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Abstract

In this paper, we deal with the well-posed i.e, the )

and the continuous dependance with respect to initial datas, of the following
Cauchy problem

(Acp) { :((0!)) 7 ::(!) +/(t), t20,

where A : D(A) € X — X is not necessary densely defined operator and
J:R— X.

1 Introduction

Let X be a Banach space and (T'(t)):>0 be a family of bounded linear operators. This
family is said to be a semigroup if:

(i) T(0) = 1.

(ii) T(t + s) = T(t)T(s), forallt,s >0,

and a ngly igroup (or Cg-semigroup) if, furthermore
(iii) ¢+~ T'(t)z is continuous on [0, +00) for each z € X.
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To each Cg-semigroup, we associate a linear operator, called generator infinitesi-
mal, defined as

t)x — Py
Az = lixg] mf—z, forx € D(A):={z € X : hrgx’%—f exists in X }.
t—0* !

It is known (see [8] and [11] ) that the classical semigroup theory ensures the well-
posedness of problem (ACP) when A is the generator infinitesimal of a Cy- semigroup
or, equivalently (by virtue of the Hille-Yosida theorem), when:

(a) D(A) = X.

(b)There is M > 1 and w € R : [[(A —w)™(A — A)™|| < M for each n > 0 and
Re(\) > w. Furthermore, the solution of (AC'P) is given by the variation of constants
formula

t
u(r,)=T(r.)uo+/o T(t—s)f(s)ds, t>0.

In some applications to partial differential equations the operator A is not a gene-
rator of C-semigroup because only hypothesis (b) is satisfied. Such operators are
called Hille- Yosida operators.

The aim of this paper is to present the extrapolation approach, developed by Nagel
(7] and used by Nagel-Sinestrari [9] to solve problem (ACP), where A is only a Hille-
Yosida operator. At the end, we apply this abstract results to the following retarded
differential equation

2'(t) = Ba(t)+ Lz, + f(t), t>0

z(r) = ¢(r), 7€[-r0).
B is the generator of a Cy-semigroup (S(t)),5, on a Banach space £ and
L : C([-r,0],E) — E bounded linear operator and z, : [=7,0) — E, z(7) =
z(t+ 7).

2 Extrapolation spaces for Hille-Yosida operators

Abstract extrapolation spaces have been introduced by [7], and used by many
authors for various purposes (e.g., (1], [2], [4], [6], [10], [12], ...).

In this section, we fix some notations and recall some basic results on extrapolation
spaces for Hille-Yosida operators.

Let X be a Banach space and A be a linear operator with domain D(A). From
the Hille-Yosida theorem (cf. [3], Thm. 12.2.4), we have the following result.
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Proposition 1 Let A be a Hille-Yosida operator on X. Then, the part Ay of A in
Xo = D(A) given by

D(Ag) :={z € D(A) : Az € Xo}, Aoz :=Ax Va € D(Ao)

generates a Co-semigroup (To(t)) 5o on Xo. Moreover, the set resolvent p(A) of A is
included in p(Ao) and for each X € p(A), R (X, Ag) := (A — Ag)~" is the restriction of
R(\A) in Xo.

On the space X, for each A € p(A), we introduce a new norm by

=2, = IR, Ao)zll, = € Xo.

The completion of (Xo, ||~||A_l) is noted by X2,. It is easy to show that the norms
||~||’:,, A € p(A), are equivalent. Hence, the space X2, is independent of A and be
called the extrapolation space of X associated to Ag and will be denoted by X_;.

(From the equality
To(t)R(A, Ag)w = R(A, Ao)To(t)z, t > 0 and = € Xo,

one can show easily that, for each ¢ > 0, the operator To(t) can be extended to a
unique bounded operator on X_; denoted by T—,(t).

It is easy to see that the family (T_l(t))lZo is a Cp-semigroup on X_;, called

the extrapolated semigroup of (To(t))(ZO‘ ‘We summarize the properties of this new
semigroup in the following theorem.

Theorem 2 The following properties hold

() NT-1(O)l|x ) = I To(E)l(xo)

(i) D(A-,) = Xo.

() A= A_y, X € p(A), is the unique continuous eztension of A — Ag : D(Ag) € Xo —
X_; to an isometry from Xo to X_y.

