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SUMMARY. In this paper we consider dynamic game-theoretic models, where boundedly 
rational players use simple decision rules to determine their actions over time. The 
adaptive process which captures the interaction of the players' decisions is the main 
objective of our study. In many situations this process is characterized by multistability, 
where e.g. multiple atable (Nash) equilibria emerge as possible long run outcomes. 
When such coexistence occurs, the selected equilibrium becomes path-dependent, anda 
thorough knowledge of the basins and their structure beco mes crucial for the researcher 
to be able to predict which one of the multiple equilibria is more likely to be observed 
in situations described by the game. We demonstrate that, despite the fact that the 
long run dynamics of the adaptive process might be rather simple, the basins of the 
attract.ing sets might have quite complicated structure. In this paper we show that 
the complexity of basins can be explained on t he basis of the global properties of the 
dynamical system, and we introduce the main tools - critical sets and basin boundaries 
- which enable the model builder to analyze the extent of the basins and their changes 
as structural parameters of the model are changed. T he main point is that one has to 
study the global properties of the system, and not restrict the investigation t o the local 
dynamics around the attracting sets. 
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1 Int roduction 

For quite a long t ime the standard approach in gamc theory textbooks treated t he question 
of outcomes in static games. Static in this context refers to the fa.et t hat players meet only 
once and by sorne kind of process of introspection simultancously and immediately choose 
strategies which correspond to a (Nash) equilibrium. P layers were assumed to be fully 
rational , i.e. they know everything about t he game they are playing (and also know that 
the same is true fo r the other players). However, in real world situat ions complexit ies and 
difficult ies arise, e.g. t he limited ability of agents to compute optima] solutions, the difficulty 
to foresee ali contingencies in the future and prohibitive costs to calculate and implement 

an optima[ plan of action. Accordingly, dueto these restrictions which agents in the real 
world ha.ve to fa.ce , they only behave boundedly rational. In the more recent literature, 
dynamic situations are cousidered, where players interact with ea.ch other repeatedly over 

time aud often choose their actious or strategies by tria! and error methods that require less 
information anda lower degree of rationality of the players. lt is assumed that agents beba.ve 

adaptively and adjust their strategies to changes in their environment; see e.g. Binmore /5), 
Weibull [32], Hofbauer and Sigmund !20), FUdenberg and Levine [18]. Convergencc to a 
Nash equilibrium of a dynamic game played by boundedly rational agents mea.ns that this 
equilibrium is not the result of sorne fixed point argument (and is assumed to be reached by 
fully rational players in one shot), but instead emerges in the long run as t he result of an 
adaptive process. This "evolutionary approach" to Nash equilibrium rei nforces its meaning 
as a real word outcome. T his becomes even more important as observations in the field of 
experimental economics provides evidence that players find their way to an equilibrium of 
a game by using trial-and-error met hods (see e.g. Binmore, [6/) . 

1n this paper we focus on this line of research and consider sit uations where bounded ly 
rational agents interact repeated ly. The dynarnic process by which players adapt t heir 
choices over time can be formally described as fo llows. Atea.ch discrete time period t =O, l , 

2, ... , the n players choose their actions by using sorne (more or less sophisticated) decision 
rules, based on the information about past behavior . Players' act ions are represented by 
real numbers, x 1(t), ... , x01 (t) , i.e. a point in a n-dimensional strategy space S E IR". The 
adjustment process, which governs the evolution of the garne can then be expressed in the 

fo rm of a discrete dynamical system defined in S ~ R.". Given an initial choice of the players 
(the initial condition) x (O) E S , the sequence of actions x (t), t EN, is obtained inductively 
by the iteration of a map T : S __, S defined by 

(!) 

where 1 denotes t he unit-time advancement operator. That is, if t he right hand side variables 
represent the players' actions at time period t , then the left hand side represents the set 
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oí actions at time (t + 1). As a classica\ example, we mention the Cournot tiltonnement 
process, by whic:h players adjust their production sequences in a quantity-setting oligopoly 
game (see Cournot, [15]). In this game it is assumed that in each period every player 
chooses its own production strategy as a best response to the c:hoices of the competitors in 
the previous period. The map T can then be derived on the basis of the players' best replies. 
Starting from an initial condition x0 E S , the repeated application ( iteration) of the map T 

uniquely defines a trajectory of players' actions 

r(><o) = {x(t) = T' (><o),t =O, 1,2, ... ), (2) 

where '!'°is the identity map and T 1 = T(T1- 1 ). The main goal is to study the asymptotic 

evolution oí these trajectories and how it is infl.uenced by the starting conditions of tite 

game (initial values of a.ctions) and the values of sorne structural parameters of this game. 
The asymptotic properties of a trajectory as t --. oo represent tite long run outcome of the 
game, whic:h may be convergence to a Nash equilibrium, a bounded cyclic or chaotic motion 
around an (unstable) Nash equilibrium, or an irreversible departure from it. In sorne cases, 

trajectories may even exit the strategy space, i.e. diverging trajectories may be obtained. 

The insight that a dynamic process defined by the iterated map (1) may converge to a 
given steady state (or equilibrium), but also may lead to more complex behavior, has been 

rather inlluential. In a pioneering paper, R.and [27J has shown that quite complex dynamics 
with periodic and c:haotic trajectories may characterize the long run evolution of dynamic 

(duopoly) games. In the following years other authors ha.ve given examples of economically 
int.eresting dynamic games, showing complex dynamics; set!, e.g. Dana and Montrucchio 

1161, Van Witteloostuijn and Van Lier [31], Puu l25J, [26J, Kopel [21), Agiza et al. [2J, Bischi 
et al. ¡10], Ros.ser [29]. In these papers it is shown that trajectories of actions might never 

settle to any steady state and in the long run exhibit bounded dynamics which may be 
periodic, quasi-periodic or even chaotic. Divergence from an equilibrium in this context 

means that the Nash equilibrium is not really relevant beca.use it cannot be endogenously 
leamed by boundedly rational agents. 

A rather different problem which often arises in the study of dynamic games concerns 

the coexistence of severa! equilibria, each with its own basin of attra.ction. In this case, a 

problern of equilibrium selection arises (see Van Huyck et al. [30], Bischi and Kopel l7J), and 
a mechanism is required that allows to make predictions which of tite multiple equilibria (or 

other attracting sets) will be more likely observed in situations described by the game. One 

approach to select among the equilibria is to use stability arguments. The idea behind tltis 

approach is that an equilibrium point is a convention that arises among players interacting 
repeatedly. As unstable equilibria will not be the result of such an evolutionary procesa, 
only stable equilibrio. have to be considered. If such a stability argument selects a single 
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equilibrium, we can abstract from the process itself with its undesirable dependence on 
historical accident. However, often many equilibria survive this refinement, anda situation 
of strategic uncertainty prevails. In such situations of multistability, the selected equilibriwn 
is path-dependent and the choices of the initial actions (the initial condition) e.re of crucial 
importance. In other situations, stable Nash equilibria might even coexist with other kinds 
of attractors and the boundedly rational players may in the long run learn to play Nash 

equilibrium strategies or they may continue to play a different set of strategies that are not 

part of any equilibrium selected by fully rational players. 

Such situations of multistability quite naturally !ead to the study of the basins of at­
traction, which requires a global analysis of the dynamical systcm (1). In fo.et, a local 

stability analysis, based on the linear approximation of the dynamical system a.round the 
steady states , is not enough to characterize the structure of the basins and their qualitative 
changes. Local stability means that the game converges to a particular attracting set in the 
long run , provided that the initial strategies a.re sufficiently clase to it. On the other hand , 

interesting phenomena may occur when the game starts far away from an equilibrium (or, in 
general, from an attracting set), sincc global dynamic properties may influence thc time path 

due , for example, to overreactions of the agents when their strategies are very far from ali 
the equilibria. However, this question and, related to it , the study of the complex structure 
of the basins has been rather neglected in the economics and game theory literature. 

