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AllSTRAcr. U a gr11ph GM is embeddecl into a closed surfai::e S such that S\GM is a 

collectlon of disjoint open disc:s, then M = 3D(GM,S) is called a map. A zigzag in a 

rnnp M Is a ckiad path which altornates choosing, at each star oí a vertex, the l e~most 

ruul thc rlghtmost possibllitiea for ita next edge. If a map has n single zigzag we show 

th nL the c:ychc ordering of the edges o.long it induces linear transformations, Cp and cp

whoec imagcs and kernals aro reapec~ively the cycle and bond spaces (over GF(2)) ef 

C.11 11nd Co. 'fl'hcrc D = 3D(Gv,S) ls ~he dual map of M. We preve t hat lm(cpocp-) 

lB thc intcntttion of thc cyclc spELccs of GM and Go , and that the dimension of this 

tubl!pace is connectivity of S. Finn.1\y, if M has n.lso a single fe.ce, this face induces a 

llncar tra.n.úonmtion C() which Is invertible; we show that co1 = 3Dcp- . 

Koywords: Closed surfa.ces, graphs, mo.ps, mo.p duo.lities , facial and zigzag paths 

l Introduction: Combinatoria! Maps 

A fupofo91cul map Mt = 3D(G, S) is o.n embedding of a graph C into a closed surface S 

1uch that S\ C is a collection of disjoint open disks, co.lled faces. By going around the 
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boundary of a focc and recalliug the edges t raversed we define n facial path of A/ 1 , which IS 

a closed pnt. h in G. Note that a facial path is obtained starti ng in ru1 cdgc nnd by di00&mg 

at each vcrtcx nlways thc rightmost or always the leftmost possibility fo r the nc.xt edge u 
we alternnte thc choice, then the result is a ngzag pat11, or simply a rig:ag. E"cn 1f tlw
surfacc is non-orientnble these left-riglu. choices nrc well dcfiucd, lx>causc thcy are loca.1 

ror more bnckbrrotmd on graphs cmbedded into surfaccs see /Cibli n, 1977]. To maJu.• our 

objects less dcpe1 1dc11t of topology we use a combmatorial countcrpnrt íor topological maps 

imroduced in [Lins, 1982). A combmatonal map or simply n map Al is an ordered tnplt 

(CM , tJu, /111) whcre: (i) C111 is a connected ñnite cubic graph; (ti) v,., nnd br ru-c disjomt 

perfect mat chings in CM, such that each com ponent of !he subgraph of C,., inducOO b)· 

u,., U f!.t is n volygmi (i.e. n non-empty conuected subgraph with ali the \'ertices htwing t•;o 

mcident edgcs) with 4 edgcs nnd it is called an M -square. 

Fig . 1: A zigzag and its com~sponding z-gon 

F'rom thc abO\'C dcfin ition, it follows that C1ot may COntain doubJe edgcs but llOt looptl 

A th1rd perfcct 111 ntchi ug iu CM is E(C,.,) - (u.u U/,.,,) and is dcnoted by a,.,. The IK'l 

of diago1rnls of the M -squnres, denoted by ZAf, is a perfect matching in tlie cornplem nt oí 

e,., The edgcs iH IJAf,fAf,ZM,a M are called respecll\'ely llAt-edgcs, j,.,-edgcs, :Z:¡\f-cdg~, 

awedges. The grnph C,., U:,., is denoted by Qu. and is n regular grnph of \11\lcnct' 4 

A componen t iuduced by ª"' U v,., is a polygon w1th a.n C\'Cll numbcr of vctt1Ceti and 1t u 

called a v-gon. Simi lnrly, wc define o.u J-gon, anda z-gon, by replaciug v for f and u for;; 

Clcarly, the f -gons nnd z-gons of CM correspond to the facial paths and the zigzags oí M' 
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To avold the \l.'Ml or colora the Af-squa.rcs are presented in the pictures as rectang les in which 

thuhorl sities (• ) u e u,u-OOges, thc long sides (l ) a.re / M·edges and tbe diagonals (d) a.re 

' "' rdgtt. An M -rrctan9le with dia9onal.! or simply an M -rectangle (being understood tha t 

1bedlagonals are present.) is a component induccd by VM , f M , z,., . Tbe set of M -rectangles 

