thus any form w from Ciy5) () is given by
'
= Ads
w=i lel:p.ll\’lwu'mdz" diy,

where wyx are C* functions in Q, dzy = dzj, Adzj, A .. Adz;,, d2) = d2j, AdZj, A
. Ads;,, and 37" indicates that we sum up over multi indices J = (jy, ..., jp), K =
(K1, ..., kp) such that j) < ja < .. < jpi ki < kg < ... < k.

A (p.p) form is positive if and only if its restriction to any complex analytic
submanifold of dimension p in 2 is equal to the volume form of the submanifold
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multiplied by a ive function. Equivalently, w is positive (w > 0) if
wAa

is a nonnegative measure for any a which has a representation

a=i"oy Ay Aag A@ A ... Aan_p AGyp (1.1)
where a; € 7 (). Tt is easy to check that a (1,1) form w 3 wjkdz; A diy is
positive if and only if (wjx) is a positive semidefinite Hermitian matrix. Hence for
u € PSH N C*(N) the form

dd°u = 2i08u

is positive. In particular
. . n
=ik P SNEET
p= 5881;1 =3 Xl:d‘, A dz;.

is positive in C*. The wedge product ;‘yﬂ“ gives the standard volume form in C".
There is a theorem (see [LE1]) saying that a wedge product of a (1,1) positive form
and any other positive form is again positive. (It is essential that one of the forms
is of bidegree (1,1).) Thus for a collection of smooth psh functions uy, us, ..., ux the
form

dd®uy A dduy A ... A dduy (1.2)

is positive. Since we do not want to restrict ourselves to smooth functions we are
going to define the above differential form so that its coefficients could be identified
with distributions. Here the notion of a current comes in handy.

Let Dy, 1(9) denote the space of smooth, compactly supported forms (shortly:
test forms) in 2 of bidegree (p, ¢) equipped with Schwartz’ topology. Any continuous
linear functional on the space Dy, () is called a current of bidegree (n — p,n - q)
(equivalently: of bidimension (p,q)) in Q. The collection of such currents will be
denoted by D}, (). When for T € Dy, () we have

(Tya) 20

for any test form a given in (1.1) we say that T is a positive current. An important
property of a positive current is that its action can be extended to forms with con-
tinuous, compactly supported coeffici Then the coeffici of the current can be
identified with Radon measures. One can differentiate currents in the same way as
distributions.

It is a well known fact that any (pluri-)subharmonic function u is (locally) the
decreasing limit of a sequence of smooth (pluri-)subharmonic functions which are the
convolutions of u with p,(z) := j*"p(jz), where p € C§°(B) (B is the unit ball in C")
is a nonnegative, rotation invariant function with [ pdV =1 (dV' always denotes the
Lebesgue measure). The sequence uj = u+p; will be called regularizing sequence for
u. Any reasonable definition of (1.2) for non smooth functions should be stable with
respect to this type of regularization,

The following proposition was proved in [BT1].
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Proposition 1.1 For u € PSH N L{%.(Q) and a closed positive current T' on Q the
currents uT and

ddu AT := dd(uT)
are well defined. Moreover, the latter current is closed and positive.

Proof The statement is local, so one can use a regularizing sequence u; and assume
that it is uniformly bounded. Since we know that distribution coefficients of T are
complex measures it follows from Lebesgue’s dominated convergence theorem that
u; T converges weakly to uT'. Hence dd®(u;T) — dd*(uT). For smooth functions u;
we have dd*(u;T) = ddu; AT and so dd°u AT is equal to the limit of positive closed
currents dduy AT, L]

Applying this proposition repeatedly one can define (1.2) for locally bounded psh
functions. We shall see that this definition can be extended further to cover some
classes of unbounded functions but the following example, due to C. O. Kiselman
[KI1), shows that we cannot apply the Monge-Ampére operator to all psh functions.
Example The function

u(2) = (=log|z1)/2(1='* = 1)
for 2 = (21,2') € C x C"~! js psh in the ball B(0,1/2) but

/ (dd°u)" =
B0\ L

for L= {z: 2 =0} and r € (0,1/2).

In 1969 SS. Chern, H.I. Levine and L. Nirenberg [CLN] proved a very useful
inequality which gives a bound on the total variation || - || of the measure dd°u; A
dd®uy A .. A dd®uy in terms of ||+ ||o norms of u’s.