An investigation of global bifurcations that change the qualitative structure of the 
ba.sins is particularly challenging in the case of discrete time dynamical systems governed by 
the iteration of noninvertible maps. lndeed, in this ca.se tbe basins may have complicated 
topological structures, since they may be multiply-connected or non-connected sets, ohen 

formed by the union of infinitely many disjoint portions. With the help of recent results on 
basin bifurcations in noninvertible maps, mainly based on the method of critica! sets (see 

e.g. Mira et al. !23), [24], Bischi and Kopel /7]), insights into the structure of the basins 
and into tbe creation of complex basin boundaries can be obtained. As sorne pa.rameter 

is varied, such changes in tbe structure can be characterized by global bifurcations: they 
are tbe consequence of contad bifurrotions, i.e. due to contacts between critica! sets and 

invariant sets (such as fixed points or cycles or their stable sets). For two-dimensional 
maps, such kinds of bifurcations can be very ra.rely studied by analytical methods, since the 
equations of such singularities are not known in general. Hence these global bifurcations are 
mainly studied by geometrical and numerical methods. For recent applications to models of 

economic and financia! systems, see e.g. Bischi et al. /9], IIOJ, Agliari et al. [3}, Puu /26], 
Bischi and Kopel [7]. 

Summarizing, we may say that in the literature 011 dynamic games two different routes to 
complexity have been studied. The first one is related to the complexity of the attracting sets 

1 
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which characterize the long run evolution of the dynamic process and describe the evolution 

of players' actions over time. The second one focuses on the complexity of the boundaries 
which separate the basins when severa! coexisting attractors are present. lt is important to 

realize that these two different kinds of complexity are not related. Very complex attractors 

may have simple basin boundaries, whereas boundaries which separate the basins of simple 

e.ttractors, such as coexisting stable equilibria, may have very complex structure. Since we 

feel that for game theoretic considerations the second line of research is more important, 

wc will mainly focus on the global analysis of dynamic ge.mes, the study of the basins of 

attraction of long run outcomes, the basin boundaries in situations of multistability, and the 

oorresponding changes when structural para.meters of the ge.mes are changed. 

The paper is organized as follows. In Section 2, we briefiy review sorne important 

dcfinitions a.nd concepts from the theory of dynamical systems. In section 3 we consider 
one-dimensional maps, and illustrate how global bifurcations give rise to non-connected 

basins of attracting sets. We then consider two-dimensional examples in section 4. We take 

eoonomic applications of dynamic ge.mes, and show that complicated structures of the basins 
may emerge, although the long run dynamics of these ge.mes are rather simple. Section 5 
conc\udes. 

Sorne Definitions 

In this section we recall sorne definitions conceming discrete dynamical systems represented 
by iterated maps of the forro {l). The point x 1 is called tbe rank-1 image of x. A point 

x such that T(x) = x' is called a rank-1 preimage of x' . The point x(t} = T 1(x}, t EN, 

is called image of rank-t of the point x, where T° is identified with the identity map and 

T' (-) = T(rt-1 {·)}. A point x such that T 1 (x) =y is cal\ed rank-t preimage of y . 

A set A e R" is trapping if it is mapped into itself, T (A) <; A, i.e. if x E A then 

T(x) E A. A trapping set is invariant if it is mapped onto itself: T(A) = A, Le. ali 

the points of A are images of points of A. A closed invariant set A is an attractor if it 

is a8Vf11ptotically stable, i.e. if a neighborhood U of A exists such that T(U) <; U aud 

T'(x)--A as t - +oo for ea.ch x E U. 

The BtUin o/ an attroctor A is the set of ali points that genera.te trajectories converging 

lo A 

B(A) ~ {xlT'(x) - A as t - +oo}. (3) 

Starting from the definition of stability, \et U(A} be a neighborhood of an attractor A whose 

poinLs converge to A. Of course U(A) <; B(A}, but note that also the points of the phase 

space which are mapped inside U a~er a fmite number of iterations belong to B (A}. Hence, 
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the total basin o/ A (or briefly the basin of A) is given by 

B (A) ~ LJ r-"(U(A)), (4) 
n:::O 

where r -1(x) represents the set of the rank-1 preimages of x (i.e. the points mapped into x 
by T ). and r-n(x) represents the set of the rank-n preimages of x (i.e. the points mapped 
into x after n applications of T). 

A map T is said to be noninvertible {or "many-to-one"), if distinct points x :f:. y exist 

which ha.ve the same image, T(x) = T(y) = x'. This can be equivalently stated by saying 
that points exist which ha.ve several rank-1 preimages, i.e. the inverse relation x = r- 1 (x') 
may be multi-valued. Geometrically, the action of a noninvertible map T can be described 
by saying that it "folds and pleats" the plane, so that two distinct points are mapped into 
the same point. Equivalently, we could also say that several inverses are defined, and these 
inverses "unfold" the plane. For a noninvertible map T , the space IRn can be subdivided into 

regions Zk , k 2: O, whose points have k distinct rank-1 preimages. Generally, as the point 
x' varies in IR" , pairs of preimages appear or disappear as this point eros.ses the boundaries 

which separate different regions. Hence, such boundaries are characterized by the presence 

of at least two coincident (or merging) preimages. This leads to the definition of the critica! 
sets, one of the distinguishing features of noninvertible maps (Mira et al., /24J): The critica[ 
set es of a continuous map T is defined as the locus of points having at least two coincident 

rank - l preimages, located on a set es_ 1 called set o/ merying preimages. The critica! 
set es is the n-dimensional generalization of the notion of critica! value (when it is a local 
minimum or maximum value) of a one-dimensional map 1 , a11d of the notion of critica[ curoe 
Le of a noninvertible two-dimensional map (from the French "Ligue Critique"). The set 
es_¡ is the generalization of the notion of critica! point (when it is a local extremum point) 
of a one-dimensional map, and of the fold curve Le_ 1 of a two-dimensional noninvertible 

map . The critica! set es is generally formed by (n - 1)-dimensional hypersurfaces of Rn, 
and portions of es separate regions zk of the pha.se space characterized by a different 
number of rank - 1 preimages, for example z,. and Zk+2 (this is the standard occurrence). 

As an illustration, we consider the well-known one-dimensional logistic map (fig. la) 

x' ~ f(x) ~ µx( I - x). (5) 

This map has a unique crit ica] point e = µ/4, which separa.tes the real linc into the two 
subsets: Zo = (e, +oo), whcre no inverscs are defined, and Z2 = (-oo, e), whose points have 

1This terminology, and notation, originatea from the notlon of critica! poinU 88 it is used in thc cl8S5icaJ 
" 'Orksof Julia and Fatou. 
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two rank-1 preimages. ':Dhese preimages can be computed by the two inverses 

1f z' E Z2 , its tw0 11ank-l preimages, c0mputed according to {6), are located symmetr.icall~ 

with respect to the p0int e_¡= 1/2 = f! 1 ~µ/4) = f2 1(µ/4). Hence, c_1 is tibe p0int where 
the two merging preimages of e are bcated. The map f folds the real Jine, the twe inver:ses 

unfold it (fig. 11b). As the map Q5~ is differentiable, at c_1 the first det1ivative vanishes. 
However, note that in gener-a\ a ctiitical point may e ven be a point where the map is not 
differentiable. This happens for c0ntinu0us piecewise differentiable maps such as the well 
known tent map or 0t!her piecewise linear maps. In these maps crifücal points are l0cated 

8 t the kinks where two branches with sl0pes of 0pposite sign join ancl 10cal maxima and 

minima are located. 

p* 

e_ 

(a) 

Figure la 
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Folding byT 
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(b) 
Figure lb 

Analogously, for a two-dimensional continuous map the set LC-1 is included in the 

set where detDT(x, y) changes sign, since T is locally an orientation preserving map near 

points (x,y) such that detDT(x,y) > O and orientation reversing ifdetDT(x,y) < O. An 

intuitive visualization in JR 2 is given in fig. 2. Also in this case, if the map is continuously 
differentiable, the points of LC_1 necessarily belong to the set where t he Jacobian determi­

nant vanishes, and LC = T(LC_i) constitutes the boundary lines which separates regions 
Z1< characterized by a different number of preimages . 

det DT<O 
(oricnwior1 

~venin11) ..,5.1. 