~ dtnotrd by R lf lf is a pcrmutation of thc symbo\s sld, and R' ~ R subset of rcctangles 

of M, 1htn M(R' lf} denotes t hc map obtaincd from M by permuting t he short sidcs, t hc 

long •ldtt and the diagona.ls l\Ccording to 11' in ali r E R' . Lct M(r : 11') denote M( {r} : 11'). 
1'he dual rnap oí M is the map D = 3DM(R : isd); D and M have t he same z-gons and 

the ..,.gon1 and / -gons iutcrchangcd. Thc phial map oí M is t he map P = 3DM(R: dis); 

P a.nd ¡\f hA\'"e the SMlC / -gons and thc u-gons and z-gous intcrchanged. T he antimap of 

M 11 l he map ¡\(- = 3DM(R : sdl); M and M"' havc thc same v-gons and t he / -gons 

and :·gOn5 imtrchanged. T he pairs (M , D), (M , P), (M, M "') cons titute the map dualities 
~mrod11ced m ILin.<1, 1982]. T hc dual oí P is o- and the dual of M - is p - . Let íl(M) = 

30fM,D, P,M-, D-, P-} a.nd O"(M) = 3D{M(R': 11') 1 R' ~ R,11' permutatiou of std} . 
No11• lhAI íl(M) ~ ílº (M ) and that n.ny member oí Oº (M ) ha..s R a..s its set oí rectangles. 

Flg 2 Ho.it ¡ ntighborhood of each rectangle is modified in the members of O(M) 

C1vtn a me.p M and its dual D, there exist s a closcd suríace, denoted by Surf(M , D ) 

whue C,., • JDCo naturally c.mbcds. Considcr the v-gons, the / ·gons and thc M -squarcs 

bounding di.sjOlot doeed disks. Ea.ch edge of CM occurs twice in the boundary of this col

ltdlon or diab. ldent ify t he collcction oí disks along the two occurrences of ea.ch cdge. T he 

rteult ia a ck»t!d nrface and CM is faithfv.lly embedded on it. meaning that the boundaries 

of 1he fA«I are hcok>red polwom or bigons. Similarly, therc are suríaces Surf(D"" , P) and 

Surf(P-, M·). 

We ddiDC a function Y, which turns out to be a b iject ion from the set of maps onto 

lh~ 1et o( i .i:na¡:... We denote Y,(M ) by M 1 . C ivcn a map M , to obtain Mt we proceed 

1111 folio.is ~ thc t-map (CM,S) , where S = 3DSurf(M , D ), g1ven by t he faithful 

rmbttldlllg ol M The u-gons , the / ·gons and the J\.f-squares a re boundarics of {closed, in 

lhlt c1111e) dm:s cmbedded (and forming) the suríace S(M). Shrink to a point t he disjoint 

clottd d-.b boundtd by v-gons. T he M-squares, then, become bounding d igons. Shrink each 

1uch bounding cbgon to & line, maintaining unaffected its vertices. Wit h t hcsc contractious, 

t lfccttd in S, i~map {Cu , S) bccomcs, by definition, M 1 = 3D(G,., , S ) . Craph Cu is called 

lhe gnaph mb.c:al by M. A combinatoria! dcscription of C,., can be given as follows: t he 

vert.ictl of CM are t be u-gons of M ; its cdges a.re t he squares of M ; t he two cnds of an 
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edge of G M are the two v-gons (w hich may coincide and the edge is a loop) t ha.t contnin thc 
VM-edges of the corresponding M -square. lt is evident t.hat tb is iuvcrsible: given a t-map we 

replace ea.ch edge by n boundi ng digan in its surface, and then expand ea.ch vertex to a disc 
in order to obtain a cellular embedding of a cubic graph . Thercforc, i¡,- 1 is well-defincd ; in 

fac t , it is t he dual of n useful construct ion in topolog;y, na.mely, bnrycentric division. Thus, 
y is a bijection from the set of maps onto the set of t- maps. lt can be observed that 1,1 

induces a bijection from the set of M-rectangles onto the set of edges of CM . We use thls 
bijection to identify the sets R and E(G,., ). Via R, which is invariant far the mcmbers of 

O"(M ), we ideutify E(G~·r) and E(C,., .) for M ' E O"(M ). Denote thcse ident ified sets of 
edges by E. 

