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Aprmacy. lstersational fishing as a special dynamic game will be asalyzod, which in
n of classical I i and oligopoly theory.

The sstersction of the countries or firme s through masket rules assuming that
all maslete sre open 1o all participanta. In addition, all Ssbisg partios buso their
Aty o the existing common flah stock. The available sk stock and the bollefs of
Wi paeticignants on the fish stock are the state variables. Depending on tho ponaiblo
aymunetey of the Sahing partios and on thelr behavior several alternative models can
b oot

e chssionl competitive model will be first formulated and examined, and the
il e of symemetric firma will be introduced. Next, | will sssume that a grand
il i Sorssed, and the total profit of the industry ks maximined. Finally, the par-
il onse will be In which each participaat’s objective function
UanBae & cortasn proportion of the profits of the others is addition 10 its own profits,

Sttty sslysis will bo porformed, and the birth of kst cyeles will be examined.
Mumuricad exnspios will lustrate the theoretical results




398 I | Fishing s D Oligopoly with Time Delay
1 Introduction
I the classical oligopoly model, the firms only compete through the market. This was

expanded in the oligopsony models, where the firms not only compete in the market for
thetr product, but also in the markets for labor and capital (Okuguchi and Szidarovezky,

1999) When oligopoly models are dedd 10 i ihie natural it must
e leopt i mind that there is an underlying rule that governs the availability of the natural
resousoe with time. In an ol) ly model of ble natural the firms must

also compote for this natural resource, much like they compete in the factor markets in as
aligopmony

A good ple of o ble natural i the fish stock in the ocoan that
can be harvested through international fishing. The firms (in this case, countries) compete
through the price of fish in the various markets, and in their cost for fishing that varies with
the amount of fish available. Further, the level of the fish stock is governed by a dynamical
system and fishing will modify this systom. The economics of fisheries, and the effect of
the economic activity on the underlying natural resource has boon studied considerably,
for example in Conrad and Clarke (1987), and Conrad (1995, 1099). This survey paper i
mainly basod on the works of the author of this paper (Szidarovazky et al, 2001, Engel et
al 2003, 20025, 2002b, Engel, 2002).

2 The Mathematical Model

In his easlior paper, Okugumi(lM)hum-wwwMMuo(mm»
der umperfoct compotition. His model and meth %y bas boen dod by Szid

and Olouguchi (1998) to the ,an.vlannmdyumklﬂmmddm
beens developod 1o describe the trajectary of the fish stock e & function of time. This model
bas been extended to the fully caso in Sedasovurky and Okuguchi (2000). 1s
addition they performed n complete equilibrium and stability asalysis for both cases, That
model i the basis of my analysis.

Assume that n countries harvest fish in an open ses region, and soll it in their markets
as well a6 in the markets of the other harvesting coustries. Let 2y, donote the amount of
fiah hasvestod by country k and sold in country ¢ (k= L 2.3, .. n). The total amount of
fish harvested by country k in given as Xy = x4 4 24g 4 - 4 24, and the total amount of
fish sold in country 1 18 Yi = 2y, 4 2 + o+« 4 2. The inverse demand function in country
+ s assumed 10 be linoar:

Pi=a - &Y, m
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with @, b >0 The fishing cost of country k is assumed to be quadratic:

Gmatnid, @
where % >D.MXh|hlloullovulnfthnmSuduwukynndOkugudﬂ

(1908

2.1 The fully competitive case

We asunse 1hat the n countries behave as Ooumol oligopolists, that is, in each time period
1 2 0 they form an n-pe | dy and the harvested amounts are de-
termined by the Cournot-Nash oqulllbrlnm of the resulting n-person non-cooperative game,
I Sidusonseky and Okuguchi (1008) it has been shown that under the above assumptions
the total amoust of fish harvested I

‘o ALX) .
Y e &)
andd the smonsat of Bsh harvested by country k can be given as
A-S
R v T @
where
. 1
/x) 'g; 1+ 281/ X
with

