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ADSTRACT. If & graph G is embedded into a closed surface S such that S\Gas is a
collection of disjoint open discs, then M = 3D(G, S) is called a map. A zigzag in a
map M is a closed path which alternates choosing, at each star of a vertex, the leftmost,
and the rightmost possibilities for its next edge. If a map has a single zigzag we show
that the cyclic ordering of the edges along it induces linear transformations, cp and cp~
whose images and kerncls are respectively the cycle and bond spaces (over GF(2)) of
@y and Gp, where D = 3D(Gp, S) is the dual map of M. We prove that Im(cpocp~)
Ia the intersection of the cycle spaces of Gy and Gp, and that the dimension of this
nubspace is connectivity of S. Finally, if M has also a single face, this face induces a
linear transf cp which is invertible: we show that cp' = 3Dcp~.

Koywords: Closed surfaces, graphs, maps, map dualities, facial and zigzag paths

1 Introduction: Combinatorial Maps

A topological map M* = 3D(G, S) is an embedding of a graph G into a closed surface S
such that S\G is a collection of disjoint open disks, called faces. By going around the
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334 On Maps with a Single Zigzag

boundary of a face and recalling the edges traversed we define a facial path of M*, which is
a closed path in G. Note that a facial path is obtained starting in an edge and by choosing
at each vertex always the rightmost or always the leftmost possibility for the next edge. If
we alternate the choice, then the result is a zigzag path, or simply a zigzag. Even if the
surface is non-orientable these left-right choices are well defined, because they are local
For more back 1 on graphs embedded into surfaces see [Giblin, 1977]. To make our
objects less dependent of topology we use a combinatorial counterpart for topological maps
introduced in [Lins, 1982]. A combinatorial map or simply a map M is an ordered triple
(Car,var, far) where: (i) Cy is a connected finite cubic graph; (ii) vy and fyr are disjoint
perfect matchings in Cpy, such that each component of the subgraph of Cy induced by
uar U far is a polygon (i.e. a non-empty connected subgraph with all the vertices having two
incident edges) with 4 edges and it is called an M -square.

ISR IS SN WY —

Fig. 1: A zigzag and its corresponding z-gon

From the above definition, it follows that C'as may contain double edges but not loops.
A third perfect matching in Cyr is E(Cyr) — (var U far) and is denoted by aps. The set
of diagonals of the M-squares, denoted by zys, is & perfect matching in the complement of
Cay. The edges in var, far, za, anr are called respectively vas-edges, fag-edges, zp-edges,
ap-edges. The graph Ci U zpr is denoted by @ar, and is a regular graph of valence 4.
A component induced by ax U vy is a polygon with an even number of vertices and it is
called a v-gon. Similarly, we define an f-gon, and a z-gon, by replacing v for f and v for =
Clearly, the f-gons and z-gons of Cjs correspond to the facial paths and the zigzags of M"
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‘To avoid the use of colors the M-squares are presented in the pictures as rectangles in which
the short sides (s) are vp-edges, the long sides (£) are far-edges and the diagonals (d) are
2u edges. An M -rectangle with diagonals or simply an M-rectangle (being understood that
the diagonals are present) is a component induced by var, far, 2ar. The set of M-rectangles
is denoted by R. If = is a permutation of the symbols séd, and R’ C R subset of rectangles
of M, then M(R' : =) denotes the map obtained from M by permuting the short sides, the
long sides and the diagonals according to 7 in all r € R'. Let M(r : x) denote M({r} : m).
The dual map of M is the map D = 3DM(R : £sd); D and M have the same z-gons and
the v-gons and f-gons interchanged. The phial map of M is the map P = 3DM(R : dés);
P and M have the same f-gons and the v-gons and z-gons interchanged. The antimap of
M s the map M~ = 3DM(R : sdf); M and M~ have the same v-gons and the f-gons
and z-gons interchanged. The pairs (M, D), (M, P), (M, M~) constitute the map dualities
introduced in [Lins, 1982]. The dual of P is D™ and the dual of M~ is P~. Let Q(M) =
AD(M, D, P.M~, D~ P~} and Q*(M) = 3D{M(R' : 7) | R C R, permutation of sfd}.
Note that (M) € Q*(M) and that any member of 2*(M) has R as its set of rectangles.