2 Absorption Property on Maps 

The mcmbers of Sl(M) induce three distinct gra.phs: G,., = 3DGM-, Go = 30Go-, 
G p = 3DG p - . We give to thc power set ¡; = 30{ E' l E' ~ E } u vector space structure 

over the fie ld GF {2) by defi ning the sum of subsets of edges E fA, 1 1 :5 i :5 11 } to mean 

thc subset of LJ{A; 1 1 :5 i :5 1l} formed by the elements which occurs in a.n odd uumbcr of 
A, 's. T he bond space and the cycle space [Bondy and Murty, 1976] , [Codsil o.nd Royle, 200 1j 
of G,., are denote<! respectively by V and V.l.. For connected CM, thcy are vector subspuccs 

of e whosc d imensions llfC V - 1 nnd IEI - V+ l , where V is t he number of vertices of e,., , 
or number of v-gous of M. Similarly, Jet :F and :¡:J. denote the bond o.nd cycle space of Go 
and Z and z .l. the bond und cycle space of G p. The dimensions of :F and :¡:J. are / - 1 a.nd 

IEI - f + l , where f is the number of / -gons of M , or faces of M 1 = 3D(G¡, 1, Surf(M, D)). 
The dimensions of Z and z .l. are .:: - 1 and IEI - .:: + 1, wherc z is t hc number of z-gons of 
M . Ea.ch z-gon in M corresponds to a zigzag in /1/ 1 = 3D (GM , Surf(M, D)) . lf G is a grnph 

and W ~ V(G) then óc(W ) = 3D{x E E(C ) j x has an end in W aud an end in V(G)\W) 
The su bset of edges óc (W ) is called thc bond of W in graph C. 

Tbeorem 1 (Absorption Property) For ª 'l arb1trnry map M we llave 

(a) vn;r ¡; z, (b) ;r n z ¡; v, (e) znv>; T. 

Proof: lt is enough to prove the result in ca.se (a). For (b) a.nd (e) we would use m&ps v
and p -, respectively. Takc 0.11 elcmcnt X E Vn:F. lt follows t hat there exist V' ~ \l(G,\, ) 

and F' s;; \f (Go ) such that X = 3D6c..., (V') and X = 3D6c0 (F ' ). Denote by V" the 

subgraph of Cr.r consisting of t he disjoint u-gons correspondi ng to t.he vertices in V'. Denote 
by F" thc subgrnph of CM consisting of the d isjoint /-gons corresponding to the vcrticcs m 

F' . Let zm the subgraph induced by the symmctric differencc of V" nnd F" . Sincc C,., is 

• 
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rubic. ;¿"' l9 a coUtt:t1on of disjoint polygons. T he crucial observation is 1.ll8t any rectangle 

htA VfKl.ltb" oo~ oppa 11tc pair of vertices in F"' if ond only if this rectangle has one vA1-edge 

ui \''" ruld OIM' / .u...«Jge in ,...,, , namcly, if and only if t hc rectangle corresponds toan edge in 
\ Thtrt'f0tt . ee.ch oom1>0nc.n1 of zm is a polygon with 3 x k edges which can be fo.ctored 

hv k. rubpeth.s oí length 3 luwing au aAf·cdge, a VAredge and an / ,wedge (the last two not 

hKI Mlly 111 tbis ordcr). LeL Z" obtnincd from Z"' by replacing each adjacent pair of VM-, 

¡11. ~l!A by tht : we<lge fonning a trianglc with them in Q,\f . Clearly, Z" is a collection 

of JuiJOmt z-go11 .. , corresponding to a Z' ~ V (Gp) satisfying óc_,, (Z') = 3DX 

3 Map with a Single Zigzag 

M•pl t>·1th a smgle i1giag f\1'6 rclat,c<l to the Gauss code problem.. For this problem in the 

1llA11I' ~ { ha.nk.1975J, jLovasz and t-.'1ax, 1976] , [Rosenstiehl, 1976J. The present paper has 

11 1110t1\'llt1<>n m tn'ing to gcnernli7.e thc rcsult of (Lins,, R ichter , and Shank, 1987] on the 2-

f3<1' colornhk Caus; rotle problem in the projectivc piune to surfaces of higher genus. In fact, 

by 11•m¡r; thr a}itbnuc thoo11• wc are nliout to dcvclop wc can soh1e the 2-face colorable Gauss 

rtxk- prob~ m the Klein bottlc. The papcr preseuting this solution is undcr preparation. 