The relationship between the spaces Xo, X and X_, is given in the following
proposition.
Proposition 3 Let A € p(A). For the norm
llzll—y = HR(\, A)=|l, =€ X,
we have that Xo := D(A) is dense in (X, [lll_)- Hence, the extrapolation space X _
is also the completion of (X, ||'||_1) and X — X_,. Morcover, the operator, for cach

A=A, A€ p(A), s an estension of X — A to X_y,, (A= A_y)"' X = D(A) and
(A= A.)" Xo = D(4Ao).

PP )
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3 Inhomogeneous Cauchy problems for Hille-Yosida
operators

Let A : D(A) € X — X be a Hille-Yosida operator on a Banach space X. Let
w € R and M > 1 such that

[ To(®)llcexo) < Me™, £20,
where (Ty(t)),5 is the semigroup generated by the part Ag of A on Xg := D(A).

Let A_, the extension of A defined in the previous section. We are interested now
in the following Cauchy problem.

(ACP)_I{ ::'((Of)) % 1/‘10-41"(')+.I'(1f). t>0,

We have seen, in the previous section, that A_, generates a semigroup (7-1(t)),5 on
X_1. Then, Phillips theorem ([5], Thm. 1.3) provides conditions on f and ug such
the differentiable solution of (ACP)_, exists and is given by

t
u(t) = Ty (t)uo + /(; T_y(t — s)f(s)ds, t>0. (1)

When f is an X -valued function the term integral in (1) has some important properties
given in the following lemma.

Lemma 4 [9] For [ € L'(IRy, X), the following properties hold
(1) f‘; T_y(t — s)f(s)ds € Xo, for allt > 0.

@) || f5 Toate = 9)s(s)as

where C 1s independent from t and f.

< Cet [Te™ ||f(s)ll ds,

(##1)  The function [0, +00[d t — fol T_\(t — s)f(s)ds € Xg is continuous.

To investigate the inhomogeneous Cauchy problem (ACP), we will substitute it
via a homogeneous one on a product space. For this purpose, let us recall that the
translation semigroup (S(t)),5, on LY (R4, X_,), defined by

S(t)f(s):=f(t+s), steRs
is a Cp-semigroup with the generator B, given by
D(B) = W' (IRy, X_;), and Bf(s) := f'(s), s € Ry ae. forf € D(B).

Using this Cy-semigroup, we can construct a new semigroup, which will provide
the solution of the inhomogeneous Cauchy problem (ACP)_,.

. 2020 N
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Theorem 5 On the Banach space Yy := X_, x L'(IR,, X_,), with the norm
=
(),

Gi(t) ( ; ) = ( T“(‘)”'*’fo!s’l(‘;)‘}‘_ s)f (s)ds ) : ( ; ) €Y. andt € R,.

Then, the family (G-1(t));5 18 a Co-semigroup on Y_; and its generator A is given
by

= |||, + “f"l.’(m,x_.)‘ we define the operators

D(A) Xo x WH(R, X_y),

(= ()

(]

Proof. By the definition of operators G_,(t), one can see easily that (G_i(t));5 is &

Cy-semigroup on Y_;. Let ( ; ) € Xo x WH(IR4, X_;), one has

Hon(5)-(7) - (= g oon)

( #[T-1(h)x — z] - hfo Toy(h — 8)f(s)ds ) /
2 (S(h)f - f)

Since z € Xo = D(A_,), then l"{m %[T_,(h)z—x] = A_jz. We have also that

}I;T_l(h ~ 5)f(s)ds converges to f(0) in X_; and that } (S(h)f — f) = f' — 0, as

h—0in L'(IR4, X_,). Hence, ( ;

()= (+75")

Conversely, we can show easily that D(A_,) € Xo x WY (R4, X_y).