Theorem 1.2 If K ¢C U cC Q CC C", T is a closed positive current and u; €
PSH N L=(R), j = 1,2,....k then for a constant C depending only on K,U,Q the
following inequality holds

[ldd“uy A ddug A ... Add®ug AT |k < Cllun | o lwalle =yl oo oy || 2|0,

Proof It is known that for a positive (p, p) current we have the following estimate
for its total variation

ITllkc < €y / TAB,
K
where €y depends only on the dimension. Let us take a non negative test function
¢ in U which is equal to 1 on K and does not exceed 1 elsewhere in Q. Applying

Stokes' theorem (which is justified for those currents) and the above estimate we get
fora(n—j—1,n-j-1)current T:

[ldd*wy ATllx < Gy /Umfu. ATAB =c,/ WdEGAT A B
3
< CllwlloliTllo,
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where €' depends on C, and the second order derivatives of ¢. The statement follows

by induction. | ]
Demailly [DE] has strengthened this inequality by replacing one of the norms on

the right hand side by L' norm.
2. Convergence of psh functions and
capacity

It is well known (see e.g. [HO1][HO2]) that given a locally uniformly upper bounded
sequence of subharmonic functions in some open connected subset of R™ which does
not tend to —oo locally uniformly one can extract a subsequence which converges in
Lj,. to a subharmonic function. Furthermore, if subharmonic functions u; tend to u
as distributions then u; = w in L}, One can strengthen the last statement when u;
are psh. Then the sequence converges in Lj, for p € [1,00).

However even if u; — u in L{:n_ it does not imply that (ddu;)" — (ddu)" as
measures (see [LE2][CE1]). In [BT2] Bedford and Taylor have shown that the Monge-
Ampére operator is continuous with respect to monotone sequences of psh functions.
Later, Y. Xing [XI] found out that the convergence in capacity (defined below) entails
the convergence of corresponding Monge-Ampere measures and that, in a way, this
result is sharp. The capacity has been introduced in (BT2] and is nowadays called

the Bedford-Taylor capacity:
cap(E, Q) = sup{/ (dd°u)"™ : w € PSH(), -1 < u < 0}
B

for a Borel subset E of Q. It is a Choquet capacity and in bounded € it vanishes
exactly on pluripolar sets. Recall that a set B in C" is pluripolar if for any z € E
there exists a neighbourhood V of z and v € PSH(V) such that ENV C {v = —00}.
Definition A sequence u; of functions defined in Q is said to converge in capacity
tou if forany t >0 and K cC 0

lim cap(K 0 {|u—u;| > t},Q) = 0.
o

: The Monge-Ampére operator is continuous with respect to sequences of psh func-
tions converging in this manner.
Theorem 2.1 (Convergence theorem)(XI] Let fu{)‘”, be a locally uniformly

bounded sequence of psh functions in Q for k = 1,2,...n; and let uj, — uy €
PSHNO L= () in capacity as j = 0o for k= 1,2,...,n. Then

dd°u] A ... A dd®ud, = dd°uy A ... A ddCup

in the weak topology of currents.
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One can show that a decreasing, locally uniformly bounded, sequence of psh func-
tions converges in capacity. The same is true for an increasing sequence converging
almost everywhere to a psh function but this fact can be shown only wnth an ap-
plication of Theorem 2.4 below which in turn requires the for
increasing sequences (Theorem 2.3). Thus we neeed a proof of Thmrem 2.3 which is
independent of Theorem 2.1. For this proof one needs an important property of psh
functions known as guasicontinuity and given in the following theorem.

Theorem 2.2 [BT2] For any psh function u defined in 2 and any positive number
¢ one can find an open set U € Q with cap(U,Q) < ¢ and such that u restricted to
2\ U is continuous.

Theorem 2.3 (Convergence theorem for increasing sequences (BT2]) The
statement of Theorem 2.1 remains true if uj, T ux almost everywhere.

A classical potential theory theorem, due to H. Cartan, says that any negligible
set, that is a set of the form {u < u*}, where u is a supremum over a family of
subharmonic functions, is polar. In '60 P. Lelong conjectured that the corresponding
statement should be true for psh functions, namely, that a negligible set for a family
of psh functions is pluripolar. It is easy to see that the converse is true. Indeed,
if EC {v=-oc} for v € PSH(Q) then E is negligible since E C {u < u*} for
u = sup, oy v/J. The Lelong conjecture was proved by Bedford and Taylor.

Theorem 2.4 [BT2] Negligible sets are pluripolar.