Thu11. maJ"M 11nth A 6ing\e zigzag induce useful a \gcbraic structures which are the main t heme 

of lhit v.uk llttt' a an examplc of a t-map having a single zigzag. 

e 
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F11 l An embedding of K3,3 in the projective plane having a single zigzag 

Th" cytbt stqutna! a í OOgcs visited in t he single zigzag is 

P = 30(1,8,5,6,9, 4, 5, 7,3,•I, - 8, 2, 3, - 9, 1, 2, -7,6). 
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This cnn be ea.sily followed in the medial map [Godsil and Royle, 2001J on thc right. Thc 

edges become small circles and , to obtain the íaithful embedding of Cu, it is enough lo 
defor111 ench such circle to u recto.ngle. The direct.ion of Lhe first. occurrc.ncc of i:u1 cdgc 

defines it.s orientntion. Edges 1,2,3,4,5,6 are tra.versed twice in tibe positivc direction (they 
con-espond to bto.ck circles in the medial mnp) and edges 7,8,9 are trnvcrsed once in thc 

positive direct.ion and once in the negative direction (they correspond to wh ite circles). The 
re.asan fo r thc notation P is that the signed cyclic sequencc defines the phia l mnp P (whcrnce 
ali maps in O(M)) ancl vice-versa, the phial defines the sequence. 

Given a map M with a single z-gon we can define linenr functions ip: e-· e ai1d Kp. 

t - t: ns fo llows. They nre defined in the si ngletons and extended by li nenrity. Let. 1p(:t) be 

the set, of cdgcs occmring once in t.he cyclic sequence P betwecn t he two occurrcuces oí .r 
Let Kp(x) = 3D:c ií x is t.raversed twice in the same direction in the zi¡pmg path (x is a blnck 

venex in che medial map), nnd fl'..p(x) = 300, i( x is traversed in opposite di rection 111 lite 
zigzag pnth (:r.: is a whi te vertex in the medial map). Lct cp = 3DK-p +ip. It is casy to vcrify 

that cp(x) is the set. of edges occurring once in a closed path in CM · Thercforc, cp(x) E VJ. 

In the abovc figure we see that cp(l) = 3D{ 1} U {2, 6, 7}i cp(7) = 3D0U { 1, '1 ,8, 9}. lndced, 

{! , 2, 6, 7} nncl {1 , 4, 8, 9) are members of V J.. F'tom the defi nitions, it follows tha! if P has 

a single ver!.ex, for nny :r.:, /\.p(x) + K.p-(x) = 3Dx a11d that cp~(x) + cp(x) = 3Dx and 

cp~ + cp is the idelltity linear t ransformntion. 

Let x be a loop in an arbitrary map A/ 1 . The loop is b11la11ced if going nround lhe 

irgan corresponding to the vertcx to which t he loop is atLached, and orientiug the short 
edges accordingly the rcctangle corresponding to :t gcts short edges pointing in opposile 

directions. Otherwise the loop is unbafa11ced. The set of balanced loops of M' is denota! 
by bal(.iW) and the set of its unbulnuced loops is dcnoted by unlxil(M). Note thnt fo llowing 

the si ngle zigzag in G M an edge x is traversed twice in the sume dircctiou if nnd only if x is 
a balancee! loop in mnp P1 • In Fig. 4 we depict the situation in t hc rcctanglc x of M nnd 
P corresponding to t he edge x. 

2 Mz p 

J ' 

Fig. 4: The two passages through an edge following the zigzag viewed in the phial map 

T his observation shows that if M is any map with a single 11~gon , thcn c...,(x) = 
301,..,(x) + '°'M(:i:) is a cyclc in Cp . Moreover, "'M{x) = 3Dx if x is u bala11ced loop, 

otherwise '°'M(x) = 3D0. The bnsic result about maps with a s ingle zigzag is thc fo llowi ng 
Theorem. The idea for its prooí is takcn from (R.eacl and Roscnsthicl, 1978] in a difforcnl 

• 

• 
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""'""' 
Theorolll 2 I/ M u a mop W1tl1 a .tingle zigzag, D its dual and P its phial, then 

(il lm(<p) • JDVi, {b} Ke•(,p) = 3DV, (') lm(,p-) = 3DJ''- , (d} K.,(cp-) = 3DJ'. 