A and B
2 L Y
1 i e that without commercial fishing the growth rate of the fish stock is a
linenely dicelising fusction of the flsh stock according to the dynamic rule

X

¥=a- B8x
(whve % > 0), which has been known to fit well with experimental data for many bio-
gl popraiations (Clask, 1910) The effect of hlnuuu isto -«dnrm the decline in the
rawth sate of the fish stock, fore in the p | fishing,

e —
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the fub stock changes according to
. X
oo i) "
Let
G(X) = Al(X)

X(1+/(X)"

then @ can be proved that G s strictly decreasing and cosvex in X, thetofore the number of
posstive equilibria of the differential equation (5) 0, 1, or 2. In Szidarovaeky and Okuguchi
(1998) & complete stability analysis of the equilibria was performed

2.2 The fully cooperative game

The fully comy model of | jonal Bshing pe d in section 2.1 was extended
by Seadazovizky and Okuguchi (2000) to consider the case where at cach time period, the
hasvesting countrios form a grand coalition and their total profit is maximized

With the price and cost functions given previously, the profit of country k i given by

n xi
=3 nxn-(r.vn’—-‘x). 6
)

We now assumo that the fish harvesting countries form & grand coalition. Therefore the
profit of the coalition i the sum of the individual profits of the n countries:

e Yt =Y @-ar%-3 (a+nd) m
k=l =1 b=y
which is concave in the les xay. A interior the first order conditiont

for the conlition's profit maximization is given by:
X
o = e WY~ Iyt w0
for all + and k. Adding theso equations over 1 and simplifying gives

1 Xu
iA-J-D’hT-l
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where 5. A aad B aso dofined as bofore. Thereforo the total fish harvest of country k is

x.-;’in-[-,q s] ®)
Ty acliling these equations for all values of k and simplifying gives the total fish harvest:
ACX
S=3Cx+B )
with € = Y73, & Note that in the purely competitive case, the total fish harvest, S, is
e /(X)
A
ey i) (10)
with

> 1
) m S o (11)
E 14283

We will meet prove that for all X > 0, S; > S. Lot uy = g, and note T4, ux = 4, so
eration (11) cas be rewritton as

J(X) =y (12)
L

uy +1

Siomiliely.

C. ‘ IB _g —:l':“ __: .Nu 'I E ,=|u, + (13)

Sine el sersn of the right hand nide of (12) s larger than the corvesponding torm of that
of equation (13) we have

J(X) > ==
This sneuality can be simplified to

cX
CX +28B

2A/(X)(CX + B) > ACX [1 + (X))

ar
AMX) ACX
1+ I(X) 2(CX + B)'
Which growes the nsmertion.

i —
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Now, ax before, it s assumod that in the abwence of Sshing, the fish stock changes
aceonding to the logistic law:

X = (a-AX)X,
where o, 4 > 0. Therefore, in the of ] ] fishing, the fish stock
changes sccording to
. AC
X=X (a-0X - g5x ) o
x By G
2(CX + B)'

then GUX) i strictly decreasing and convex similarly to the competitive case. Therefore
the musmber of positive equilibria of the dynamic system (14) & 0, 1, or 2, and a similar
ssymptotic study can be performed as in the competitive case

2.3  The partially competitive case
In this section, the modols of international fishing from sections 2.1 and 2.2 will be extonded
to consbder the case of partinl cooperations betwoen the the harvesting counitrios

Consader the case whero a single species of fish is harvestod from a single soa region by n
countries, and each country solls its harvest in the markets of all n countries. Let x4, denote
again the amount of fish harvested by country k and sold in country « (L.k = 1,2, ..n)
Assume the inverse domand function in country ¢ is lneas:

P - Y (15)

with o, B > 0 and Y, = ), za( I8 the total amount of fsh sold in country 1. In addition,
as was wsed previously, assume the fishing cost of country & s quadratic:
X2
Ca=a+ngh (16)

where . > 0, X i tho total level of fish stock and Xy = F77, 2a, i the total amount
of fish harvested by country k. As earlier, the profit of cosstry & follows from these inverse
demand and cost functions:
" xi
iy -g(-. SCOENER S an

Now we sssume that all n countries partially cooperate, e the payoff of country & s the
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s of e peofit asd cortain proportions of the profits of the competitors. Thus the payoff
of country & 8 now

=3 (a +h)’.)!n-7.¥#zau(2(mONV-)H--'ﬂ%{(Z)- (18)
-l Ik =l
We asenmme isterior optismum, therefore the first order di for the of
country &' profit are given by

% = ay 4+ bY; = bxag = h‘xx' + Znu(’km) -0 (19)

inh

or simplifyisg

RS LI Sy, 2nds (20)

ok b bX
This evpstion for all & (k = 1,2,...n) can be bined in the matrix |

H-.-(%-Y.)l—b%(ix (21)

where

1 a0 00,0 E
1 0m 0 « 0 £

1 0 0 ¢+ 0 2 Tn
Num(fll)mhvmlwdhrl.lngu
m-(ﬂ-n)u"l—in”cx
b X
Aditing thuse euations over i(i = 1,...n) and simplifying gives

x-u-m(u;%c)-‘l, (22)

i m—
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where A and B are an bofore. Since 17X = § = 573 _, Xy, we have
-1
s-(n-s)nf(lu’;c) '

Solving for § results in
Af(X)

S= 1310 &)
where f(X) = 17 (H + 3.C) ™" 1. Combine equations (22) and (23) to get
A 25 \oK
%= (570m) (4 %0) * 89

By using oquation (28), it is clear that in the case of partial cooperation, dynamic
systems (5) and (14) are modified s

X = (a-pX -G(X) X (25)
where in this case ANX)

)= X0+ 0
3 Time Lag
In classical oligopoly theory, it is d that all ink e liatol lable to
xb&mhminmululnmtmm T\bbuumm%m
always time lags betwoon obtal and o about the A

production lovels, These time lags can be modeled as either Gxed time lags or continuously
distributed timo lags. Fixod time lags have beon studied & Russel of al. (1956), where they
lead 1o & differentinl-difference The ch 5 of such systems i 8

b of poly | and I f with s infinite eigemalue spectium,
as shown in the next simple example.

Esumple § Consider the system

E()=z()+=z(t=1)

We seok a solution of the form z(f) = ce™ The system then simplifies to a mived

Amcsoet
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Thin infinite engemraioe s makes the of and the
of classical bifsroation theory extromely difficult. In addition, i economic models the actunl
s g 1 nuon typically known. For this reason, models using costinuously distributed time
lags ane more appropriate which compute the expected profits with respect 1o the randomized
delgs. Contimuonsly distributed time lags were used in mathematical biology (see, for
evample, Cusbing. 1977). lnvernizzl and Medio (1991) made the &t use of continuously

d tisme hags in the e | and Chiarells and Szidarovezky (2002) have
applied them for dynasmic oligopolics.

The lestigation of instabilition deriving from the addition of continuously distributed
tme delsgs @ based on recont rescarch in the qualitative theory of nonlinear differentinl
equations b pasticular, we are looking for special bifureation types, namely for the birth
of Bt cyelies wing the Hopl Bifurcation Theorem (see for examuple, Guckenheimer and
Molmes, 1983) In this document, wo will show soveral examples of the birth of limit cycles,

31 The fully competitive case

O of e ey sssssmptions in this paper is that when the harvesting countries make their
decinions on the harvesting amounts, they have only delayed formation on thoe fish stock.
The deluy oelf i "0 i ly distrib time delay (to be described
Below) modiels thae situation approprintely. It is also sssumed that the information delays
of diffvent comstries are not nocossarily the same.