Figure 2 

det DT>O 
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In order to give a geometrical interpretation of the action of a multi-va.Jued inverse relation 

r -1, it is useful to considera region Zk as the superposition of k she€ts, each a.ssociated 
with a different inverse. Such a representation is known as Riemann foliation of the plane 
(see e.g. Mira et al., [24)). Different sheets are connected by folds joining two sheets, and the 
projections of such folds on the phase plane are ares of LC. This is shown in the qualitative 
sketch of 6g. 3, where the case of a Zo - Z2 noninvertible map is considered. This graphical 
representation of the unfolding action of the inverses gives an intuitive idea of the mechanism 
which causes the creation of non-connected basins for noninvertible maps of the plane. 

~ - SH,;J 
r -• - SH1 

' 

1~ )Izo 
7 

x' 

Figure 3 

From the definition given above for the n-dimensional case, it is clear that the relation 

CS = T (CS_¡) holds, and the points of CS-1, in which the map is continuously differ­
entiable, are necessarily points where the Jacobian detenninant vanishes. In fact, in any 
neighborhood of a point of CS_1 there are at least two distinct points which are mapped 

by T in the same point. Accordingly, the map is not locally invertible in points of CS_ 1 • 

3 One-Dimensional Dynamics 

In this section, we start with continuous, noninvertible and one-dimensional maps, and 

"'t illustrate how non-connected basins of attraction arise. Furthermore, we show how the 
global bifurcations that cause their qualitative changes can be described in terms of contacts 
bet\lo--een critica! points and the basins' boundaries. 

Let us first take a look at iterated invertible maps though. lf f : I - l is a continuous 
and increasing function, then the only inva.riant sets are the fixed points. When many fixed 

points exist, say x¡ < x; < ... < x¡ , they are alternatingly stable and unstable: the unstable 
fixed points are the boundaries that separate the basins of the stable ones. Starting from an 

initial condition where the graph off is above the diagonal, i.e. f(xo) > x0 , the generated 
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trajectory is an increasing sequence converging to the stable fixed point on the right . On 
the other hand , sta.rting from an initial condition such that / (x0 ) < xo, the trajectory is a 

decreasing sequence converging to the fixed point on the Jeft (see fig . 4a, where p• is a stable 
fixed point, and its basin is bounded by two unstable fixed points q• and r•, where q• < pº 

and r º > pº ). If f: l ___, lis a continuous and decreasing map, the only possible invariant 
sets are one fixed point a.nd cycles of period 2. Periodic points of the cycles of period 2 
are located e.round the fixed point, the unstable ones being boundaries of the basins of the 

stable ones (see fig. 4b, where a stable fixed point x• exists, and its basin is bounded by the 
periodic points a 1, a2 of an unstable cycle of period 2). 

(•) 

Figure 4 

In general, in the ca.se of one-dimensional invertible maps the only kinds of attractors are 
fixed points and cycles of period two. In the first ca.se, the ba.sin is an open interval which 
includes the fixed point , and in the second case, the basin is the union of two open intervals, 
each one incl uding an attracting periodic point. 

Obviously, if the map is invertible, the basins of the attracting sets are simple. This 
not true if the map is noninvertible. In this ca.se the structure of a ha.sin may be very 
complicated. Non-connected portions of the basins may be created, given by open intervals 
that do not include any point of the related attractor. As a first example, let us consider 
the logistic map (5), a noninvertible Zo - Z2 map whose graph is represented again in fig . 
5. For µ < 4 every initial condition xo E {O, 1) generates bounded sequences, converging 
to a unique attractor A (which may be the fixed point x · = (µ - 1) /µo r a more complex 

.. 
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aU.ractor, periodic or chaotic and located around x•). lnitia.l conditions out oí the interval 
[O, l] generate sequences diverging to (minus) infinity. The boundary that separates the 
basin oí attraction 8(A) of the attractor A, from the basin 8(00) is formed by the unstable 

fixed point q• =O and its rank-1 preimage (different from itself), q: 1 = l. Observe that, 
oí coune, a fixed point is a.lways preimage of itself, but in this case also another preimage 
exista because q• E Z2. If µ < 4, like in fig. 5a, q: 1 >e= µ. / 4, where e is the critica\ point 
(maximum} that separates Zo and Z2• Hence, q: 1 E Z0 . If we increase ¡i., at µ = 4 we have 
q: 1 = e = l , and a contact between the critica! point and the basin boundary occurs. This 
is a global bifurcation, which changes the structure of the ha.sin. For µ > 4, we have q:1 < e, 
and the portian (q:1,c} of B (oo) enters Z2 . This implies that new preimages oí that portion 
arecreated, which be\ong to B(oo) according to (4). The two rank-1 preimages of (q:.,c) 
are located in a neighborhood /0 of the critica.! point c_1 = 1/ 2, as shown in fig. 5b. Points 
of lo exit the interval (O, l) after one iteration, thus giving an unbounded sequence. As 
lo E Z:i:, it also has two rank-1 preimages, that are rank-2 preimages of (q:1,c). These 

preimages are given by the two smaller intervals denoted by /~1/ and /~2/ in fig. 5b and 
are located symmetrically with respect to c_ 1 = 1/ 2. Points belonging to /~1/ and /~2/ exit 
the interval (O, l ) after two iterations of (5). Even these two smaller - non-connected -

portioll! oí 8(00) are in Z2. Hence, each of them has two preimages, which again result in 
non-oonnected portions of B (oo). Obviously, this process gives rise to a infinite sequence 

of preimages whose points generate unbounded sequences. So, after the contact between 

the critical point c and the basin boundary q: 1 , infinitely many non-connected portions of 
8 (00) are created inside (O, 1) (only a few of them are shown in fig. 5b). The union of 
ali these preimages is an open set whose closure is !O, 1). lts complement in [O, lj has zero 

Lebesgue measure and is a Cantor set (see Guckenheimer and Holmes, [19], Devaney, [17]). 

(b) 

Figure 5 
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A similar s ituation occurs for a unimodal Zo - Z2 map where the attractor at infinity 

is replaced by an attracting fixed point , like the one shown in fi g. 6. As in the previous 
example, we have an attractor A, which may be the fixed point x• (or sorne other invariant 

set around it), with a simply connected ha.sin bounded by the unstable fixed point qº and 

its rank-1 preimage q: 1 . This example differs with respect to the previous one in so fara.sin 

this case initial conditions taken in the comptementary set genera.te t rajectories convergi ng 

to the stable fixed point z• . This means that the ha.sin B (z º ) is fo rmed by the union 

of two non-connected portions: Bo = (-oo, qº) C Z2 , which contains z• (usually called 

1mmediate basin, the largest connected component of the basin which contains the attractor) 
and 8 1 = (q: 1,+oo) = ¡ - 1 (80) C Zo . In fig. 6 the two 11011-co11nected port ions of t he 
ha.sin B (z") are marked by bold lines. Interesting effeds occur , if some parameter variation 
causes an increa.se of the critica! point e (maximum value) until it crosses the ba.sin boundary 

q: 1. If this happens, the interval (q: 1, c) , which is part of 8 1, enters Z2, and infinitely many 

non-connected port ions of B (z") emerge in the interval ( q" , q: 1 ). Note that the total ha.sin 
can still be expressed a.s the union of ali the preimages of any rank of the immediat.e ha.sin 

Bo. 

Figure 6 
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Another interesting situation is obtained if we change the right branch of the map of 

fig. 6 by folding it upwa.rds such that another critica! point, a minimum, is created. Such 
a situation is shown in fig. 7. This is a noninvertible Z\ - Z3 - Z1 map, where Z3 is the 

portian of the codomain bounded by the relative minimum value CmJn and relative maximum 
va.lue Cma:ic · ln the situation shown in fig. 7a we have three attractors: the fixed point z• , 
with B(z•) = (-oo, q•), the attractor A a.round x· , with basin B (A) = (q., r• ) bounded 
by two unstable fixed points, and +oo (i.e. positively diverging trajectories) with bo.sin 
B(+oo) = (r• , +oo). In this case ali the basins a.re immediate basins, ea.ch being given 

by !Lll open interval. In the situation shown in fig. 7a, both ha.sin boundaries q• and r • 
are in Zi. so they ha.ve only themselves as unique preimages (like for an invertible map). 