Proof: ~'tom thc s1gncd sequence P we to obto.in a sequence of digrnphs as fo\lows. Stnrt 

by drawmg an onented edgc corresponding to first element in P. We proceed drawing 
or)tnltd ttlgrt m 1hr P..ordcr, without lifting the pcnci\ from the paper, as long as this is 

J>C*lblt Each Umt' tha.l an cdge occurs for thc first time we must draw it as a pendant 

,.1~ (thl' fina! \ttlt'X 111us1 be n uew onc). The rule not to lift the pencil is not possible 

w obf)· wlM"n an edgc :i oceurring for t.he second time is not incident to the lnst vertex 

rr.rhtil Al Hch Mlt h occurreuce, we make a copy of the graph drawn so far, denoting 
~t by L. Nnt • .,"' makc 1he ncccssury identification of two vertices in t.he new copy and 

pnKrtd A um1ng k identifications are necessary, we ha.ve defined a sequence of k + l 
piph1 l,,.L 1 , • . .• L,,,.l,,.1 ,. 1 = 3DL, whcre cdgc x, forced the i-th identification. lf no 

11.lr11titica1~ .,""rl' madc (k = 300), thcn we would hnvc m + 1 vertices, where m is t.he 
nmnbtr of tdges of C.,1, which is thc sume ns the number of edges of L . Each idcntification 

rtdurt!I thl' nwnbtr of \·ertices by onc. Thercforc, if u is the number of vertices of /., we 

MM• m + t k • 3Dv or k· = 3Dm + 1 - u. Observe that this value of k is the dimension of 

CS(l), 11~ L b ronnectcd. We claim that l = 3DG M . Since the P-order can be rea.lized 

by Ua\Tl'IUIJ; ~ 111 graph Cu , from the construction of L as the graph with a minimum 

numbrr of \'n1KC< whcrc this is possiblc, it follows that G M can be obtained from L by 
furthtt idtnt1ÍK'auons of verticcs. However, cvery consecutive pair of elements in P defines 

lwu rdgl't wbxh a.re consecutive in the zigzag of /l,•/ 1 . Therefore, t.hey occur at a vertex of 

G~ and no furthn Ktcnt1licMions are ne<:essary. It follows t hat l = 3DCfll. lf thc two 

lnn1'n&lt ol tM fdge z;¡ are iu opposite dire<:tion, the sequence oí edges between the two 

OC(Ulrtnca of z, defines a recntrnnt pnth in l 1+ 1 which is not reentrant in L;. T he same 

lt tmr for tM k1 oí edges betwcen the two occurrences of x, plus edge x,, in the case t hat 
z, lt 111,'ft'lfd m lhl' MUile direction. From these facts we obtain that cp (:t;) is a cycle in 

l., •• anJ mJt a C)-dt in L¡. Thc set {cp(x1 ), ..• , cp(:t1t} ) is linearly independent: indeed, 
a non..:omp&y nu11 lmcar combinntion of thcsc vectors implies that the highest indexed one 

r11(.r11} • a Rltn of othcrs with smal!er indices. This is a contradict ion because a cp(x;) 
•1lh J < /1 • • C')"tle m L,,.~. Thcir sum would be a cyclc in this graph, confücting with 
tht face. tba1 cp(z11} IS not a cycle iu it. Siuce k is the dimension of the cycle space y .L, 

lr.1t(t1}, cp(.r,)) is a bAsis for it. T he proof of (a) is complete. 

Tu P'O""t (6'), rtenll tlmt over any field, CF(2) in particular, V = 3DBS(C1.d = 
30(CS(C.w))" In face of(a), a subsct of edges A satisfies A E V if and 011\y if IA íl cp(x)] 

11 ~mi b a0 tdp :roí C,.., . For A, B ~ E(G,..,), define the bilinenr form (A,B} on 
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GF(2) by O if IA n BI is evcn ond l otherwise. We havc (A,cp(x)) = 30 LoEA.(o,cp(.r)) • 

3DL:,.EA{cp{ri),x) = 3D(cp(A),:c). ll íollows the.t A E V e> (cp(A),:c) = 300 for C\'CI) 

edge :c. The lnst condition is satisfied if and only ií cp{A) = 300. This lnblishcs (b). 1b 
provc (e) nnd (el) a pply (a ) nnd (b) to map D, whose phial is P"'. 