xR G - A R
Fig. 2: How a neighborhood of each rectangle is modified in the members of Q(M)

Given & map M and its dual D, there exists a closed surface, denoted by Surf(M, D)
where Cy = 3DCp naturally embeds. Consider the v-gons, the f-gons and the M-squares
bounding disjoint closed disks. Each edge of Cp occurs twice in the boundary of this col-
lection of disks. Identify the collection of disks along the two occurrences of each edge. The
result is & closed surface and Cyy is fai ly ided on it, ing that the L d
of the faces are bxcolored polygons or bigons. Similarly, there are surfaces Surf(D™~, P) and
Surf(P~, M~)

We define & function ¢ which turns out to be a bijection from the set of maps onto
the set of t-maps. We denote y(M) by M'. Given a map M, to obtain M* we proceed
s follows. Consider the t-map (Cu,S), where S = 3DSurf(M, D), given by the faithful
embedding of M. The v-gons, the f-gons and the M-squares are boundaries of (closed, in
this case) disks embedded (and forming) the surface S(M). Shrink to a point the disjoint
closed disks bounded by v-gons. The M-squares, then, become bounding digons. Shrink each
such bounding digon to a line, maintaining unaffected its vertices. With these contractions,
effected in S, t-map (Cay, S) becomes, by definition, M* = 3D(Gr, S). Graph G is called
the graph imduced by M. A combinatorial description of G can be given as follows: the
vertices of Gy are the v-gons of M; its edges are the squares of M; the two ends of an
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edge of Gy are the two v-gons (which may coincide and the edge is a loop) that contain the
vas-edges of the corresponding M-square. It is evident that ¢ is inversible: given a t-map we
replace each edge by a bounding digon in its surface, and then expand each vertex to a disc
in order to obtain a cellular embedding of a cubic graph. Therefore, ¥~ is well-defined; in
fact, it is the dual of a useful construction in topology, namely, barycentric division. Thus,
v is a bijection from the set of maps onto the set of t-maps. It can be observed that ¢
induces a bijection from the set of M-rectangles onto the set of edges of G . We use this
bijection to identify the sets R and E(Ga). Via R, which is invariant for the members of
Q*(M), we identify E(Gpr) and E(Gpy) for M’ € Q*(M). Denote these identified sets of
edges by E.

2 Absorption Property on Maps

The members of Q(M) induce three distinct graphs: Gy = 3DGuy~, Gp = 3DGp-~,
Gp = 3DGp~. We give to the power set £ = 3D{E' | E' C E} a vector space structure
over the field GF(2) by defining the sum of subsets of edges > {A4; | 1 < i < n} to mean
the subset of [J{A; | 1 <i < n} formed by the elements which occurs in an odd number of
A,’s. The bond space and the cycle space [Bondy and Murty, 1976], [Godsil and Royle, 2001]
of Gy are denoted respectively by V and V+. For connected Cay, they are vector subspaces
of & whose dimensions are v — 1 and |E| — v + 1, where v is the number of vertices of Gy,
or number of v-gons of M. Similarly, let F and F* denote the bond and cycle space of Gp
and Z and 2+ the bond and cycle space of Gp. The dimensions of F and F* are f — 1 and
|E| = f+ 1, where f is the number of f-gons of M, or faces of M* = 3D(G s, Surf(M, D)).
The dimensions of Z and 2+ are z — 1 and |E| — z + 1, where z is the number of z-gons of
M. Each z-gon in M corresponds to a zigzagin M* = 3D(G s, Surf(M, D)). If G is a graph
and W C V(G) then §g(W) = 3D{z € E(G) | z has an end in W and an end in V/(G)\W}
The subset of edges dg(W) is called the bond of W in graph G.

Theorem 1 (Absorption Property) For an arbitrary map M we have
(@) VAFCZ, (b)) FAZCV, (c) ZNVC F.