Flor enchh comstry we form X 5%, the expectation of country k on the fish stock at time
periad ¥, arerding to

'
XE (1) - / w(t =~ o, Ty, my) X (s)ds (26)
0

Nate that X 4 the expected value of carlier data on the Ssb stock with the density
Panetion w s - », Ty, my)

A i e e of dy i lios Sazicl and Chaarells (2001) wo select the
welghbing Suetion
si=nnmad ¥V B an
(@)™ (- Um>1

-hmub--—.d'rhnpdunwma 1Fm = 0, thes weights are exponentially
hmmn-mmnommwmuumz 1, then zero weight
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is assigned to the most current data, rising to a maximum at ¢ — s = T and declining
exponentially thereafter. As m i the weighting function b more peaked
around t — s = T, and if m — oo or T' — 0, the function tends to the Dirac delta function
centered at T or zero, respectively.

Each country harvests according to the harvesting function given in equation (4), but
using as argument X = (¢), its estimate of the fish stock at time t. We note that the
harvesting function(equation (4)) of country k can be expressed as

A

9k(X)=W (k=1,2,...,n).

Then the dynamics of the fish stock, equation (5), can be expressed as

X ()= X (t) (- BX (&) = Y gk (XZ* (1) (28)
k=1

The dynamic equation (28), with XP¥(t) defined according to equation (26), is a
Volterra integro-differential i It is in fact equivalent to a system of nonlinear or-
dinary differential equations as shown in Szidarovszky et al. (2001). Therefore standard
methods known from the theory of differential equations can be used to solve the equations

and investigate the asymptotical properties of the solution.

We will use linearization around an equilibrium X. The linearized version of the integro-
differential equation (28) can be written as

n t
Xs () = («—26%) X5 (8) = Y 9k (X) /U w (t— s, Tk, my) X5 (s)ds, (29)
k=1

where X; is the deviation of X from its equilibrium level. Using the usual techniques
(expounded for example by Miller, 1972) of seeking the solution in the form Xj (t) = eMv.

By substituting this solution into equation (29) and letting ¢ — oo, we have

— L ATy —(mx+1)
,\-(u-zﬁx)+2g;()ﬂ(1+q—) - (30)
k=1 L

At any equilibrium X, a-8X =G (7), s0 o — 20X = ZG(Y) — a which can be
positive, negative, or even zero depending on the shape of function G and the location of
the equilibrium. In general, the solution of equation (30) is impossible to give in a closed
form, it can only be found by using computer methods. In order to obtain analytic and not

‘G N
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only experimental results, special cases will be examined.

First, we shall focus on the case of symmetric firms, where Ty = .- = T, = T,
@ = =ap=0aby = =by=0b and m =+ =y, = 7 implying that A = na/b,
B =n/b,
n nX
Fx)= 1+2B% X +2By’
ey
X (1 i X:;(E7) (n+1)X + 2By
and
AX
9(X) = = )
(1+ x:;:m) (1+ 2’)'?‘) (n+1)X + 2By
where g1 (X) = - = g (X) = 9 (X).

The equilibrium is a solution of the equation

An
S e e
which is quadratic:

X2 (n+ 1) + X (2BBy — e (n + 1)) + (An — 2aBy) = 0.

In this case
2An

e S () e S e X T

without a definite sign and

Al(n+1)X +2B7] - AX (n+1)

gipH)= [+ 1) X +2B7] =
for all X. We will use these relations later.
Equation (30) can be rewritten as follows:
m+1
(= 26X)] (1+—) +ng' (X) =0, (1)

which is a polynomial equation with m + 2 real or complex roots. Analytic solution is
possible for only small values of m.
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The case of m =0

In the case of m = 0, equation (31) is quadratic:

that

(i)

(i)

[A = (= 26X)] (1 + AT) +ng’ (X) =0,

is

TA? +A(1-T (a - 26X)) + (ng’ (X) — @ +26X) = 0. (32)
We distinguish three cases depending on the magnitude of o — 26X.