The connectivity of a closed surfac:e S is deuoted by ((S) ami is dcfincd 88 2 \( ), 
where x(S) is thc Eulcr chnrncteristic of S . The ncxt rcsult relates sum and llllCr5("Ction 

o( bond nnd cyclc spnccs to thc compositiou cp- o cp. Thc dimension of thcsc Spa«'S att 

related to thc conncctivity of Surf(M, D). 

Theorem 3 lf M is a nwp tmlh one z-gon, then 

(a)dhu(l m(cp- o cp)i = 3D((Su<f(M, D)), 
(b) lm(cp- ocp)=3DV.Ln_r.J. , (e) Ker(cp-ocp )=3DV+:F. 

Proof: By Thcorcrn !{a) we ha.ve / m(cp) = 3DVJ. Thcr forc, l m(cp- ocp).., 30/m 

(cp-IVJ.), whcrc, "IVJ." stands for reslrictiou to y.1 By tlic fu nc.ln111cntnl thcorcm for 

homomorphisrns [Godcment, 19681 applied to cp-IV.1 we havc 

By part (b) of prcvious thoorcrn, applied to map P-, it follows tho.t. Ker(cp) = 3DF 
Since F ~ VJ., we gct Kcr(cp-IV.1) = 3DF. Thcrcforc, dim[Ker(cp-IV.1)1 = 30/ 1 

By the abovc cqunt.ions, it follows that dim[/ m(cp- ocp)J = 3D(IEI - u+ 1) - (/ - l) • 

3D(IEI + 2) - (v + /) = 3D{(Surf(M, D)) and the proof of part (a) is complete. 

To prove (b) we clnim t hat dim(V.1 nF.1)-dim(VnF} = 3D{(Surf(AI, D)). Note ilun 
dim(V.J..nF.J..) = JD(IBl - u+ l)+(IEl-1 + 1)-dnn(VJ.+F.J..). J\lso that dim(VJ.+Fl)+ 

dim(VnF) = JDIEI, bccause they are orthogonal subspaces. Whencc, dim(V.J.. n F J.) 

3D(IEl+2)-(v+ /)+clim(VnJ'). But (IEl+2)-(v+ !) = JD((Su<f(M, D)), cst•blishmg th• 
claim. By thc Absorptiou Property, Theorcm 1, it follows tluu. VnF = 3DVn.rnz = 3D{it) 
(sincc IVGPI = 301, z is t hc null space). Thus, d1m(VJ. n _r.J..) = 3D{(Surf(M, D)). 8)' 

part. (a) d im[l m(cp- o cp )] = 3D{(Surf(M , D)). ot.e that. Jm(cp) = 3DV.J.. and Im(cp-) • 

JDFi. imply thc inclusion l m(Cpi o cp) ~ vi. n F.1 Thus, lm(cp ocp-) is a subspact of 
vi.nFJ. which has thc so.me dimcnsion as the whole space. So, lm(cp ... ocp) = 3DVJ.nF1 , 

c:oncluding (b). 

To provc (e) to.kc X E V + F; say tha.t. X = 3DU + \V with U E V and IV E :F. \\'(' 
havc (cp- ocp)(U + W) = 3Dcp-(cp(U) + cp(H')) = 3Dcp- (cp(IV)) . Thc laucr equahiy 

follows bccausc c1,(U) = 300 by pa.rt. (b) of previous Thoorcm. Sincc cp + cp- = 301d 
thcy cornmutc and wc ho.vc cp- o c,.(tv) = 3Dcp o cp-( IV) • 3Dcp(0) = 300. That 
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0,_(IV) • 300 íollows from pnrt (b) of U'heorem 2 applied to map P-. We conclude then 

lhAI V+1' e; Kcr(cp~ ocp). 'Fhe value of dim[Ker(cp- o cp)] is IEI - ~(Surf(M, D)). T his 
fOlloWll from lht íw1dru11011tal t:heorem for homomorphisms and from part (a). Note that 

~uu(V + .?') • 30(u - 1) + (f - 1) = 3Dl!BI - ((Smf(M, D)) . S;nce V+ :F ;, a subspaoe 
oí Kt!r{cp- ocp} and has thc same dimension, it follows that it is equal to Ker(cp- o cp). 

'l'hllconcludcs (e). 