The preceding theorems in this section are the essential ingredients in the proof of
Theorem 2.4 as well as the solution to the Dirichlet problem for the Monge-Ampere
equation which we shall discuss in the next section. This theorem has found many
applications in complex lysi ially in approximation theory and the theory
of extremal functions (see e.g. [SlC])

3. Bounded solutions of the Dirichlet
problem for the Monge-Ampeére equation

Let 2 be a strictly pseudoconvex domain (a sublevel set of a C? smooth strictly psh
function whose gradient does not vanish on 89), let ¢ be a continuous function on
O0 and let f be a non negative function in 2. We consider the following Dirichlet
problem

u€ PSHNC(RN)

(dd*w)" = [ dv ()

}Lﬂ:n(() =¢(z) z €00, peCAN).

Theorem 3.1 [BT1] The Dirichlet problem () has a unigue solution when fisa
continuous function on the closure of Q.
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About the proof The proof is too long to give all the details but we shall highlight its
main ideas. The uniqueness follows from the comparison principle.

Comparison principle Let 02 be an open bounded subset of C". For u,v € PSHn
L*(Q) satisfying lim_,. (u = v)(¢) 2 0 for any z € 9Q we have

/ (dd°v)" < / (ddFu)".
{u<v} {u<v)

In particular the inequality (dd°u)" < (dd®v)" implies v < u.

The comparison principle is also a main tool in the proofs of existence theorems
which follow this one.

As for the existence part of Theorem 3.1, a difficult technical point is to handle
det(; 3 &) for non smooth u. A device that does the job is the Goffmann and Serin
(GS] cons(rurnon of a scalar measure associated to a vector valued measure via a
given homogeneous superadditive functional. For our purpose we use the functional
F defined on C - the cone of n X n nonnegative Hermitian matrices - by the formula

F(A) = det'/™4, AecC.
If i is a C- valued measure on  then the scalar measure Fu is given by

Fu(E) = inf Y F(u(E;)),
J

where the infimum is taken over all partitions {E;} of E into a finite number of disjoint
Borel sets. Since for any psh function u its second order derivatives are measures one

can define
&*u

D(u) = (n')l/"}'(az 25
7]

).

For smooth u we have (dd°u)" = ®"(u)dV. From the corresponding properties of
Fu (see [GS]) one can infer the following properties of ®.

Proposition 3.2

1) ®(tu) = td(u) for t > 0 and ®(u +v) > $(u) + d(v).

2) If p 1s o test function then ®(u* p) > ®(u) * p.

3) If o sequence of plurisubharmonic functions u; tends weakly to u and ®(uy) is
weakly convergent then $(u) > lim ®(u;).

4) For the regularizing sequence of u we have lim ®(u;) = &(u).

5) ®(max(u,v)) > min(®(u), B(v)).

In what follows £)-4) allow us to work with smooth psh functions and then to

draw a conclusion passing to the limit. The last point is important since we shall
define the solution of (+) as the supremum over a family of psh functions. Finally,

T
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the superadditivity of @ plays a crucial role in establishing the second order a priori
estimates for the solution.
Let us now define the candidate for the solution

u = supv, (3.1)
S

where
S={vePSHQ)NC®): d(v) > f*dV, ven < ¢}

To prove that u really solves the equation we start with the following proposition.

Proposition 3.3 The function u is continuous and belongs to S. If f* and ¢ are
Lipschitz then so is u.

The proof of those facts uses an argument of Walsh [WA | which allows us to
show that for v € S and small |a| the function v(a + <) suitably modified close to the
boundary also belongs to S.

In the next step of the proof of Theorem 3.1 we find second order a priori estimates
for the solution in the case § is equal to a ball.

Proposition 3.4 The function u in (3.1) has bounded second order derivatives if we
assume that Q is equal to the unit ball B, f* € C'\(B) and p is C'.

About the proof We seck for a good estimate of the expression
u(z 4+ h) + u(z = h) - 2u(z),
when A is a small vector. Since u(: + h) is not defined everywhere in B and we need
to work with functions from S, we shall replace u(- + h) by uo T}, where T}, is a
holomorphic automorphism of B with the property
T(z) = z + h+ O(|h]?).