Proof: It is enough to prove the result in case (a). For (b) and (c) we would use maps D™
and P~ respectively. Take an element X € VN F. It follows that there exist V' C V(Gx)
and F' C V(Gp) such that X = 3Ddg,, (V') and X = 3D, (F'). Denote by V' the
subgraph of Cy consisting of the disjoint v-gons corresponding to the vertices in V', Denote
by F” the subgraph of Cjs consisting of the disjoint f-gons corresponding to the vertices in
F’. Let 2" the subgraph induced by the symmetric difference of V" and F". Since Cy is

e W



P

Séstenes Lins & Valdenberg Silva 337

cuble, 2" is & collection of disjoint polygons. The crucial observation is that any rectangle
as precisely one opposite pair of vertices in F" if and only if this rectangle has one v-edge
1 V" and one fa-edge in P, namely, if and only if the rectangle corresponds to an edge in
X Therefore, each component of Z"' is a polygon with 3 x k edges which can be factored
by k subpaths of length 3 having an ap-edge, a vy-edge and an fyr-edge (the last two not
yecessarily in this order). Let Z" obtained from Z" by replacing each adjacent pair of vp-,
Ju- edges by the zy-edge forming a triangle with them in Qar. Clearly, Z is a collection
of disjoint z-gons corresponding to a 2’ C V(G p) satisfying 6, (Z') = 3DX [ ]

3 Maps with a Single Zigzag

Maps with & single zigzag are related to the Gauss code problem. For this problem in the
plane see [Shank, 1975), [Lovasz and Max, 1976], [Rosenstiehl, 1976]. The present paper has
its motivation in trying to generalize the result of [Lins,, Richter, and Shank, 1987 on the 2-
{ace colorable Gauss code problem in the projective plane to surfaces of higher genus. In fact,
by using the algebraic theory we are about to develop we can solve the 2-face colorable Gauss
code problem in the Klein bottle. The paper presenting this solution is under preparation.
Thus, maps with a single zigzag induce useful algebraic structures which are the main theme
of this work. Here is an example of a t-map having a single zigzag.

a

Fig 3 An embedding of K33 in the projective plane having a single zigzag

The cyelic sequence of edges visited in the single zigzag is

P=3D(1,8,5,6,9,4,5,7,3,4,-8,2,3,-9,1,2,-7,6).

.
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This can be easily followed in the medial map [Godsil and Royle, 2001] on the right. The
edges become small circles and, to obtain the faithful embedding of Cjy, it is enough to
deform each such circle to a rectangle. The direction of the first occurrence of an edge
defines its orientation. Edges 1,2,3,4,5,6 are traversed twice in the positive direction (they
correspond to black circles in the medial map) and edges 7,8,9 are traversed once in the
positive direction and once in the negative direction (they correspond to white circles). The
reason for the notation P is that the signed cyclic sequence defines the phial map P (whence
all maps in Q(M)) and vice-versa, the phial defines the sequence.

Given a map M with a single z-gon we can define linear functions ip : € — &€ and xp :
& — £ as follows. They are defined in the singletons and extended by linearity. Let ip(z) be
the set of edges occurring once in the cyclic sequence P between the two occurrences of z.
Let xp(z) = 3Du if « is traversed twice in the same direction in the zigzag path (= is a hlack
vertex in the medial map), and xp(z) = 3D0, if z is traversed in opposite direction in the
zigzag path (z is a white vertex in the medial map). Let cp = 3Dkp+ip. It is easy to verify
that cp(x) is the set of edges occurring once in a closed path in G ps. Therefore, cp(z) € V*
In the above figure we see that cp(1) = 3D{1}U{2,6,7},cp(7) = 3DAU(1,4,8,9}. Indeed,
{1,2,6,7} and {1,4,8,9} are members of V*. From the definitions, it follows that if P has
a single vertex, for any z, kp(z) + xp~(x) = 3Dz and that cp~(z) + cp(x) = 3Dx and
cp~ + cp is the identity linear transformation.

Let = be a loop in an arbitrary map M*‘. The loop is balanced if going around the
v-gon corresponding to the vertex to which the loop is attached, and orienting the short
edges accordingly the rectangle corresponding to = gets short edges pointing in opposite
directions. Otherwise the loop is unbalanced. The set of balanced loops of M* is denoted
by bal(M) and the set of its unbalanced loops is denoted by unbal(M). Note that following
the single zigzag in G an edge z is traversed twice in the same direction if and only if z is
a balanced loop in map P*'. In Fig. 4 we depict the situation in the rectangle z of M and
P corresponding to the edge .