Ha-i:iver, the situation drastical\y changes if, for example, some para.meter changcs causes 
the minimum value Cmtn to move downwards, until it goes below q• (as in fig. 7b). A~er 
the global bifurcation, when Cmin = q•, the portion (cm;,,,q•) enters Z:i, so new preimages 
rt- (cmin , q•) appear with k ~ l. These preimages constitute non-connected portions of 
B(;") nested inside B (A), and are represented by the thick portions of the diagonal in fig. 

lb. 

(•) (b) 

Figure 7 
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4 Two-Dimensional Dynamics 

We now consider two examples, which are taken from recently published papers. In these 

models two-dimensional itera.ted mnps are used to descri be the time evolutions of plnyers' 

actions in discrete time dynamic games. In each example we emphasize the crention of non­
connected basins and how it can be exptnined in terms oí contncts betwccn critica] curves 

a nd basin boundaries, where the Jntter are often formed by stable sets of sadd le points 

or cycles. The first example is tnken from Bischi and Kopel [7], who propase a dynamic 

duopoly gnme in the tradition of Cournot. In contrast to the early models on oligopoly 

dynamics, in their model players form adaptive expectations and players' reaction functions 

are unimodat. This frnmework gives rise to a situation of multistability, where the basins 

of each stable Nash equilibrium is a rather compticated set. The second example presents 

a dynamic brand competition model proposed by Bischi , Gardini and Kopel (9]. In t his 

game a unique and stable fixed point exists, but the basin of the fixed point can have a very 

complicated structure . 

4.1 Example 1: Quantity-setting duopoly games with adaptive ex­
pectations 

The first example we present is a dynamic Coumot duopoly garue with unimodal renction 

functions. The two quantity-setting firms produce homogeneous goods and, sincc they do not 

know the competitor's output, they try to predict this quantity using an adaptive scheme. 

Let x 1 (t ) and x2 (t) be the outputs at time period t. The two players determine their pro­

duction quantities of the next period , x 1 (t + 1) and x2 (t + 1), by solving the optimization 

problems 

(7) 

where IT; is the profit of player i, and xi(t + l ),i = 1, 2 represent the predictions for the 

output of the competitor. The solutions of the optimization problems (assumed to be unique) 

are denoted by 

x, (t+ 1) = r, (x¡(t+ I)) 
X2(l + 1) = r2 {xj{t+ I)) 

(8) 

where r 1 and r2 are called t he Best Replies (or reaction functions). In the original work 
of Cournot fl5], as well as in much oí the literature which foltowed, 11aive expectations 

x¡ (t + 1) = x; (t) have been considered. Under the assumption of na.i ve expecta.tions each 
finn expects or predicts that tbe quantity offered by the competitor in t he next period will 
be the same as in the current period . The time evolution of the duopoly systcm is then 
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represented by the two-dimensional discrete dynamical system 

(x, (t + 1) ,x, (t + 1)) ~ (r, (x2 (t)) , r2 (x, (t))) (9) 

whích is also referred to as the Coumot ttitonnement process. In contrast to this, in Bischi 

and Kopel l7J firms are assumed to revise their beliefs according to the adaptive expectations 

ocheme 
xf (t + l) = xf (t) + o 1 (x1 (t) - xt (t) ) 
x¡ (t + 1) ~ x¡ (t) + a2(x2 (t) - x¡(t)) (10) 

lf 1he relations (8) are inserted into (10), one gets the following two-dimens ional dynamical 

system in t he belief space 

xf (t + 1) = (1- o:¡)xf (t) + o¡r¡ (xH t)) 
x2(t+ 1) = (1 - cr2)x2(t) + a2r2 {x~ (t)) · 

(11) 

Of oourse, the qus.ntities chosen by the competitors can be obtained by thc trnnsformations 

.t¡ (t) = r¡ (x ; (t)), x2 (t) = r2 {xf (t)), i.e. by a mapping from the belief space into the 

actio115p6a!. The steady states of the dynamical system (11), defined by x¡ (t + l) = xf (t ), 
1 = l, 2, i.e. 

xf (t) =r1 (x2 (t)) 
x2(t) = r2(:z:f (t)) 

(12) 

ase localed at the intersections of the two reaction cu rves and are independent of the ad­

jmtment ooefficients cr1 s.nd cr2. In other words, a steady state is a situation where beliefs 

ase not further revised and qus.ntities do not change, and at the steady states the expected 

outputa coincide with the realized ones. Hence, in belief space we are considering a situa­

tion where beliefs are consistent and this corresponds to a Na.sh equilibrium in the quantity 

space. In Bischi s.nd Kope\ [7] the following reaction functions have been considered 

r1(x2) = 1-'1X2 (1 - :z:2) 
r2(x1) = µ2x1 (1 - x i) (13) 

h hu been shown elsewhere (see Kopel, \211) that ií the competitors regard their products 

u strategic comp\ements over a certain range oí the set oí sdmissible actions, the functions 

ghu in (13) can be derived a.s Best Responses, and the parameters µ.; , i = l , 2 measure the 

intensity oí the positive externality the actions of one player exert on the payoff of the other 

player. 

To simplify the notation, we rename the expected outputs by setting :z:(t) = :r:f(t) 
and ~(t) = x; (t). Inserting the reaction functions specified in (13) into (11), thc time 

m>lution of the competitors' beliefs is obtained by the iteration of the two-dimcnsional map 

L (z,•) - (x',¡/) defined by 

:z:' = (l -cr1) x+a1µ 1y (l -y) 
y'= (1 - 02)Y + a2wix(l - x) 

(14) 
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Under the assumption µ¡ = Wl = µ, the fixed points can be expressed by simple analytical 
expressions: besides t he trivial solut ion O = (O, O}. a positive synunctric equ ilibrium cxists 
fo r µ > l , given by S = ((µ - l )/µ ,(µ - !)/µ). Twofurtherequilibria E 1 = (.i,j¡) and & = 
(y, .i) exist for µ > 3, ,where X = (µ + 1 + ./W) / 2µ, ii = (µ + 1 - ./W) /2µ with tP = 
(µ + I)(µ - 3). T hese equilibrio are located in symmctric positions with respect to the 
diagonal !:J.. . The corresponding Nash equrnbria have the same entries. As shown in Bischi 
and Kopel [7], a wide range of parameters µ, o 1 , a 2 exists such that E1 and E2 are both 
stable. Accord ingly, a problem of equilibrium selection arises, which leads to the question 
of the delim itation of the two basins of attraction B (E1) and B (~)-

As argued in the previous sections, the properties of the inverses of the map become 
important in order to understand the structure of the basins and their qualitative changes. 
The map (1 4) is a noninvertible map. This can be deduced from the fact that givcn a poi nt 

(x', y') e R2 , its rank-1 preimages may be up to four ; t hey can be computed by solving the 
fourth degree algebraic system (14) with respect to x and y . The critica! curves are computed 
as follows: LC_1 coincides with the set of points in which the Jacobian determinant vanishes, 

i.e. det DT = O, where 

DT(x, y) = [ 1 - o1 a 1µ1 (1 -2y) l 
0:2µ2( 1 - 2x) 1 -02 

(15) 

and LC = T(LC_¡). So, LC_1 is an equilateral hyperbola, of equation 

(16) 

Since LC_ 1 is formed by the union of two disjoint branches, say LC_ 1 = LC!....º{ U LC~/ , 
it follows that also LC == T (LC_1 ) is the union of two branches, say LCM = T(LC!....º{) 
and LC("l = T(LC~l), see figs . Sa and Sb. The branch LC(o) separates the region Z0 , 

whose points have no preimages, from the region Z2 , whose points have two disti nct rank-1 
preimages . The other branch LC{ll) separates the region Z2 from Z4 , whose points have 
fo ur distinct preimages. Any point of LCC0 l has two coincident rank-1 preimages, located 

ata point of LC!....º/ , and any point of LC(11) has two coi ncident rank-1 preimages, located 
at a point of LC~"l, plus two further distinct rank-1 preimages, called extra preimage8. 