This is where we need the assumption 2 = B just to have a rich group of automor-
phisms. Using the superadditivity of ® one can show that for some uniform constant
C the function

%(u o Ty +uoT_y) - Clh|?
belongs to S, From this the required estimate rather easily follows. In the course of the
proof also the following neat formula for the Monge-Ampére measure of a composition
of a psh function u with a holomorphic mapping 7' comes in handy
S(uoT) = |detT'[*/"d(u)o T,

where 7" denotes the Jacobian of T'. ]
Having Proposition 3.4 one can show the following theorem.
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Theorem 3.5 Suppose 0 < f* € C(B) and @ € C''(8B). Then the function u
in (3.1) belongs to C'(B) and solves the Dirichlet problem (+) in the unit ball.

Let us now derive Theorem 3.1 in the case @ = B from Theorem 3.5. One
can fix two sequences of smooth functions f;, ¢; which tend uniformly to f and ¢
respectively. From the comparison principle it follows that the solutions u; of (»),
which correspond to the data f;,p; converge uniformly to a psh function u. By the
convergence theorem

(dd°uj)™ = (dd°u)™,

50 u is the desired solution.

The proof of Theorem 3.1 for general Q easily follows from that special case.
Indeed, by Proposition 3.3, it remains to prove that (ddu)” = fdV. Let us fix a ball
By € 0 and denote by u, the solution of the Dirichlet problem (dd°u)* = fdV in
By, uy = u on 8B,. Then v equal to u; in By and equal to u elsewhere in 2 belongs
to 8. Hence v < u. Since, due to the comparison principle, u; > u in By we conclude
that uy and u are equal in By which shows that (dd“u)® = fdV in Q because the
above is true for any ball in Q.

One can prove the existence of solutions to (+) under weaker assumptions on f.
Suppose a measure p satisfies the inequality

w(K) < F(cap(K,Q)), K compact,

with i
x
= 3.2
Be)= jamamy: A 32)
where h : R. — (1, 00) satisfies the conditions:
1) h is continuous and increasing,
N ey
3) for some a > 1, b > 1 and 79 > 0 we have h(az) < bh(z) for z > zo.
Then one can prove a priori L™ estimates for the solutions of

(dd®u)™ = dp

with given continuous boundary data. Given F as above all such solutions are uni-
formly bounded (see [KO1)[KO4]). Those estimates allow us to prove the following
existence results.

Theorem 3.6 [KO1] [KO4] Let us define the family of non negative Borel measures
n ) associated to a function h, satisfying the conditions above, and a positive constant
A

F(Ah) = {p: u(K) < F(cap(K,Q)) for F(z) = ,Tff/";
and any compact K C Q).
Then the Dirichlet problem () has a unique solution for any du € F(A, h).

e 3 °N
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Theorem 3.7 [KO1][KO8] Let
f € L¥(co) = {g € L'() :gzo./nwhmavs@).

where
Un(t) = [t|(log (1 + |¢)))" h(log(1 + [¢]).

with h as above. Then the Dirichlet problem (+) has a solution. Moreover, all such
solutions for fized h,co are equicontinuous and uniformly bounded.

As a consequence of the last theorem we get the following statement.
Corollary 3.8 For any p > 1 and any f € L?() the equation () is solvable.

One can take

() = [t1og(1 + t1))" (1 + Log(L + Log(1 + [t))™ m > n,

in Theorem 3.7. The following example, due to L. Persson [PE], shows that the
assumptions in this theorem cannot be substantially weakened. If x(t) = [t|(log(1 -+
|t[))™,m < n then the Monge-Ampere equation admits unbounded solutions with
pointwise singularities for some radially symmetric densities from L*. Indeed, one may
verify that the function f(2) = |2|=*"log™* 2|z|~" belongs to LX(B) for k > m + 1
and the corresponding solution is equal —co at 0 for k < n + 1.

Let us now consider a slightly more general Dirichlet problem in a strictly pseu-
doconvex domain. Here we no longer require the solution be continuous.

uw€ PSHNL®(N),
(dd®u)" = dp, (k)
ch_r‘n u(¢) = p(2) for = € AN,

A bounded psh function v is a subsolution to (s+) if

(ddv)™ > dp

and the boundary condition is met. The following theorem provides us with a large
class of solutions.

Theorem 3.9 [KO2| If there exists a subsolution for the Dirichlet problem (w*) then
the problem is solvable.