Fig. 4: The two passages through an edge following the zigzag viewed in the phial map

This observation shows that if M is any map with a single v-gon, then cp(z) =
3Ding(z) + wp(w) is a cycle in Gp. Moreover, xu(x) = 3Dz if z is a balanced loop,
otherwise xpy(x) = 3D@. The basic result about maps with a single zigzag is the following
Theorem. The idea for its proof is taken from [Read and Rosensthiel, 1978) in a different
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context.
Theorem 2 If M is a map with a single zigzag, D its dual and P its phial, then
(s) In(cp) = 3DV*, (b) Ker(cp) = 3DV, (c) Im(cp~) = 3DF™, (d) Ker(cp~) = 3DF.

Proof: From the signed sequence P we to obtain a sequence of digraphs as follows. Start
by drawing an oriented edge corresponding to first element in P. We proceed drawing
orlented edges in the P-order, without lifting the pencil from the paper, as long as this is
possible. Each time that an edge occurs for the first time we must draw it as a pendant
wdge (the final vertex must be a new one). The rule not to lift the pencil is not possible
10 obey when an edge z occurring for the second time is not incident to the last vertex
eached. At each such occurrence, we make a copy of the graph drawn so far, denoting
it by L, Next, we make the necessary identification of two vertices in the new copy and
proceed. Assuming k identifications are necessary, we have defined a sequence of k + 1
graphs Ly, Ly Lay Lixyy, = 3DL, where edge x; forced the i-th identification. If no
\dentifications were made (k = 3D0), then we would have m + 1 vertices, where m is the
number of edges of Gy, which is the same as the number of edges of L. Each identification
reduces the number of vertices by one. Therefore, if v is the number of vertices of L we
have m + 1 = k = 3Dv or k = 3Dm + 1 — v. Observe that this value of k is the dimension of
CS(L), since L is connected. We claim that L = 3DG . Since the P-order can be realized
by traversing edges in graph Gy, from the construction of L as the graph with a minimum
number of vertices where this is possible, it follows that Gy can be obtained from L by
further identifications of vertices. However, every consecutive pair of elements in P defines
two edges which are consecutive in the zigzag of M*. Therefore, they occur at a vertex of
Gy and no further identifications are necessary. It follows that L = 3DG . If the two
traversals of the edge z; are in opposite direction, the sequence of edges between the two

of z, defines a path in L4+, which is not reentrant in L;. The same
15 true for the set of edges between the two occurrences of z; plus edge z;, in the case that
2, I8 traversed in the same direction. From these facts we obtain that cp(z;) is a cycle in
Lisy and not & cycle in L. The set {cp(21),...,cp(xx)} is linearly independent: indeed,
A non-empty null linear combination of these vectors implies that the highest indexed one
cplzy) I8 & sum of others with smaller indices. This is a contradiction because a cp(z;)
with ) < A s & cycle in L;,. Their sum would be a cycle in this graph, conflicting with
the fact that cp(xy) is not a cycle in it. Since k is the dimension of the cycle space V*,
{ep(2;), - cplzs)} is a basis for it. The proof of (a) is complete.

To prove (b), recall that over any field, GF(2) in particular, V = 3DBS(Gy) =
ID(ES(Gu))* . In face of (a), a subset of edges A satisfies A € V if and only if |A(cp(z)|
I8 even for all edges z of Gy. For A,B C E(Gw), define the bilinear form (A4, B) on
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GF(2) by 0if |AN B| is even and 1 otherwise. We have (A,cp(z)) = 3D 3, ,(a,cp(z)) =
3D calcp(a), ) = 3D(cp(A),z). It follows that A € V < (cp(A),z) = 3D0 for every
edge z. The last condition is satisfied if and only if cp(A) = 3D0. This establishes (b). To
prove (c) and (d) apply (a) and (b) to map D, whose phial is P~. "

The connectivity of a closed surface S is denoted by £(S) and is defined as 2 ~ x(S),
where x(S) is the Euler characteristic of S. The next result relates sum and intersection
of bond and cycle spaces to the composition cp~ o cp. The dimension of these spaces are
related to the connectivity of Surf(M, D).