Assume first that a — 26X <0.
Then all coefficients are positive implying that the real parts of the eigenvalues are

negative. So, the equilibrium is asymptotically stable.

Assume next that
a—26X >0. (33)

If
a-26X >ng' (X), (34)

then the constant term is negative, showing the existence of two real roots, one is
negative and the other is positive. In this case, the equilibrium is unstable.

If

a- 26X =ng' (X), (35)
then the term is zero implying the exi; of two real eig | at least
one of them is zero. If i

ng' =7

then both roots are zero, and if
i 1
ng' (X) > =,
is positive implying the i
7 1
ng' (X) < 7

then the nonzero eigenvalue is negative.

then the nonzero ei of the equilibrium. If

In the first and third cases no conclusion can be reached on the stability of the equi-
librium, however, in the second case the equilibrium is unstable.

Yamm o\
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(iii) Assume finally that in addition to (33),

a—2X <ng' (X). (36)
In this case, the constant term is positive. If
a-26X < 1
i
then the coefficients are positive implying that the equilibrium is asymptotically stable.

If

= _ 1

- 26X > =,

a—2p. T

then the linear coefficient becomes negative implying the existence of roots with posi-
tive value or positive real parts, so the equilibrium is unstable. Assume finally that

1

a—26X = i 37)

then there are two pure complex roots.

The existence of a pair of pure complex roots shows that there is the possibility that
the real parts change sign implying the change in the asymptotic behavior of the
equilibrium. In order to guarantee that such change really occurs we need to show
that the real part is a strictly monotonic function of some model parameter. Select T'
as this bifurcation parameter.

Differentiating equation (32) with respect to T, we have
M4 2T+ A(1 = T (a = 26X)) = A (o — 26X) =0. (38)

From (37), the critical value of T is

1
T
a—2BX
and from (38),
5§ e —26X) =2

T 2TA+ [1-T(a-26X)]

Notice that at the critical value T*,

409
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SO
Re A ey L #0
€ Alper. = 3702
implying the change in stability and by the Hopf bift ion theorem, the exi: of

a limit cycle. Hence we have the following existence theorem.

Theorem 1 If m = 0 and a — 26X = %, then there is a limit cycle around the
equalibrium.

3.3 The case of m=1

When m=1, the ch istic ion (31) b
A= (= 26X)] (1+ 2XT + A*T?) +ng' (X) =0,
which is the cubic:

23T2 + )2 (2T - T2 (o — 26X)) + A (1 - 2T (a — 26X))

(40)
+(ng’ (X) —a+26X) = 0.

The Routh-Hurwitz stability criterion implies that all roots have negative real parts if
and only if all coefficients are positive and
(2T — T? (o - 26X)) (1 - 2T (o — 26X)) — T? (ng’ (X) — @ +26X) >0

which is equivalent to the dratic i lity of the form

2 (a - 26%)* T2 — T (ng’ (X) +4 (a - 26X)) +2 > 0. (41)
PEigenvalue Analysis

(i) Assume first that o — 26X < 0.

Then all coefficients of (40) are necessarily positive. The discriminant of the left hand
side of (41) has the form

ng' (X) [ng’ (X) +8 (a - 26X)],

so we have to consider three possibilities:

‘e @ A\
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(a) If
a—26X = —%ng' ), (42)
then (41) holds for all
T#ng'm-&"l(a—ﬂim_ 1
4(c—26%)° a— 26X’

and in this case the equilibrium is asymptotically stable.
(b) If

a— 26X < ~§ng’ @), (43)
then the right hand side of (41) has no real root, so (41) holds for all T' > 0. Therefore,
in this case the equilibrium is asymptotically stable.
(c) If

a-26X > —%ng’ (7) 2 (44)

then (41) has two real roots:

g’ (%) +4(a = 26%) & y/ng’ (X) [ng’ (%) + 8 (o — 26X)]
i 4(a - 26%)°

Ty . (45)

In order to examine the signs of these roots, notice first that
ng (%) + 4 (o~ 36%) > ng' (X) = 30’ (%) >0,

that is, both roots are positive. therefore (41) holds if and only if T < Ty or T' > T3,
where the roots are indexed so that Tj < T,. Therefore, in this case, the equilibrium
is asymptotically stable for T < Ty or T > T,. If Ty < T < T, then the equilibrium
is unstable.