Applying Theorem 3.9 one can solve (++) for many specific measures which are
singular with respect to the Lebesgue measure.
Example For 0 Jet us take the unit ball B. By B, we denote the ball of radius r
centered at the origin. Consider
1zl

v(z) = max(log %,0)

Ve N
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in B. Since log |z| is harmonic away from 0 on any complex plane containing the origin
the Monge-Ampére measure of v is concentrated on 8B, = {z : lagl%l = 0}. This
measure is also rotation invariant and thus it is proportional to the surface measure
do, on OB,. From Theorem 3.9 it follows that for any bounded measurable f the
Dirichlet problem (s») with dp = f do, and @ = 0 is solvable.

One can prove an analogous statement for a surface measure of a smooth, strictly
convex hypersurface and arbitrary ¢ but it requires a little bit more effort since the
subsolution will not be explicitly given in general.

4. The exdended definition of the
Monge-Ampeére operator and the Dirichlet
problem

As the Kiselman example from Section 1 shows there is no hope for a good definition
of the Monge-Ampére operator on all unbounded psh functions. However, the Monge-
Ampére operator can be defined on some classes of psh functions in such a way that
(dd*u)™ is locally finite and that it is continuous with respect to monotone sequences
of psh functions. In this section we shall follow U. Cegrell’s work [CE2] [CE3].

Throughout the section Q will denote a fixed hyperconvex domain in C", n > 1.
We call a domain in C" hyperconvex if there exists nonzero u € PSH(Q)NC(Q) such
that u = 0 on 8. The set of such functions satisfying Jq(dd*u)™ < oo we denote by
&o. Observe that a polydisk in C" is hyperconvex. A psh function in a polydisk which
is continuous up to the boundary cannot assume arbitrary continuous boundary val-
ues. This follows from the fact that there are complex disks in the boundary and the
boundary values on those disks are necessarily subharmonic. Therefore the Dirich-
let problem in a hyperconvex domain may not be solvable for arbitrary continuous
boundary data.
Definition We say that a plurisubharmonic function u belongs to &, p > 1 if there
exnsts u; € & with u; | u,sup; fn(—ul)"(dd‘u,)" < 00. A function from &, belongs
to 5, of sup; jnuld’u,)" < 00,

The following Holder-like estimate is a crucial technical tool in the proofs of the
results of this section.

Theorem 4.1 [CP)] For u,v € & and p > 1

I

.:(";J_‘,H/(,")r(ddr")")(nUl/('wp)(/(_V)p(ddt‘,)n)ln-n/(n*p)
o n

—u)?(ddu)? A (dd°v)"~

with Cly.p) = 1 4/ p=1 and C(j,p) = p(p + j)(n — j)/(p — 1) otherwise.

The families of functions introduced above have following properties:
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The complex Monge-Ampére eq

)& CFCt FoCFforg>Sp.

2) &, and ¥, are convex cones,

3) &, and F, are closed with respect to the operation of taking maximum of a
finite number of functions.

One can define the Monge-Ampere operator on &, applying the next statement.

Theorem 4.2 Suppose u € PSH(Q) is the limit of a decreasing sequence u;j € &o
such that a = sup; fn(-u,)'(dd‘n,)" < 00. Then (dd“uy)™ is weakly convergent to a
measure dy which 1s independent of the choice of uy satisfying the condition above.
Thus one can define (dd®u)" = dp.

It is possible to characterize those finite measures which give rise to a function
from ¥, as a solution of the Dirichlet problem.

Theorem 4.3 [CE2) Let p be a positive measure with finite total mass in Q. Then
there exists a unique u € F, solving

(dd®u)™ = dp

if and only if for some positive A the following inequality holds
/(—u)"du < A(/(-u)w(ru)“)ﬁ-.
Jor any v € &

Let us observe that functions from F, have essentially zero boundary values. Pre-
cisely, limsup of such a function with the argument approaching the boundary is
equal to zero. The last theorem can be generalized to cover other boundary data,

Let @ be a continuous function on 99 such that there exists a solution u,, of the
homogeneous Monge-Ampere equation ((dd®u,)" = 0) which is continuous up to 9Q
and equal to ¢ on 80, For p > 1 the class F,(y) consists of those functions u for
which there exists v € F,, such that

Up 2 U2 U+ Uy
Theorem 4.4 [CE2] Let pu be a positive measure with finite total mass in Q0 and let
@ be the function from the last paragraph. Then there exists a function u € Fp(ip)
solving
(dd*u)" = dp
if and only +f for some positive A the following inequality holds
Jeur us af copaaan,

Jor any v € &.
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Let us now see how far can we go in extending the action of the Monge-Ampére
operator. In [CE3] U. Cegrell defined a class £ = £() of negative psh functions and
proved that it is the largest family which satisfies the following two conditions:

1) If u € £ and v is a negative psh function then max(u,v) € €.