Theorem 3 If M is a map with one z-gon, then

(a) dim[Im(cp~ o cp)| = 3DE(Surf(M, D)),
(b) Im(cp~ 0 cp) = 3DV NFL, (c) Ker(cp~ ocp) = 3DV + F.

Proof: By Theorem 1(a) we have Im(cp) = 3DV*. Therefore, Im(cp~ o cp) = 3DIm
(cp~|V+), where, “|V4" stands for restriction to V+. By the fundamental theorem for
homomorphisms (Godement, 1968] applied to cp~ |V we have

dim[Im(cp~|V*')] + dim(= Ker(cp~ V)] = 3D dim V*.

By part (b) of previous theorem, applied to map P~, it follows that Ker(cp) = 3DF
Since F C V4, we get Ker(cp~|V*) = 3DF. Therefore, dim[Ker(cp~|V*)] = 3Df - 1
By the above equations, it follows that dim[/m(cp~ o cp)| = 3D(|E| — v+ 1) = (f = 1) =
3D(|E| +2) = (v+ f) = 3DE(Surf(M, D)) and the proof of part (a) is complete.

To prove (b) we claim that dim(V* N F+) — dim(VNF) = 3D¢(Surf(M, D). Note that
dim(VANFL) = 3D(|E| —v+1)+(|E| - f+1) =dim(V* + FL). Also that dim(V* +F*)+
dim(V N F) = 3D|E|, because they are orthogonal subspaces. Whence, dim(V* N F*) =
3D(|E|4+2)~ (v-+f)+dim(VNF). But (|E|+2)—(v+f) = 3DE(Surf(M, D)), establishing the
claim. By the Absorption Property, Theorem 1, it follows that VNF = 3DVNFNZ = 3D{0}
(since |VGp| = 3D1, Z is the null space). Thus, dim(V+ N F*+) = 3DE(Surf(M, D)). By
part (a) dim({Im(cp~ ocp)] = 3DE(Surf(M, D)). Note that Im(cp) = 3DV* and Im(cp~) =
3DF* imply the inclusion Im(cps o cp) € V4N F+. Thus, Im(cp o cp~) is a subspace of
V+NF+ which has the same dimension as the whole space. So, Im(cp~ocp) = 3DV*NF*,
concluding (b).

To prove (c) take X € V + F; say that X = 3DU + W with U € V and W € F. We
have (cp~ 0 cp)(U + W) = 3Dcp~(cp(U) + cp(W)) = 3Dcp~(cp(W)). The latter equality
follows because cp(U) = 3D0 by part (b) of previous Theorem. Since cp + cp~ = 3Did,
they commute and we have cp~ o cp(W) = 3Dcp o cp~(W) = 3Dcp(d) = 3D0. That
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op-(W) = 30 follows from part (b) of Theorem 2'applied to map P~. We conclude then
that ¥ + F € Ker(ep~ o cp). The value of dim(Ker(cp~ o cp)) is |B| — §(Surf(M, D)). This
follows from the fund | theorem for h phisms and from part (a). Note that
dim(V + F) = 3D(v = 1) + (f — 1) = 3D|B| — §(Surf(M, D)). Since V + F is a subspace
of Ker(ep~ © ep) and has the same dimension, it follows that it is equal to Ker(cp~ o cp).
This concludes (c). [ ]

4 Maps with a Single Zigzag and a Single Face

Finally, we prove a result on maps M* having a single zigzag and a single face. By subdi-
viding some edges of an arbitrary graph G it is possible to embed G in some surface so that
the resulting f-map has a single face and a single zigzag. Below we present an embedding
af Ky having this property.