Following the terminology of Mira et al. [24], we say that the map (14) is a noninvertible 
map of Z4 > Z2 - Z0 type, where the symbol ">" denotes t he prescnce of a cusp point in 
the branch LC(b) (see fig . 8b). Thc corresponding Riemann foliation is shown in fig . Se. 
Oifferent sheets are counected by folds joining two sheets, and the projections of such folds 
on the phase plane are ares of LC. The cusp poi nt of LC is che.racterized by three merging 
preimages at thc junction of two fo lds. 
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(a) (b) i 

Figure 8 

In order to st.udy the structure of the basins and explain the global bifurcations that 
thange their qualitative properties, we first consider the symmetric case of players with 
bomogcneous expectations, i.e. a 1 = a 2 = o. In this case, the map (14) has a symmetry 
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property, as it remains the same ií the variables x and y are swappcd. Formally, we have 
T (P(x,y)) = P (T(x,y)), where P : (x,y) - (y,x) is the reftection t hrough the diagonal 
C. = {(x,x) ,x E IR}. This symmetry property implies that t he diagonal 6 is a trapping 
subspa.ce for t he map T , i.e. T(6) ~ 6 . T he trajectories embedded in a e.re govemed by t he 
restriction oí the two--dimensional map T to 6 , i.e. J = T jó. : a - a . The me.p J, obtained 
by setting x =y e.nd x' =y' in (14) , is given by x' = f(x) = (1 +a(µ - 1)) x-aµx 2 • In the 
symmetric ca.se of homogeneous players we can give a complete analyt ice.1 characterization 
oí the global bifurce.tion that transforms the basins from simply connected sets to multiply 
oonnected . In fact , the following result is given in Bischi and Kopel [7]: 

lf 111 = µ:i = Jt and a¡ = 02 =a: and /}¡e equilibria E1 and E2 are both stable, then the 

common boundary 88 (E1) nfJB (&i) which sepamtes the basin B (E1) from the basin B (E2) 

i3 gitJen by thestableset W'(S) ojthesaddlepoint S. lf a(µ + 1) < 1 then W' (S) = OO~!, 
where O = (O, O) and O~l = ( l+Qlµ-ll, l+al::- ll), and the two basins are simply connected 

sets. lf o(µ+ 1) > 1 then the two basins are non-connected sets, form ed by infini tely many 

simply cormected components. 

The bifurcation occurring ata(µ+ I) = 1 is a global bifurcation. l t cannot be revee.led 
by a study of t he linear approxime.tion of the dyne.mical system a.nd the occurrence of such a 
bifurcation can be che.racterized by a contact between the stable set oí the symmetric fixed 

point S and a critica! curve. In order to explain this, we start from a set of parameters 

such t hat both of the ba.sins are simply connected , like in fig . 9a, where µ 1 = µ2 = µ = 3.4 
and o 1 = et2 = a = 0.2 < l /(µ + 1). For this set of parameters, four fixed points exist, 
ind icated by O, S , E1 e.nd E2 . The fixed points O and S are saddle points , wherea.s the 
Na.sh equilibria E 1 o.nd E2 are both stable, each with its own be.sin of attraction. These 

ba.sins, B (E1) and B(E2 ), are represented by white and light grey respectively (the dark 
grey region represents the set of initial conditions which generate unbounded trajectories; 
we could refer to this set as the be.sin of infinity). ln this sit uation, any bounded trajectory 
starting wit h xj(O) > x2(0) (xj(O) < x2(0)) converges to E 1 (&i). In economic terms this 

mea.ns t hat an initial difference in the expecta.tions of the competitors uniquely determines 
which oí the equilibrie. is selected in the long run . Expectations of the players become 
selí-fulñ lling: if xj(O) > x2(0) (xj(O) < x2(0)) t hen xj(t) > x2(t) (xl( t ) < x2(t)) for any t 
and equili brium E1, where firm 1 domine.tes the market (equilibrium &i at which firm 2 
dominates the ma.rket) is selected in the long run. In contrast to this, the situation shown 

i:1 fl.g:. 9b, where the value of the pare.meterµ is the same, but et1 = et2 = 0.5 > l /(µ + 1), 
is quite different. In fe.et, in this case the basins are no longer simply connected sets. Many 
portions of each be.sin e.re present , both in the region above and below the diagonal, e.nd 
the adjustment procesa of our dyne.mic ge.me starting wi th initie.l beliefs xj(O) > x2(0) (or 
xt(O) < :t2{0)) may lead to convergcnce to ei ther oí the equilibrie.. 
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Now let us turn toan explanation of the global bifurcalion which causes the transition 
bctwee:n these rather different structures of the ha.si.ns. First notice that tl~e boundary 
aep&.ratmg 8(E1) and B(E:i) contaillB the symmet ric equilibrium S as well as its whole 
stab\e set w•(S). In fact, just aher the creation of the two stable fixed points E1 a.nd E:i for 
µ • 3, the symmetric equilibrium S E A is a saddle point. The two branches of the unstable 
set W•(S) departing from it reo.ch E1 and ~ respectively. Hence, since a ha.sin boundary 

is backward invariant (see Mira et al., [24], (22]), not only the local atable set W1~(S) 

btloop to the boundMy that separo.tes the two ba.sins, but also its preimages of any rank: 

U"(S) = LJ•>o r-t (W1~(S)) . Because of the symmetry property of thc systcm (14) with 
homogeneous-players, the local stable set of S belongs to the invariant diagonal A. As long 

uo(p+ t ) < l , thewholestableset Wª(S) belongs to A and is given by Wª(S) = 00~/ , 
whtrt 0~1l is the preimage of O located a.long A. Observe t hat if a(µ+ 1) < l holds, 
the cusp point K of the critica! curve LC(li) has negative coordinates a.nd, consequently, the 

w~ segment 00~/ belongs to the regions Z0 and Z:i, see fig. 9a. This implies that the two 

pre1ma¡es of any point of 00~? belong to A (they can be computed by the restriction J of 
T to the invariant diagonal A). This preves that the segment 00~/ is backward invo.riant, 
~e it mcludes ali its preimages. The structure of the bo.sins B (E;), i = l, 2, is very simple: 

8 (E1) IS entirely located below the diagonal A and B (Ei) is entirely located above it. Both 
of tbe b&sins 6(Ei) and B(E2) are simply connected sets. 

Their structure beco mes a. lot more complex for o (µ + l ) > l . In ordcr to understand 

the b1furcation occurring ato(µ+ 1) = 1, we consider tbe critica! curves of thc map (14). 
At o(p + 1) = l a contact between LC(li) and the fi.xed point O occurs, dueto the merging 
bec.•-een O and the cusp point K.2 Foro(µ+ 1) > l , the portian KO of W1'!c {S) belongs 
to the region Z.t , where four inverses of T exist. This implies t hat besides the two rank-1 
pmmages on .6., lhe points of KO ha.ve two further preimages, which are loco.ted on the 

~t O<!/o~l of the line f:l_¡ . Since OO~l = W1~(S) e {)B(E1 ) néJB(E:i), also its 
Pftunages of any rank belong to t he boundary which separe.tes B(E1 ) from B(E2). So the 

rank·I pre1mages of the segment o~lo~l . which exist because portions of it are included 
1n tht regions Z2 and 24 , belong to w• (S) as well, being preima.ges of rnnk·2 of 00~/ . 
This re-peated procedure, be.sed on the iteration of the multi·valued inverse of T , lends to 

tbe construction of the whole stab\e set W' (S ). 

