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ABSTRACT

The aim of the paper is to introduce the concept of quasi bi-
slant submersions from almost contact metric manifolds onto
Riemannian manifolds as a generalization of semi-slant and
hemi-slant submersions. We mainly focus on quasi bi-slant
submersions from cosymplectic manifolds. We give some
non-trivial examples and study the geometry of leaves of
distributions which are involved in the definition of the sub-
mersion. Moreover, we find some conditions for such sub-

mersions to be integrable and totally geodesic.

RESUMEN

El objetivo de este articulo es introducir el concepto de sub-
mersiones cuasi bi-inclinadas desde variedades casi contacto
métricas hacia variedades Riemannianas, como una genera-
lizacién de submersiones semi-inclinadas y hemi-inclinadas.
Principalmente nos enfocamos en submersiones cuasi bi-
inclinadas desde variedades cosimplécticas. Damos algunos
ejemplos no triviales y estudiamos la geometria de hojas
de distribuciones que estan involucradas en la definicién de
la submersién. Maés atn, encontramos algunas condiciones
para que estas submersiones sean integrables y totalmente

geodésicas.
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1 Introductions

In differential geometry, there are so many important applications of immersions and submersions
both in mathematics and in physics. The properties of slant submersions became an interesting

subject in differential geometry, both in complex geometry and in contact geometry.

In 1966 and 1967, the theory of Riemannian submersions was initiated by O’Neill [17] and Gray [11]
respectively. Nowadays, Riemannian submersions are of great interest not only in mathematics,
but also in theoretical pyhsics, owing to their applications in the Yang-Mills theory, Kaluza-Klein
theory, supergravity and superstring theories (see [7, 8, 10, 13, 14] ). In 1976, the almost complex
type of Riemannian submersions was studied by Watson [29]. He also introduced almost Hermitian
submersions between almost Hermitian manifolds requiring that such Riemannian submersions are
almost complex maps. In 1985, D. Chinea [9] extended the notion of almost Hermitian submersion
to several kinds of sub-classes of almost contact manifolds. In [4] and [5], there are so many im-
portant and interesting results about Riemannian and almost Hermitian submersions. In 2010, B.
Sahin introduced anti invariant submersions from almost Hermitian manifolds onto Riemannian
manifolds [25]. Inspired by B. Sahin’s article, many geometers introduced several new types of
Riemannian submersions in different ambient spaces such as semi-invariant submersion [21, 23],
generic submersion [27], slant submersion [12, 22|, hemi-slant submersion [28], semi-slant submer-
sion [18], bi-slant submersion [26], quasi hemi-slant submersion [16], quasi bi-slant submersion
[19, 20], conformal anti-invariant submersion [1], conformal slant submersion [2] and conformal
semi-slant submersion [3, 15]. Also, these kinds of submersions were considered in different kinds
of structures such as cosymplectic, Sasakian, Kenmotsu, nearly Kaehler, almost product, para-
contact, etc. Recent developments in the theory of submersions can be found in the book [24].
Inspired from the good and interesting results of above studies, we introduce the notion of quasi

bi-slant submersions from cosymplectic manifolds onto Riemannian manifolds.

The paper is organized as follows: In the second section, we gather some basic definitions related
to quasi bi-slant Riemannian submersion. In the third section, we obtain some results on quasi bi-
slant Riemannian submersions from a cosymplectic manifold onto a Riemannian manifold. We also
study the geometry of the leaves of the distributions involved in the considered submersions and
discuss their totally geodesicity. We obtain conditions for the fibres or the horizontal distribution

to be totally geodesic. In the last section, we provide some examples for such submersions.
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2 Preliminaries

An n—dimensional smooth manifold M is said to have an almost contact structure, if there exist

on M, a tensor field ¢ of type (1,1), a vector field £ and 1—form 7 such that:
¢ =—I+n®E ¢£=0,n0¢d=0, (2.1)
n(e) = 1. (2.2)
There exists a Riemannian metric g on an almost contact manifold M satisfying the next conditions:
9(eU, V) = g(U, V) = n(U)n(V), (2.3)
9(U, &) =n(U), (2.4)

where U, V are vector fields on M.

An almost contact structure (¢, &, n) is said to be normal if the almost complex structure J on the

product manifold M x R is given by

J <U, a%) - (¢>U ~ n(U)%) (2.5)

and « is the differentiable function on M x R has no torsion, i.e., J is integrable. The condition
for normality in terms of ¢, &, and 7 is [¢, ¢] + 2dn ® £ = 0 on M, where [¢, ¢] is the Nijenhuis
tensor of ¢. Finally, the fundamental 2—form ® is defined by ®(U,V) = ¢g(U, ¢V).

An almost contact metric manifold with almost contact structure (¢,&,7,¢) is said to be cosym-
plectic if
(Vuo)V =0, (2.6)

for any U,V on M.

It is both normal and closed and the structure equation of a cosymplectic manifold is given by
V€ =0, (2.7)
for any U on M, where V denotes the Riemannian connection of the metric g on M.