153162346542 154612653243

Fig 5: An embedding of K4y with a single face and a single zigzag

We have the following values for the functions cp~ and cp on = the singletons:

op-(1) = 3D{1,5,4,6) cp(1) =3D{5,3} cp~(2) =3D{6,5,3)  cp(2) = 3D{3,6,5)
o-(3) =3D{2.4)  cp(3)=3D{3,1,6,2} cp~(4)=3D{4,3,1,5} cp(4)=3D{6,5)
op-(8) =3D{4,1,2}  ¢p(5)=3D{4,2,1}  cp~(6)=3D{1,2} cp(6) = 3D{6,2,3,4)
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Their composition ¢p~ o ¢p is the identity:

cp~ocp(1) = 8Dcp~({5,3}) = 3D{4, 1,2} + {2,4} == 3D{1}

cp~ ocp(2) = 3Dcp~({3,6,5}) = 3D{2,4} + {1,2} = +{4,1,2} = 3D{2}

cp~ocp(3) = 8Dcp~({3,1,6,2}) = 3D{2,4}+ = {1,5,4, 6}+(1 2} +{6,5,3)} = 3D(3}
cp~ ocp(d) = 3Dcp~({6,5}) = 3D{4, 1,2} + {1,2} == 3D{4}

cp~ o cp(5) = 8Dep~({4,2,1}) = 3D{4,3,1,5}+ = {6,5,3) + {1,5,4,6} = 3D(5}

cp~ 0cp(6) = 3Dcp~({6,2,3,4}) = 3D{1,2}+ = {6,5,3} + {2,4,} + {4,3,1,5} = 3D{6)

As our final Theorem show, this is a general property of t-maps having = a single face
and a single zigzag.

Theorem 4 If M* has a single face and a single zigzag, then cp~ ocp is the identity on €.

Proof: We prove that cp~ o cp(z) = 3Dz in the three following cases. I : x € bal(D); 11 :
x € unbal(D),x € bal(P~); 1] : z € unbal(D),z € unbal(P~). Assuming the hypothesis
of case /, consider the map D' = 3DD(sf,z) and its phial P’ = 3DP~(€d,z). The unique
vertex of Gp breaks into two in G, arising the bond z U ip(z) linking these two vertices.
Therefore, by Theorem 1(d), cp/(z Uip(z)) = 3D0. Note that cp:(z) = 3Dz + cp~(z)
and cpi(y) = 8Dcp~(y), for y # z. So, we get z + cp~(z) + cp~(ip(z)) = 3DO. But
ip(z) = 3Dz + cp(), since « € bal(D). So, z + cp~(z) + cp~(z) + cp~(cp(z)) = 3DV, or
cp~(ep(z)) = 3Dz, establishing case I.

D D"=3DD(z : £sd) P~ or = P8 DPY (wadl)
P’ =3DP~(z : sdf) or P~
> a > ] > >
=
< < oy <

Fig. 6: Maps involved in the proof of Case I.

Assume the hypotheses of case /7, and consider map D" = 3DD(sd,x), and its phial
P" = 3DP~(sd;x). The set x Uip(z) is the unique bond of Gp«, linking its two vertices.
Therefore, by Theorem 1(d), cp»(z Uip(z)) = 3D0. Observe since z € bal(P"), cpn(z) =
3Dcp~(z) = 3Dw Uip~(x). For y & ip~(z),ip(y) = 3Dip~(y) and xp:(y) = 3Dxp-~(y)
For y € ip~(a),ipn(y) = 3Dy + ip~(y) + ip~(z) and xp:(y) = 3Dy + xp~(y). We get 0=
3Dcpu(z+ip(x)) = 8Dcpn(z) +cpr(in(z)) = 3Dep~(z) + C{ep (u) |y € ip(x)\ip~(2)}+
S{cr(y) |y € in(@) Nip~(z)} = 3Dcp~(2)+ L{cp ) |y € in(@)\ip-(x)}+ 5 {ip (y)+
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wpe(y) | v € in(x) Nip~(@)} = 8Dcp~ (@) + L{cp~(v) | y € in@)\ip~ ()} + L{er~ () +
ip-(2) | W € ipl2)Nip=(2)} = 8Dcp~(z) +cp~(ip(z)) + mip~(z), where m = 3D|ip(x)
ip~(2)|. Assuming that m is odd, we have cp~ (z)+cp~(ip(z)) = 3Dip~(z) = 3Dcp~ (x)+2.
Therefore, cp~(ep(x)) = 3Dcp~(ip(z)) = 3Dz, establishing case /1, provided m is odd. If
it is even we have proved that cp~ () +cp~ (ip(x)) = 3D0. This implies that @ +ip(z) is in
the kernel of cp-, which is F4 = 3D{0}. It follows that z +ip(z) = 3D0, or = = 3Dip(x),
a contradiction because ¢ ip(z). The proof of case /1 is complete.