"'lb compute the coordina.tos of the cusp point of ¿cC•l not ioe t ha t in Any poinl of LC _1 nt lenat onc 

......,..iueol DT \11.ni,hee. In the point C - 1 "'LC~ªl f'I ñ >= (c-1,c-1), with C- 1 = (Q (µ - l ) + l )/2o¡J, 

'"" ~ue :1 with eigcndlrection nlong 6 vanishes, &nd ita imagc e"' LC(G) n ñ "" (c, c) wlth e"" 
/1(-t) •(o(µ - 1) + 1)2 /40¡J Is the point 31 which LC(• ) intef!IC!CtS 6 . Thls corrcaponds to lhe uniquc 
cntaal JQnt of thc rmtrlctlon oí T to A . Al thc othcr intenection oí LC- 1 wlth ti. , glvcn by K - 1 e: 

u:'_•:n.1 • (k- i , k- i ) wlth k_ 1 ""(Q (µ - 1) - l) / 2oµ theeigcnva.luc :.L. Vl'lni11h011, l\nd the curve LCfbJ = 
Ttu:'!lJ hu a cwp pomt (ece c.g. Arno1d et 11.I., 1986) K "' u;<•> n ti. "" (k, k) wlth k • / (k- 1) • 
lo(li ~ 1)- l )(o¡• + 3(1 - o)) /4oµ 
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a 1 : a, : 0.2 < l /(µ+ I) 

Figure 9 
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unilar results can be obtained in the case of heterogeneous players, where the hetero­

gtne1ty anses e.g. dueto different speeds of adjustment 0 1 # 02. The main difference wit h 

re1p«t to the homogeneous case Hes in the fact that the diagonal .6. is no !onger invnriant. 

E\-en 1f thc fixcd points remain the same, the basins are no longer symmetric with rcspect 

to 6 Ne\-erthelcss, many of the o.rguments given above continue to hold in the case of 

ht>ttrogeneous belicfs. In particular, the boundary which separat.es the basin of equilibrium 

E1 from that of &i is still formed by the whole atable set w •(S), but in the case o 1 # o 2 

tht k>c&l stsble set W1!x,(S) is not a\eng the d iagonal !:J. . T he contact between Wª (S) nnd 

tC(•I, which causes the transition from simple to complex basins, does not occur nt O (since 

no• O~ \V'(S}) and no lenger invelves the cusp point of LC("). So, the parameter values 

&t whleh such contact bifurcations eccur cannot be computed analytically. 

In fig. ton, obtained with µ = 3.6, 01 = 0.55 and 02 = 0.7, the two equilibria E1 
and E, are stable, and their bnsins are connected sets. An asymmetry iu the expectation 

formahon proccss has a negligible effect on the local stability properties ef the equilibria , 

but 1t results in 8.II cvident 88ymmetry in the basins of at traction. As shewn in fig. IOa , 

whfn o1 > 01 the extension of !3 (E2) is, in general, greater th8.I1 the extension of !3(E1). 

Moreove.r, the situation is not always as simple as in fig. lOa . The symmetric equilibrium 

S Is a saddle fixed point and is included in the boundary - the whole stable set w •(S) -
wbdl R parales the two basins. lt can be noticed that in the simple situatien shown in fig. 

10.. tht "·hole stable set w•(S) is cntirely inc\uded inside the regions Z2 and Z0 . However, 

the fact that a J>Ortion of Wª(S) is close to LC suggests that a contnct bifurcatiou may 
occur 1f, e g , the adjustmcnt ceefficients are slightly changed. Ju fact , if a portien of l3 (E i) 
tntm Z4 a.fter a contnct with LC("l, new rank-1 preimages of that portien wi\I nppear near 

le'_'~ Thu is the situation illustrated in fig. IOb, obtained after a small change of a 1. 

Tbt porhon of B (E1 ) iusidc Z4 is denoted by H0. Jt has two ra.nk-1 preimagcs, denoted 

by H~'l and H~2/, which are \ocated at opposite sides with respect to IJC~l nnd mergc 
on 1l (by definition the rank-1 preimages of the are of LC(b) which bound Ho must merge 

aloog W!l). The set H- 1 = H~1l U H~l constitute a non-connected portian of B (E¡}. 
MOftO\'tf, sinct H- 1 belongs to the region Z4 , it has four rank-1 preimo.ges, denoted by 

11~:. J = l, ... ,4 in fig. tob, which constitute other four "isla:nds"3 of B (E1) . Points of 

l~ 6\slan<is" are mapped into Ho after two iterations of the map T . lndced, infinitcly 
inany lugher rank preimagcs of Ho exist, tlms giving infinilely many smnllcr nnd smnl\cr 

~JOlnl "'t.5lands" of B(E¡). Hence, at the contact between w• (S) and LC, the busin B (Ei) 
a tnns!ormed from a simply connected into a non-connected set , constituted by infinitely 

1b&l\J' dis,omt compommts. The larger connected component of B (E1} which contains E1 is 

lhr 1rruned1ote bo.sin Bo (E¡), and the whole basin is gi\fen by lhe uniou ef the infinitely mauy 

J\\'t ...,_. 1}M termlnology Introduce<! In Mlra et al. (1994). 
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preirnages of Bo (E1): 8 (E1) = LJ.1: <:!:o r-1r (Bo (E1)). Observe that even if small differences 
between the adjustment speeds have negligible effects on the properties of the attractors, 

they may cause remarkable asymmetries in the structure of the basins , which can only be 

detected when the global properties of the economic model are studied. 

µ¡ • µ2 mJ .6 «¡ • 0.59 « 2"' 0.7 

(•) 

F igure 10 

So, as in the one-dimensional case, the globai bifurcation which causes a transforma­
tion of a basin from connected set into the union of infinitely many non-connected portions, 

is caused by a contact between a critica! set and a basin boundary. However, since the 
equations of the curves involved in the contact often ce.nnot be analytically expressed in 
terms of elementary functions, the occurrence of contact bifurcations can only be revealed 

nu merically. This ha.ppens frequently in the study of nonlinear dynamical systems of di­

mension greater than ene: resu lts on global bifurcations are generally obtained through an 

interplay between theoretical and numerical methods, and the occurrence of these bifurca­

t ions is shown by computer-assisted proofs, based on the knowledge of the properties of 

t he crit ical curves and their graphical representation (see e.g. Mira et al. , [24], fer many 

examples). This "modus operandi" is typical in the study of global bifurcations of nonlinear 

two-d imensional maps. 

4.2 Example 2: A rent-seek ing/competition game 

The second dynamic model we present is used to describe a market game where a population 
of consumcrs cnn choose between two brands of homogeneous goods which are produced 



Gian-Italo Biscbi & Micbsel Kopel 459 

by two competing füms. Let x 1 and ::c2 represent the marketing efforts of two firms (e.g. 
s.ch-ertising effort) and B the ti:ita.l sales potentia.l of the market (in terms 0f cust0mer market 
expenditures). If firm 1 's effo11t is x 1 and firm 2's effort is x2 , then the shares 0f the market 
(in tenn.s of sales) accruing< to füm 1 and to firm 2 are Bs1 and Bs2 = B - Bs¡, where 

axfj1 b¿, 
s1 = ax~1 :b~2 ' s2 = ~1 :b~2 (17) 

The tenns A1 = a::c~' and A2 = bzg2 represent the recruitment of customers by firm 1 and 2, 
gh-en the firms' effoits ::t:¡ and X2. The parameters a and b denote the relative effectiveness 
of the effort made by the fivms. Since ~X,- = /31 and ~ ~ = fh , the paramete1·s fJi 
&nd fh denote the elasticities of the attraction of firm (or brand) i witih regard to the effort 
oí firm i. A dyno.mic medel is obto.ined by assuming that the two competitors adjust their 
marketing efforts in response to lihe profits achieved in the previous period: 

{ 
x1 ~t+1) = x1{t) + >.1x 1(t) ( B [:i:i(t)l61'fl11: 1

2(1)1P2 x1{t)) 
To 

::C2 (t + 1) = X2(t) + >.2x2(t) ( B l:i:1 (t)]r;:~n:22{t)]Jl2 - x2(t)) 

(18) 

'Mie pMameters >.¡ > 0, i = 1, 2, mensure the rate of this adjustment ancl k := b/a. 

An important feature of ~he map (18) is that the two coordina.te roces are invariant lincs, 
slntt T (x¡, 0) = (x11,0) and T~O, x2) = (O,x2). The dynarnics of (]8) a.long the o.xis x; =O 
are govemed by one-dimensi0nal maps xj = / j(x;), where fj is the restriction of T to the 
corresponding a.xis. T he map Íi is given by /j(Xj ) = (1 + >.;B) x; - >.ix]. lt is conjugate 
to the standard logistic map (5) by the homeomorphisms Xj = x (1 + >.1B) /Aj, where the 
parametcrs µis given byµ= 1 +>.;B. Thus, the properties of the tr.ajectories embedded 
in the invariant a.xes ca.n be easily deduced from the well-known properties of the standard 
logislic map (5). 