2)Ifu€ & and 0 > u; € PSH N LZ,() with u; | u then (dd®uy)" is weak®
convergent.

The class £() consists of those u - negative psh functions for which given z €
one can find a neighbourhood of this point and a sequence u; € £() with

sup/(drl‘xu)“ <
JJa

and such that u, | uin U. For functions from £() one can define their Monge-
Ampére measure due to the following theorem.

Theorem 4.5 [CE3] For u € £(Q) and u; € &(Q) with u; L u the measures
(dd"u;)" converge in the weak® topology. The limit is, by definition, equal to (dd®u)".

Similarly one can define
dd®uy A dd®uy A ... A dd®uy
for uy 4z, up € £(0). It is possible to prove (see [CE2]) that the function in C*
given by
u(z1,22) = (= log|z2))*

belongs to £(B) (B is the unit ball) if and only if a € (0,1/2).

To develop an interesting theory one needs to consider a smaller class F(2) C
E(). A function u € £(R) belongs to F () if there exists a sequence u; € £o(f) with
ty uin 0 and

xup/(dd‘u,)" < ™.
i Ja

To have u € £(12) it was enough to find u; convergent locally to u. In the class
one can perform integration by parts and prove the comparison principle. As for the
solution of the Dirichlet problem one can reduce the solution to the case of a singular
measure which is carried by a pluripolar set.

Theorem 4.6 [CE3) Let u be a positive measure in Q with Jodp < oo. Then one
can find u € &(0), f € L'((dd°u)") and a measure v carried by a pluripolar set such

that pu = f(dd“u)™ + v. Furthermore, if there exists v € F(Q) with (dd°v)" = dv then
there exists w € F(0) with (dd°w)" = dj.

The solution of the Dirichlet problem for measures carried by a pluripolar set is

T .
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an interesting open problem.

5. The complex Monge-Ampeére equation
on a compact Kahler manifold

The geometers have good reasons to study the complex Monge-Ampere equation
on Kiihler manifolds. So far the satisfactory results have been obtained for com-
pact Kiihler manifolds. Let us consider a compact n-dimensional Kahler manifold M

uipped with the fund al form w which is given in local coordinates by

w= % kzy.;dz‘ AdS. (5.1)
J

For a Hermitian manifold the matrix (g,;) is positive definite and Hermitian sym-
metric at any point. A Hermitian manifold is Kahler if dw = 0. There is a theorem
saying that locally in a neighbourhood of a given point in M there exists a psh function
v such that

w = ddv.

This condition may also define Kiihler manifolds among Hermitian ones. For the
background in Kihler geometry we refer to [AU1][TI][YA].
The Monge-Ampére equation has the following form

(w+ddp)" = fw", w+ddp >0, (5.2)

where @ is the unknown function. The given non negative function f € L'(M) is
normalized by the condition
Y vy
M M

Since, by the Stokes theorem, the integral over M of the right hand sideis equal to
Jjyw", this normalization is necessary for the existence of a solution. Observe that in
any open set where w = ddv the equation is not really different from the one studied
50 far:

(dd®v 4 p)" = f(ddv)",
with v + @ psh. The point is that v + ¢ is not psh on the whole manifold since the
only globally defined psh functions on M are constants

The volume form associated to the Hermitian metric (5.1) is given by n-th wedge
product ,{;." Note that the solution of (5.2) provides us with a Kahler metric whose
volume form has been prescribed. The equation has been studied since fifties when
E. Calabi observed that its solution gives a new Kihler metric with presigned Ricci
curvature. Recall that for a Kihler manifold (M, w) the Ricei curvature form is given
by

Rie(w) =~ %dd"[logdct(g,‘ )
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The Calabi conjecture says that given a (1,1) closed form R’ on (M, w) represent-
ing the first Chern class one can find a Kihler metric w' (in given Kahler class) with
Ric(w') = R'. A short calculation and the fact that any pluriharmonic function on A
must be constant lead to the conclusion that to prove the Calabi conjecture one needs
to solve (5.2) for smooth (strictly) positive f. Calabi [CA] proved the uniqueness of
the solution up to an additive constant and suggested that the continuity method,
which works in case of the real Monge-Ampere equation, should be employed for the
proof of the existence of a solution. He proved some a priori estimates for the deriva-
tives of the solution. His work was completed only twenty years later by S.-T. Yau
who derived the missing L™ estimates.