(ii) Consider next the case when a — 26X = 0.

Then all coefficients of (40) are positive, and (41) reduces to the simple inequality
—Tng' (X) +2>0
which holds if and only if

2
T'<——=.
S (@)
So, if this relation holds, then the equilibrium is asymptotically stable.
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(i) Consider nest the case when a — 28X > 0.

All coefficients of (40) are positive if and only if
26X < min{ =, —, ng' (X 46)
@ min 5Ty . (46)

The quadratic polynomiall (41) has two roots, given by (45), both are positive. By
using (46), the larger root satisfies the following relation:

5(&—2ﬁ7)+\/9(a—2ﬂ7)2_ 2L

T =
o (o= 265 o= 26X

so T is never larger than T}, thus (41) holds if and only if T < Ty. Combining this
condition with (46), we see that in this case the equilibrium is asymptotically stable,
Hi70 < min{Tl,ﬁ,ng' x)}.

Hopf Bifurcation Analysis
Let’s now turn our attention to the case of pure complex eigenvalues. A pure complex
number A = ir solves equation (40) if and only if

—ir®T? — 7 (2T = T* (@ - 26X)) + 47 (1 — 2T (e — 28X))
+(ng’()?)—a+2ﬁ?) = O

E ing the real and i: inary parts to zero, we have
o 1-2T(e-26X) ng'(X)-c+26X @)
= = .
T2 2T — T2 (o — 26X)

Since T? > 0, real 7 exists only if
1 - 27 (a - 26X) > 0
and (41) is satisfied with equality:

2 (e - 26X)" T? = T (ng (X) + 4 (c — 26X)) +2=0. (48)

A positive solution for T exists only if the discriminant is nonnegative and the linear
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coefficient is negative:
a—26X > —%ng'm. (49)
Let T} and T3 (T3 > Ty') denote the roots. The bifurcation parameter is selected again

as T, then T} and T are the critical values. Differentiate equation (40) with respect to 7'
implicitly to have

3A2AT2 + A%2T + 2)\A (2T — T2 (a - 26X)) + A% (2 - 2T (o - 26X))
+A (1 - 2T (o - 26X)) + A (-2 (a - 26X)) = 0

implying that

oy 2TN° + 2?2 (2 — 2T (a — 26X)) — 2A (a — 26X) (50)
T 3N 42 (2T — T2 (a — 26X)) + (1 - 2T (a - 26X))

At A = ir, the real part of this derivative is the following:

; A
Boilsoi 5 ©n
where
B = [-3r*T? + 1 - 2T (a« — 26X)) + [2r (2T - T* (a — 26X)))" > 0
and

A = r?[2-2T (a—26X)] [-8r°T +1 - 2T (a - 26X))
+ [277° + 2r (a - 26X)] [2r (2T - T2 (a - 26X))]
= [1+0°T%) [-3:°T2 + 1°T7]
8o k=202 [ 4 ,1—r*T2]
+[2Tr +2r T ]2r 2T —T* O
= r?(-r'T* +2r°T* 1 3),

which is nonzero if 72T2 # 3. In this case, there is a limit cycle as a consequence of the
Hopf bifurcation theorem. Notice that if 7272 = 3, then from (47),

T (a—26X) = -1,
and relation (48) implies that
~Tng' (X) +8=0.
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From these equations, we see that
— 1
a-26X = —gﬂg' =), (52)

that is, (49) holds with equality. Assume next that (52) holds, then (48) can be rewritten

as
2 (o — 26X)*T? + 4T (o - 26%) +2 =2 ((a - 26X) T +1)* =0

implying that
T (- 26X) = -1,

and from (47), we see that 7272 = 3. We can summarize the above derivation as follows.