4 Maps with a Single Zigzag and a Single Face 

FltuJly, .,,,-e plCM! a resull on maps Ml having a single zigzag and a single face. By subdi

vUllng 110me edgcs of au arbitrar.y graph G it is possible to embed G in sorne surface so that 
the reiuhing l·!nRp lms a single faee and a single zigzag. Below we present an embeciding 

of K 1 h1wing thlS propcrty. 

103162346542 154612653243 

Fig 5: An embedding of K4 with a single face anda single zigzag 

Wt ht.\~ lhc following valucs for the functions cp- and c0 on = the singletons: 

Op•( l) • 30(1.S,·l,6} co( l ) = 3Df5, 3) cp-(2) = 3D{6, 5,3) co(2) = 3D{3,6,5} 
,,...(3) • 30(2,4) c0 (3) = 3'.D{3, 1, 6, 2) cp- (4) = 3D{4, 3, 1, 5) c0 (4) = 3D{6,5} 
<P-1~)•30(4.l.2) c0 (5)=30(4,2,l} cp-(6) =3D{l ,2) cv(6)=3D {6, 2,3, 4) 



Ou Afaps witli a Single Zigzag 

Their composit ion cp- o c0 is the identity: 

cp- oco( l ) = 3Dcp-( (5,3}) = 3D{4, 1, 2} + {2cl} == 3D{l) 
cp- o co(2) = 3Dcp- ((3,6,5)) = 3D{2, 4} + {l , 2} = + {4, 1, 2) = 3D(2} 
cp- oco(3) = 3Dcp- ({3, 1,6,2}) = 3D{2, 4} + = {1 ,5, 4,6} + (1 ,2) + {6,5, 3} = 30{3} 
cp- oco(4) = 3Dcp- ({6,5}) = 3D{4, 1,2} + {1,2 } == 3D{4) 
cp- oco(5) = 3Dcp-( {4,2, l }) = 3D{4 ,3, 1,5}+ = {6,5,3) + {1,5, 4, 6} = 3D{5) 
cp- o c0 (6) = 3Dcp- ({6, 2,3 ,4}) = 3D{ 1, 2}+ = {6,5, 3} + {2, 4, } + {4,3, 1,5) = 3D{6} 

As our ñ nul T hcorcm show, this is a general property of t-mnps hnvi ng =a. single f80l' 

and a single zigzag. 

Theore m 4 Jf /H1 has a single face anda single zigwg, th en cp- o co is th e identtt.y on C. 

Proof: We prove thut cp- oco(x) = 3Dx in the three followi ng cases. / : x E bal(D); // : 
r E unfx1/ (D),x E bal(P"' ); I lf : x E unbal(D) ,z E unba/(P "'). Assuming lhe hypothe..15 

of case / , cons idcr thc map D' = 3DD(st,x) and its phia.\ P' = 3DP""(Cd ,x). T hc uniqu" 

vert.ex ofGo breaks into two in Go., nrising the bond xU io(x) li nkb1g thesc !.wo vertices 

Therefore, by T heorcm l (d), cp•(x U ro(:r)) = 300. Note thnt cp• (x) = 3Dx + cp-(z) 
and Cp•(y) = 3Dcp- (y), for y :fo x. So, we get x + cp-(:r) + cp-(iv(x)) = 300. But 
1o(x) = 3Dx + cv(x). si ncc x E bal(D). So, x + cp-(x) + cp-(x) + cp-(co(x)) = 300, ot 

cp-(co(x) ) = 3Dx, estublishing case J. 

D D = 3DD x' lsd) P"' oc = P = 3DP"'(x' •dl) 
P' = 3DP"'(x' sdl) oc p-

> > 

X 

Fig. 6: Maps involved in the proof of Case l. 

Assumc thc hypotheses of cfl.Se J 1, and consider map D" = 3DD(sd, .i:), nnd its phial 

P'' = 3DP"' (~d; x ). T he set x U iv(x) is the umque bond oí Gv .. , li11k111g its two vcrtices. 