]

D D" =3DD(x : dis) PT=38DP~(u : dfs)
>

[x])

Fig. 7: Maps involved in the proof of Case II.

D D" =3DD(x: sdf) | D™ =3DD(x : £sd)
3 >
x
{ g
7 P" = 3DP~(z : Lad) | P = 3DP(z::6dl)
‘
< \ < \

Fig. 8 : Maps involved in the proof of Case IIl.

Assume the hypotheses of case [11, let D" = 3DD(éd,z) and P" = 3DP~(st,a)
be its phial  Both D™ and P" have a single vertex and = € bal(D"). Therefore, by
e I, epelcp(z)) = 3Dz. As cpw(z) = 3Dz + cp(z) = 3Dz + ip(x), we get the
*quality (E) cpe(2) + cp(ip(x)) = 3Dz. Since z € unbal(P"), cpw(z) = 3Dcp~(z) =
3Dtp-(2). Expressing cp(ip(c)) in terms of cp~: cpi (ip(z)) = 3Dcpm (ip(z)\ip~(z)) +
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cpu(ip(z)Nip~(z)). As for P" in case I, we get cpw(ip(z)\ip~(z)) = 3Dcp~(ip(z)\
ip~(z)) and cpm(ip(z) Nip~(z)) = 3Dep~(ip(z) Nip~(2)) + lin(x) Nip~(2)|ip~(z).
Whence, cpm(ip(z)) = 8Dcp~(ip(z)) + mip~(z), where m = 3D|ip(z) ip~(z)|. Rewrit-
ing (E) we get cp~(x) + cp~(ip(x)) + mip~(x) = 3Dz. As we show shortly, m is odd,
and so, cp~ () + cp~(ip()) + ip~(z) = 3Dz. But in case [1] cp~(x) = 3Dip~(zx) and
ip(z) = 3Dcp(z). It follows that cp~(ep(x)) = 3Dz, establishing this final case, provided
m is odd. Consider the map D" = 3DD(s¢,z) and its phial P" = 3DP~({d,z). They
both have a single vertex and satisfy the hypotheses of case 1, and so we have proved that
lipe(z) Nipw(z)| is odd. To conclude the proof, just note that ipw(x) = 3Dip(z) and
ipw(z) = 3Dip~(x). Thus, m = 3D|ip(z) Nip~(z)| = 3Dipw(z) Nipw(z)| is odd. [

References

BonDy, A. AND MuRTY, U., Graph Theory with Applications, American Elsevier
(1976).

[

2] GiBLiN, P.J., Graphs, Surfaces and Homology, Chapman and Hall (1977).
[3] GobeMENT, R., Algebra, Hermann, Paris (1968).

4] GobsiL, C. AND ROYLE, G., Algebraic Graph Theory, Springer GTM 207, New York
(2001).

(5] Lins, S., Graph-Encoded Maps, Journal of Combinatorial Theory B 32 (1982), 171~
181.

[6] Lins, S., Richter, B. and Shank, H. The Gauss code problem off the plane, Aequationes
Mathematice33 (1987), 81-95.

(7] Lovasz, AND L., MARX, M., A Forbidden Substructure Characterization of Gauss
Codes, Acta Sci. Math. 38 (1976), 115-119.

(8] ROSENSTIEHL, P., Solution Algebrique du Probleme de Gauss sur la Permutation des
Points d’Intersection d’une or Plusiers Courbes Fermees du Plan, C.R. Acad. Sc. Paris,
t.283 (11 octobre 1976), 551-553.

ROSENSTIEHL, P., Characterization des Graphes Planaires par une Diagonale Alge-
brique, C.R. Acad. Sc. Paris, t.283 (4 octobre 1976).

=

[10] READ, R.C. AND ROSENSTIEHL, P., On the principal Tripartition of Graphs and
Binary Matroids, Annals of Discrete Math. vol. 3 (1978).

[11] SHANK, H., The Theory of Left-Right Paths, Combinatorial Mathematics III Lecture
Notes no 452, Springer-Verlag (1975).

e = a