Theorem 2 If m = 1 and a — 26X > —én_q’ (7), then there is a limit cycle around the
critical value T # 3@, otherwise the existence of a limit cycle is not guaranteed.

The fully cooperative case, and the partially cooperative case with symmetric countries,
the form of the equations governing the level of the fish stock is the same, thus the behavior

is similar.

4 Numerical Examples

First, weselectm=0,a=f=1,a=1,b=3,y=08andn = 2. Inthiscnse,A:B:%,

2X
9) =
100 = o
4
G(X) = o
*) 3X + 12
2
X
) = e iy
9(x) 3X + 18

The critical value of T is 9. Figure 1 shows the birth of a limit cycle with this value
of T. In figures 2 and 3, we changed the critical value to 8.8 and 9.2. In the first case, a
shrinking cycle is shown, and in the second case, an expanding cycle is obtained, showing
the asymptotically stable system became unstable by increasing the value of T'.
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X2
0.12355
0.1235
0.12345
0.4435 0.444 0.4445 .445 0.4455 0.446x
0.1233

Figure 1: Birth of a limit cycle with m = 0

Next, the case of m = 1 is illustrated. The selected parameter values are a = 0.75,
B=15a=1,b=38, y=2andn=2 In thiscase, A=B =2,

2X
10 = 1o
3

4

e =
3
2x

©

()i 3X+%°

The critical values of T are 4.38014 and 145.212 as the solutions of equation (48). Figure
4 shows the occurrence of a limit cycle with the smaller value of 7. Similar phenomenon
is obtained with the large root, as well. Shrinking and expanding limit cycles can also be
generated by lowering and raising the value of 7' from the critical values.
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Figure 2: A shrinking cycle for T' = 8.8
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Figure 3: An expanding cycle with 7' = 9.2
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Figure 4: Birth of a limit cycle with m =1

5 Conclusions

In this paper, a special class of dynamic games was analyzed. This type of dynamic games
arises from the combination of the classical population dynamics theory and the well known
oligopoly theory of mathematical economics.

International fishing is a typical example of this type of dynamic games in which several
countries, or firms, fish on a sea region. Their interaction is through market rules when we
assume that all markets are open to all participants. In addition, all fishing parties base their
activity on the existing common fish stock. The combination of the market economic rules
with population dynamics results in a special dynamic system, in which the available fish
stock and the beliefs of the participants on the fish stock are the state variables. Depending
on the behavior of the participants several alternative models can be formed.

The classical competitive model was first formulated and examined. After the general
model was constructed, a special case was introduced. We assumed the countries, or firms,
are identical. In this special case, I derived simple analytic results about the asymptotic
behavior of the state trajectory, which is tractable in the general case only by computer
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simulations. Next, we assumed that a grand coalition is formed, and the total profit of the
d

1. Partial ive case was i next, in which I assumed

industry is
that each participant’s objective function contains a certain proportion of the profits of the
others in addition to its own profits.

In all cases, a detailed mathematical model was constructed, the equilibrium or profit
optimizing the harvest rate was computed and the population dynamics rule was modified
accordingly. All earlier results were based on the assumption that each participant has
instantaneous information on the fish stock. However this assumption is not realistic, since
there is always a gap of information due to information collection and implementation. Since
the time is not known exactly, continuously distributed time lags were assumed, where the
time lag is a random variable. Under this assumption, the dynamic system was described
by a Volterra-type integro-differential equation system. The asymptotical behavior of the
state trajectory was analyzed by using linearization. Conditions for the local asymptotical
stability of the state were first derived, and in the case of instability, special bifurcations,
especially the birth of limit cycles, were studied. In addition to the theoretical, analytic
results, I illustrated these bifurcations with simple computer studies.
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