The fixed points of llhe map (18) are the solutions of the system 

(19) 

There are three evident "boundary solutions" , 

O= (O, O); E1 = (B, O); E, = (O, B), (20) 

but O is not a fixed point because the map is not defined in it. The fixed points E 1 and 
~are related to the positive fi.xed points of the one-dimensional quadratic maps /¡ and h 
p-eming the dynamics a.long bhe invariant axes. There is also another fixed point, interior 
lo the positive quadrant IR!, given by 

E. = (x j ,B -:tj ). (21) 
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The coordinate x j E (O, 8) is the un ique solut ion of the equation F(x) = k ~ x ~ + x -
8 = O, since F a cont inuous function with F {O) < O, F(B) > O and F'(x) > O for each 
:i: > O. With a given set of parameters B, {31 and />i, the positive fixed point E. is locally 
asymptot ically s table for sufficiently small values oí the adjustment speeds >. 1 and >.2. It 
lo.ses stability as one or both of the adjustment speeds are increased and more complcx 
aLtractors are created around it. 

In the following we focos our attention on the global properties of t he map (18), in par­
ticular on the bou ndaries of the f easible set B . This feasib le set is defined as t hc set of poi nts 
which generate trajectories which are entirely in the positive ort hant (feasible trujectories) . 
A fea.si ble trajectory may converge to the positlve steady state E. , to other more complex 
attractors inside B or to a one-d imensional invariant set embedded inside a coordinate axis 
(the la.st occurrence mea.ns that one of the two brands disappears). Trajcctories s tarting 
outside of the set 13 represent infeasib le evolutions of the economic system. As proved in 
Bischi, Gardini and Kopel [9], (18) is a noninvertible map of z~ > Z2 - 20 , and the quali~ 

tauve shape of the critica] curves , us wel\ as the Riemaun foliat iou, are similar to the ones 
of the previous exarnple, see fig. 8. As before , starti ng from the knowledge of the global 
propert1es of the map ( 18), we illustrate how the boundaries of the feasible set changes when 
a s tructural para.meter of the game is changed. By using the method of critica[ curves, we 
try to revea] the mechanism which is responsible for these changes. 

Wit h values of the parameters /); in the range (0.2 , 0.3) , our numerical investigation has 
shown that the invariant coordina.te axes are transversely repelling, i.e. t hey actas repelling 
sets with respect to tra.jectories approa.ching them from the interior of the normegative 
orthant . Moreover , for the parameters used in our simulations, we ha.ve observed only one 
attractor inside 13, a lthough more than one coexisting attractors may exist, each with its 
own basin of attraction. On the basis of this numerical evidence, in what foltows we will 
often speak of a unique bounded o.nd positive attracting set A , which attracts the generic 
feasible trajectory, even if its ex istence and uniqueness are llOt rigorously proved . Let 88 
be the bounda.ry of B. Such a boundary can have a sim ple shape, as in the situation shown 
in fig. ! la., where the attractor A is the fixed point E. and B is represented by the white 
reglan. However, the busin can also have a very complex structure, as in fig. 12b, where, 
ngain, B is given by the white points and A is a chaotic attractor represented by the black 
poi nts inside B. 

An exact determination of 813 is the main goal oí the remainder of this subsection . 
Let us first consider the dynamics of T restricted to the inva.riant axes. We know that the 
maps j 1 that govern the dyna.mics along t he invaria.nt axes are conjuga.ted to the log'istic 
map (5). This insight is important, a.nd the reader is urged to recall the properties of this 
one-dimensional map, see section 3 and fig . 5. For A1 B $ 3 (oorresponding toµ $ 4), we 
can deduce that bounded trajectories along the :i- 1 axis are obtained , as long as thc initial 
condi t1011s are tnken inside the segment W¡ = oo~'l. The point o~l is t he ra.nk- 1 preimagc 
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oflht orlgln O computed for the ene-dimensional restrict ion / 1 (see fig. ! la), i.e. 

di)= (l+A18 o) 
-1 ).¡ ' . (22) 

Oi'"'rg'nt trajectories a.long the :t¡ axis are obtained starting from an initial condition out 
o( 1~ .segme.nt w¡. Analogously, when A2B ~ 3, bounded trajectories o.long the invariant 
s1 &Xl5 u e obtained provided that trhe initia\ conditions a.re taken inside the segment W2 = 
00~:. In this case the point O~l is the ra.nk-1 preimage oí the origin computed for the 
retnct1on h., i.e. 

d2l = (o 1 + A2B) _, ' A2 . (23) 

()¡\'ftgent trajcctories a.long the :t2 axis are obtained starting from an initial condit ion out 
ol tM segmeut to.'2· Consider now the region bounded by the segments w1 and W2 o.nd thcir 
rank-1 preima.ges w¡- 1 = r-1 (w¡) and w21 = T- 1 (w-.z). Such prcimages can be analytical\y 
computed as follows. Lct X = (p, O) be a point of w1 , i.e. O < p < !.±f;1l. lts preimages are 
thf. rtal so\ution.s of the algebraic system obtained from (18) with (x'1 ,x2) = (p,O): 

(24) 

ll IS l!llS)' lO see that the preimages of the point X are either located on the srune invnriaut 
alOS si= O (in the points whose coordinates are the solutions of the equation f¡(x¡) = p) 
or oo the curve of equation 

(25) 

AoaSogously, the preimages of a point Y = (O, q) of woi , i.e. O < q < !:±f;11-, belong to the 
sount 1mviant axis x1 = O (in the points whose coordinates are t he so\utious of the equo.tion 
/:111) = q), or lie ou the curve of equation 

x,= ¡:t (A,B -A,x,+l)]j¡ 
k >.1x1 - 1 

{26) 

h ~ 1tratghtforward to see that the curve (25) intersect.s the X2 axis in t.he poiut o':l given 

lD (23), the curve (26) intersects the x 1 axis in the point O~l giveu in (22), nnd the two 

tun'ft ('lS) and (26) intersect at n point O~l interior to the positive orthnnt (see fig. l lo.). 

Tbt- poml O~l is nnothcr rank-1 preimo.ge of the origln. The four preimagcs of the origin 

att tbt \'ttlCXCS OÍ l\ "qundrilatcral" QQ~lo~lo~2l. whose Sides 8.fC W¡ 1 W2 and their rnnk-} 
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preime.ges w¡- 1 a nd wi 1, which are located on the curves of cquation (25) and (26). All 
the points outside t his qundrilateral cannot generate feasib le tre.jectories. ln fact , points 
located on the right of wi 1 are mapped into pointB w:ith negative x 1 coordinate aftcr one 
1teration , a.s cnn be easi ly dcduced from tbe first line of (18) . Points located above w¡- 1 a.re 
mapped into points with negative :z:2 coordinate after one iteration, as can be deduced from 
the second linc of (18). 

The boundary of Bis given, in general, by the union of ali preimages (of any rank) of 
the segmcnts w1 and w2: 

OB(oo) ~ (U::'. ,r-" (w , )) u (U::'_,r - " (w,)) (27) 

As long a.s >118 .:5 3 and >..28 .:5 3 the boundary of B has the simple shape shown in fig . 
l la, because 110 preimages of higher rank of W ¡ and '"'2 ex-ist. This is dueto the fact that 
wj'" 1 and w2 1 are cntirely included inside the region Zo of the plane whose points have no 
preimages. The situation is different when the values of the parameters are such that some 

portions of thesc curves belong to the regions ~ or Z4 whose points ha.ve two and four 
preimages respectively. In this case preimages of bigher order of w1 and "'2 exist , say w;k 

and wik, wh ich fo rm new portions of 88. Such preimages of w1 and w2 of rank k > 1 bound 
regions whose points are mappcd out of the feasible set B after k iterations. In sud1 a case 
the shapc of thc boundary of B bccomes far more complex. This changc is due to a global 
bifurcation t hnt cnn be explained by using the critica! curves. 