Thercfore, by Thcorcm l {d), cp .. (x U io (x)) = 300 Observe siuce x E b<d (P 11 ), cp .. (:i:)"" 
30cp-(x) = 3DxUi p-(:r;). For y r/.. tp-(::z:) 1 1p ... ('4') = 3D1 p-(y) a.nd Kp"(Y) = 30Kp-(y} 
For y E ip-(x), i p .. (y) = 3Dy + 1p-(y) + 1p--(.x) a.nd Kp .. (y) = 30 y + Kp-(y ). Wc gct 0 • 

3Dcp .. (x+ io(x)) = 3Dc p .. (x)+cp .. (•o (x)) = 3Dcp-(x)+ L{cp .. (y) 1 y E •o(x)\ •p-(z))+ 
L{cp .. (y) 1 y E io(x) n •p-(x) } = 3Dc p-(x)+L;{cp .. (y) 1 y E •o(x)\• p-{x) )+L{ •p .. (y)+ 
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,,..¡,¡ I •E •o(r) íl•p- (z) ) = 3Dcp• (•) + í::{cp- (y) 1 y E •o(x)\ip- (x)) + L:{cp- (y) + 
,,,,_(.r)lvE •o(r) íl1r-(z)} = 3Dc,,-(:z:)+ cp- (iv(:z:))+ mir-(:z:), where m = 3Dlio(x) íl 
,,_¡6 )¡ ;\ ummg thl\t m is odd, wc hnve cp- (.i:)+cp- (io (z )) = 3Dap-(z ) = 3Dcp- (x)+x. 

Tbrrrfivt1, c1 . (rp(.r)} = 3Dcp-(io(x)) = 3Dx , cstnblishing case 11 , provided m is odd. Jf 
t lown'"' h8H· pt'OVt"d that cp-(7) +cp-(io (x)) = 300. This unplies that. x +iv (x) is in 

ibt krmrl o( tp wh1t h l!I :FJ.. = 30{0} . lt follows tha t :z:+ 1o(r } = 300, or x = 3Dio(x) , 
• toolradJCUon \l<OU!>(> :r f/. 1v(x ). Tbe proof of case 11 is complet e. 

D D • 30D(x,dl• ) p -
> 

\ 
X l !_J X 

< \ 

Fig. 7: Maps involved in the proof of Case 11. 

D 

P'" = 3DP-(x' •de) 

td 
\ 

Fig 8 : Maps involved in the proof of Case 111. 

~ thr by¡>athescs oí case 111 , Jet 0 111 = 3DD(td,x) a.nd P 111 = 3DP"'(si,x) 
bf 1Li ptua! Both D"' ami P"' have a si ngle vertex and x E bal(D"') . Therefore , by 

t :lf' I f,..-.{co-(.r)) = 3D:t. As cv ... (x) = 3Dx + co(:t ) = 3Dx + io(x), we get the 

rqualtc, E1 c,......(.i) + cp ... (io( :z:)) = 3/Jx. Si nce x E tmbal (P"' ), c,,.,.(z) = 3Dcp-(x) = 
30. ,_.(,. Exprmsang cP'"{iv{:i:)) iu tcrms of cp- : cp ... (iv(x)) = 3Dcp"•(iv(x)\ip- (x)) + 
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cp ... (lo(x) ílip- (x )). As for P11 in ca.se // , we get cp ... (io(x)\i p-(x)) = 3Dcp-(io(x)\ 
•p-(x)) nnd Cp"•(io(x) íl ip- (x)) = 3Dcp-(;o(x) íl ;p-(>)) + l;o(x) íl;p-(x)( ;p-(x), 
\Vhence, cp,.. (io(x )) = 3Dcp- (io(x )) + mip-(z), where m = 3Dlio(x) íl ip-(x)f. Rcwrit.. 

ing (E} we get cp- (x) + cp- (io(:r)) + mip-(z ) = 3Dx. As we show shortly, m is odd, 
and so, cp-(z) +cp- (io(x)) + ip- (:r) = 3Dx . But in case /// cp-(.z:) = 3D1p-(.c) o.ud 

1o{:t) = 3Dco(x ). lt fo llows that cp-(co(x)) = 3Dx, establishing this final case, providcd 

mis odd. Consider the map D;,, = 3DD(st,x) and its phial P'" = 3DP- (td,x). Thcy 

both have a single vertex and satisfy the hyp otheses oí case 11 , and so we ha.ve proved tho. t 

!10 ... (x) n i p<u (:z:)I is odd. To conclude the prooí, jus t note that io•u(x) = 3D1 o(x) and 

••••(x) = 3Dó.p- (x ). Tlms, m = 3Dl;o(x) íl ;p-(x)I = 3Dl;o ... (x) íl ;P••(x)I is odd . 
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