Theorem 5.1 [YA] Let f > 0,f € C¥(M),k > 3. Then there exists a solution to
(5.2) belonging to Holder class Ck1@(M) for any0 < a < 1.

In contrast to the case of the Monge-Ampére equation in a strictly pseudoconvex
domain we have no "pluripotential” proof of the existence part of this theorem. An
interesting task is to find one. However, we can use the methods of pluripotential
theory to generalize this result and obtain weak solutions of the equation under similar
assumption to those imposed in case of the Dirichlet problem in a pseudoconvex
domain

Let us call an upper semicontinuous function @ on M w-plurisubharmonic if dd“ g+
w > 0on M. For such  we write ¢ € PSH(w). Given a Borel set £ C M one can
define its capacity by

cap,(E) = sup(/ (dd°p +w)" : p € PSH(w),0 < ¢ < 1}.
E
In terms of this capacity we define some families of functions on M.
Fam=(er@n f20 [ fur= [ o,
M M
/ fw" < F(capy(E)) for any Borel set E € M},
B

where F s given in (3.2). One can show that the solutions of the Monge-Ampére
oquation (5.2) when f varies over F(A, h) are uniformly bounded. This L™ a priori
ostimate i » crucial step in the proof of the following existence result.

Theorem 5.2 [KOS3J[KOT) If I is given in (3.2) and 1 € F(A, k), then for any
[ € F(AR) there enists a continuous solution of (5.2). Moreover there exists a
constant al A, A) > 0 such that any solution of

(dd®p 4+ w)" = fw", maxp = 0,

with [ € F(A.K) satisfies p > —a(A, h).
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Again as in Section 3 we have the inclusion
L¥ (co) C F(A, h),
where

~ o= 1 . s u,'" b n v
LY (co)—(IGL(M).IZO./;’/u _/M ./nu(l)w < co)

with
Un(t) = |tl(log(1 + [¢]))"h(log(1 + |¢])),

and A satisfying the conditions in (3.2). In particular this gives us continuous solutions
to (5.2) for suitably normalized f € LP(M) for any p > 1. Furthermore the solutions
corresponding to the data from fixed LY*(co) are equicontinuous. They are also stable
with respect to small variation of the data f in L' norm. Here is an example of a
stability theorem.

Theorem 5.3 [KOT| Suitably normalized w-psh solutions of the equations
(dd°p + w)" = fw", (dd°¢ +w)" = g™
Jor f,g € L¥(co) and h(z) = 2" satisfy
lle = ¥lloo < ellf = all"***,

with ¢ depending only on co.

6. The complex equation of Monge-Ampeére
type on a compact Kdhler manifold

We have seen that the study of the equation (5.2) originated in an effort to prove
the Calabi conjecture. Another vital geometrical problem is to find a Kiihler-Einstein
metric on & given Kihler manifold. By definition such a metric obeys the equation

Ric(w) = const.w.
The solution boils down to solving the equation of Monge-Ampére type
(w + dd®p)" = exp(op + f)w", (6.1)

where the constant ¢ depends on the first Chern class ¢ (M). If ¢, (M) jg negative
then ¢ = 1, if ¢;(M) is positive then ¢ = ~1. In the latter case the equation is
not solvable in general (see [AU2)(SIU)(TI]). Thus there may be no Kihler-Einstein
metrics on M. For ¢ = 1 a solution always exists which follows from Theorem 6.1
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(below) proved by T. Aubin and S.-T. Yau independently. We shall consider the
equation of Monge-Ampere type in its general form

(w+dd*)" = f(p, )", (62)

/M T = /M W

Theorem 6.1 [AU1][YA] If f in (6.2) is positive, smooth and its partial derivative
with respect to the first variable is strictly positive then there ezists a smooth solution
of (6.2).

with a normalizing condition

for some real tg.

This result can be generalized along the same lines as Theorem 5.1. Suppose that
f from the equation is non negative, increasing and continuous in the first variable,
and
f(t,2) < const.g(2),

with g € F(A, h), where F(A,h) is a family from the previous section.

Theorem 6.2 [KO5] For f satisfying the above iptions there ezists a continu-
ous solution solution of (6.2).

Under some natural assumptions the solutions are stable when f varies slightly
(see [KO7)).
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