1, - oos>.i- o.os11, - o.211, - o.2ss..sok - 1.2 

F igure 11 

"' (o) 

1, .. 0.os 1.i• 0.09 P, • 0.2 p, . o.is B• SO k • 1.2 

" .. 
(b) 
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lf .\1 or .\2 are increa.sed so that the bifurcation value .\¡, = 3/ B is crosse<l by at least 
out ol them, then 08 changes from smooth to fractal. Th see this, we fix thc para.metcrs 
B, k, fl1, fh and .\1 and vary tbe speed of adjustment .\.2. As .\.2 is increascd, the brauch 
f.C4•l oí the critical curve that separates Zo from Z2 moves upwards, and at .\.2 = 3/ 8 it 
bM a contact with wj" 1 at the point O~l . Arter this contact, a scgment of wj" 1 entera the 
f'P)O Z,, !IO t.hat a portien 8 1 of the infeasible set, bounded by LC(b) and wj" 1, now ho.s 
tw0 pre1me.gcs (sec fig. !lb). These two preimages, say S~1 > l\lld s¿21, merge in points of 
Le'!: (es the pointe of LC(b) ha.ve two merging preimages belonging to LC~"h and form a 
•grey tongue" issuing from the x2 axis (denoted by So in 6g. I Ib, with So = s¿1lus~2l). So 

bdon.p to the "grey set" of points that generate infeasible trajectories bccause thc points 

ol art mapped iuto S1, so that negative values are obtained after two iterat iontt. Again, 
1t • 1mporta11t to reca\l t he fact that along the axes tbe dynamical behavior is governed by 
(ll)Mfunens1onel maps which are conjugate to t he logistic map. We already know that the 

lagutK map undergocs a global bifurcation e.t µ = 4, where a conte.ct between the critica! 
pomt and the ha.sin boundary occurs. This global bifurcstion changes the struct.ure of the 

n íor the one-dimensioual map. A similar mechanism is at work here. To see t his, look 
al lht mterscctiou of the "main tougue" So with the :z:2 axis. This givcs a set 10 o.round thc 
mlleal pomt C'J: of the restriction f'l. Of course, lo corresponds to the "urnin hole" of the 

lopst1t map with µ > 4 {see fig . 5b). We know already, however, that l o has an infinite 

aqutoot oí further preimages, 1~1/ and 1?/, and so on. Accordingly, the set So is 011ly the 
fuR of mfinitely many preimages of 51 • Preimages of S 1 oí higher rank formo. sequence 
ol un&lltr and smaller grey tongues issuing from the :z:2 axis, whose interscction with the 
r 1 uu correspond to the infinitely many preimages L1r. oí t.he main hole 10 (see again fig. 
~) Only sorne of them are visible in fig. l lb, but smaller tongues become numerically 
T111ble by t nlargements, as it usually happens with fractal curves. Thc fractal structure oí 
tlw boundary of B is a consequence of t he fact that the tongues are distributed e.long the 
.,.mmt IJJ or the x2 aJCis according to the structure oí the intervals / _1r. describe<! in section 
1 •boee c:omplementary set is a Cantor set. In the situation shown in fig. 11 b thc main 
lCIQ(IW has a wide portien in the region Z4 • Hence, besidcs thc two prcimagcs o.long 
lbt i:1 ax:is {denoted by S~1/ and S~2l in fig. llb) issuing from the intervnls !~/ and /~2/ , 
t1'0 more preimages exist . Hence, in the two-dimensional case the structure of thc bo.sin 
•~more complcx. The ndditione.1 preimages are denoted by S~l a.ne! $~4l in fig. \l b, 
ud en k>cated at opposite sides with respect to LC~ª/ . The tangues S~l nnd S~4/ belong 

'° l.o. ~ce they do not give rise to new sequences of tongues. On the othcr hand, S~1/ 
ud _1f htwe further preimages, since they are located inside Z4 nnd Z2 respectively. Jf the 

prnma¡cs are t1'<-0, a.s in the case of S~2/ , they fonn two tongues issuing from the x2 axis. 
bi tbt CflM of four prcimages, as in the case of s<_1/, t1'.'0 of thcm are tangues issuing from 
,...., .1.1 u.as and tY..-0 are tongues issuing from the opposite side, i.e. w2' · 
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As ,\2 is further incrensed, LC(I>) meves upwards, the portien S 1 enlarges and, con~ 

seq uen1ly, ali its preimages (i.e. the infinitely ma..ny tangues) enlarge and become more 
proneunced. This causes the occurrence of a..nother global bifurcation, that changes the set 

13 from simply connected to multiply connected (or connected with botes) . The mechanism 

is similar to the one described in Mira et al. [24) , [22J and Abraham et al. [l] . This second 
global bifurcation occurs when a tangue , belonging to Z2, has a contact with LC(a) and 

subsequent ly enters the region Z4 . If such a contact occurs out of the x2 axis, it causes thc 

creation of a pnir of new prcimages. These preima.ges merge along LC~ª/ o.nd their union is 

n hale (or lake, following the terminology introduced in Mira et al. /22]) inside thc feasible 
set 13. Accordingly, a set of points that generate infeasible trajectories has been created, and 

lhis set is surrounded by points of the feasible set B. Such a situntion is shown in fig. l2a, 
where a tongue has crossed LC(a) and the set H 1 is now in Z4 . The hale Ho of infeo.sible 

peints is the preimage of the set Hl, and is completely included in the feasible set. As >.2 
is further increased, other tangues cross LC(a) a.nd, hence, new hales are created, giving a 

complicated structure of /3 like the ene shown in fig . 12b, where many hales inside /3 are 
clearly visible. 

To sum up , the trausformo.tion of the set B from a simply connected region with smeoth 

boundaries into a multiply connected set with fractal boundaries occurs through two types 

of global bifurcations, both dueto contacts between 813 and branches of t he critica! set LC. 
In fig. 12b it can be noticed that a.Isa the attractor inside /3 changed its structure. For low 

vnlues of ,\2 , as in fig. lla, the attractor is the fixed point E. , to which o.JI the trajectories 

starti ng inside t he set /3 converge. As >. 2 increases, E. loses stability through a füp (or 

period doubling) bifurcation, at which E. becomes a saddle point, und un attracting cyclc 

of period 2 is created nen.r it. As ,\2 is fur ther increased, a scquence of period doubliugs 

occurs , si milar to thc well-known Myrberg (or Feigenbaum} casco.de for ene-dimensional 

1110.ps, which creo.tes a sequence of attracting cycles of period 2" followed by the creation 
of chaotic attractors , which may be cyclic chaotic sets or a connected chaotic set. So, both 

kinds of complexities cau be observed in this model , even if there are no relations between 

thcm (for more dctuils see Bischi, Gardini and Kopel , [9J). 
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Figure 12 

Conclusions 

la thll paper we have emphasized that there are two different routes to complexity. The 

bwnture on dynamic games has mainly focused on only one route. This route is related to 

tlllt COUJplaity of the attracting sets that characterize the long rWl evolution of the dynamic 

procs and describe the evolution of players' actions over time. UnfortWlately, it has 

iwg)ect«i the seoond - for game theoretic considerations more important - route, namely the 

complexity of the boundaries which separate the basins when severa! coexisting attractors are 

prew:ut M .. -e have shown, these two kinds of complexity are not related, in the sense that 

complcx Mtractors may he.ve simple basins, whereas simple attractors like fixed points may 

baV<t bums with very complcx structure. We have used examples taken from the economics 

1cniure to illustrate how to perform a global analysis of a dynamic game. With the help of 

$"1*1ttncal and numerical methods, the concepts of critica! sets and basin boundaries, one 
<u IUICO\'tf the med1anism which gives rise to complex basins. During the last years, these 

&ocia. ba\"t bee:n used to analyze successfully the long run outcomes of dynamic economic 

IDOdds Beside the papers we have mentioned above, there are applications in evolutionary 

ptDr ÜWOty (Bi9Chi et al., [12J, [I3j), fishery economics (Bischi and Kopel, [8] , Bischi et al., 

·1.r and dynamic oligopoly games with three competitors (Agiza et al., [2], Bischi, Mroz 

aod Raustr, ji IJ). Jt, is our hope that with the present paper we have cha.llenged the rea.der 

noqb lo JOm this dynamic game. 
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