1f we set now
(38) o0 (7).

by the definition of G_(t),t > 0, it follows that its first component u(:) is the unique
continuous (mild) solution of (ACP)_, in the space X _;. []

) belongs to D(A_;) and

To solve the Cauchy problem (ACP) in the space X, we need to construct a new
semigroup on product space.
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Theorem 6 The Banach space Y = X x LRy, X) with the sum norm is embedded
continuously in the space-Y_, and the restrictions G(t) of G_,(t) form q strongly
continuous semigroup on Y whose the generator is given by

D(A)

I

{( 7 ) iz € D(A), f € WH(Ry, X), Az + £(0) € X}

() - (=)

Proof. It is obvious to see that ¥ < Y_, and Y is invariant under G_,(t), by Lemma
4 (i). The strong continuity of (G(t)),5o on Y can be deduced easily from Lemma 4
(iii). Hence by Lemma 2.6 in [9), it follows that the generator A of (G(t)),5 is the part

inY of the operator A_,, given in Theorem 5. That is the set of ( ; € D(A_,)uY

(2)

and A_, ( ; ) € Y, which is exactly the set defined by (2). ™

Using now this new semigroup, one can give conditions on f and ug ensuring the
existence of differentiable solutions of the Cauchy problem (ACP).

Theorem 7 Let A : D(A) € X — X be a Hille-Yosida operator. Let z € D(A)
and f € WY (R4, X) such that

Az + f(0) € D(A).

Then, problem (ACP) has a unique solution u € C'(R+, Xo) given by
t
u(t) = To(t)uo +/ T_\(t — s)f(s)ds, t>0. (3)
0
x

Proof. It is clear that, each ( s ) verifying hypotheses of the theorem belongs to

D(A). Then, G(t) ( b ) is differentiable and

f
260 ( A ) = AG(1) ( 3 )

Hence, the first coordinate u of G(t) ) is differentiable and, from the definition

of G(t) and A, is given by (3) and satisfies the problem (ACP). L]

Emm A\
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4 Retarded differential equations

As an application of abstract results of the previous section, we consider the fol-
lowing retarded partial differential equation

d3(t) = Bax(t)+ Lz.+ f(t), t>0
(RDE) { f(,) = ¢(r), forr € [-r0),

where B is the generator of a Co-semigroup (S(t)), on a Banach space F, L is
a bounded linear operator from Cp := C([-r,0], E) into E and f is an E-valued
function defined on R.

To solve the equation (RDE), we use here the technique developed in [6],which
consists in formulating this equation as an abstract Cauchy problem in the Banach
space X := E x Cg

%<“(()t)) 5 "(«.((),))*f(’g‘)). )
(CP)
(o) - (3)

u(0) T

where

A:=(g 36°+dif’_6°),D(A)=(0)x{wECE:W(O)ED(B)}»

o 1= ' (0), forallp € Ck:=C'([-r,0), E).

We remark immediately that D(A) is not dense in X. Exactly, one has Xj :=
D(A) = {0} x Cz. But one can show that the operator A is of Hille-Yosida (see (6] and
[12]). Hence, by Hille-Phillips theorem, the part A, of A generates a Cp-semigroup
(Tg(l)),zo on the space {0} x Cg. It is easy to see that the operator Ag is given by

00
0 A
where A is the operator defined on Cp by

Ag =/, for p € D(4) := {¢ € Ck: 6(0) € D(B);¢'(0) = B4(0) + L}.

Hence, the operator A generates a Cp-semigroup (T'(t ),>0 on Cp. This semigroup
satisfies

_ [ e(t+0), t+0<0
T(t)e(6) = { S(t+0)p(0) + [i*° S(t+6 — s)LT(s)ds, t+0>0,

4 A
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and is called the semigroup solution of the homogeneous retarded differential (i.e.,
f=0). 4

Since A, is a diagonal operator, (7o(t)) 0 1s under the form

)= (g T(()t) )

Let (7— 1(1)),>0 denote the extrapolated semigroup of (7g(t))5,. Then, we have the
following result.

Theorem 8 Let p € Ch and f € WYY (R, E) such that
#'(0) = Bp(0) + Ly + f(0)
Then, there is a unique solution & € C'([~r, +00), E) of (RDE) and is given by
o(t), te[-r0]
A= { u(t)(0), t>0 (4)

where u is the function given by (3).
Conversely, if x € C'([~r,+00), E) is the solution of (RDE) then the function

f ) is the unique solution of (C'P).
t

Proof. If ¢ and f satisfy hypotheses of the theorem then ( g ) € D(A) and

0 1(0) BT
A<W>+< 0 € D(Ag) = {0} x Cg.
Theorem 7 implies that Cauchy problem (C'P) admits a unique differentiable solution

, given by

()= (o fraa (e oo

Hence the function x given by (4) is differentiable and satisfies (RDE). For more

details see [6]. []
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