Example 2.1 ([6]). R?"! with Cartesian coordinates (x;,y;,z)(i = 1,...,n) and its usual contact
form

n=dz.

The characteristic vector field & is given by % and its Riemannian metric g and tensor field ¢ are

given by

g:

i

n

1



4 R. Prasad, M. A. Akyol, S. Kumar & P. K. Singh

This gives a cosymplectic manifold on R?"*T1. The vector fields e; = 88y" enti = 82»7 & form a

¢-basis for the cosymplectic structure.

Before giving our definition, we recall the following definition:

Definition 2.2 ([28]). Let M be an almost Hermitian manifold with Hermitian metric gy and
almost complex structure J, and let N be a Riemannian manifold with Riemannian metric gn. A
Riemannian submersion f: (M, gn, J) — (N,gn) is called a hemi-slant submersion if the vertical
distribution ker f, of f admits two orthogonal complementary distributions D° and D+ such that

DY is slant with angle 6 and D+ is anti-invariant, i.e, we have
ker f, = D? @ D*.
In this case, the angle 6 is called the hemi-slant angle of the submersion.

Definition 2.3. Let (M, $,&,1,gm) be an almost contact metric manifold and (N, gn) a Rieman-

nian manifold. A Riemannian submersion

f3(M7¢7§a7779M) — (NugN)u

is called a quasi bi-slant submersion if there exist four mutually orthogonal distributions D, D1, Do

and < & > such that

(i) ker f. = D& D1 @ Da® < € >,
(i) ¢(D) = D i.e., D is invariant,
(lll) ¢(D1) 1 D2 and (b(DQ) 1 Dl,

(i) for any non-zero vector field U € (D1),, p € M, the angle 61 between ¢U and (D1), is
constant and independent of the choice of the point p and U in (D1)p,

(v) for any non-zero vector field U € (Da)g, ¢ € M, the angle 62 between ¢U and (Da2)q is
constant and independent of the choice of point ¢ and U in (Da),,

These angles 61 and 65 are called the slant angles of the submersion.

We easily observe that

(a) If dim D # 0, dim Dy = 0 and dim Dy = 0, then f is an invariant submersion.

(b) Ifdim D # 0, dim Dy # 0,0 < 6; < 5 and dim Dy = 0, then f is proper semi-slant submersion.

(c) If dim D =0, dim Dy # 0, 0 < 6; < § and dim Dy = 0, then f is slant submersion with slant
angle 6.
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(d) If dim D = 0, dim D; = 0 and dim Dy # 0, 0 < 6 < 7, then f is slant submersion with slant

angle 6.

(e) f dim D =0, dim Dy # 0, §; = % and dim Dy = 0, then f is an anti-invariant submersion.

(SIE]

(f) If dim D 75 0, dlle 75 O, 91 =

(NE]

and dim Dy = 0, then f is an semi-invariant submersion.

(g) If dimD = 0, dimD; # 0, 0 < 0; < § and dim Dy # 0, 62 = F, then f is a hemi-slant

submersion.

(h) If dimD = 0, dimD; # 0,0 < 61 < Z and dim Dy # 0, 0 < 63 < Z, then f is a bi-slant

2 2
submersion.

i) f dimD # 0, dimD; # 0, 0 < 61 < T and dim Dy # 0, 62 = I, then we may call f is an
2 2

quasi-hemi-slant submersion.
(j) f dim D # 0, dimD; # 0, 0 < 61 < § and dim Dy # 0, 0 < 6 < 7, then f is proper quasi

bi-slant submersion.

Define O’Neill’s tensors 7 and A by
AgF = HVygVF + VVyeHF, (2.8)

TeF = HVyeVF + VVygHEF, (2.9)

for any vector fields E, F' on M, where V is the Levi-Civita connection of gjs. It is easy to see that
Te and Ag are skew-symmetric operators on the tangent bundle of M reversing the vertical and

the horizontal distributions.

From equations (2.8) and (2.9) we have

VoV =ToV + VYV, (2.10)
VX =ToX +HVu X, (2.11)
VxU = AxU + VVxU, (2.12)
VxY = HVxY + AxY, (2.13)

for U,V € I'(ker f.) and X,Y € T'(ker f.)*, where HVyY = Ay U, if Y is basic. It is not difficult
to observe that 7 acts on the fibers as the second fundamental form, while A acts on the horizontal

distribution and measures the obstruction to the integrability of this distribution.

It is seen that for g € M, U € V, and X € H, the linear operators

Ax, Tu : TyM — ToM
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are skew-symmetric, that is
gM(.AxE, F) = —gM(E, AxF) and gM(TUE, F) = —gM(E, TUF) (2.14)

for each E, F' € T, M. Since Ty is skew-symmetric, we observe that f has totally geodesic fibres if
and only if 7 = 0.

Let (M, ¢,&,m, gar) be a cosymplectic manifold, (N, gny) be a Riemannian manifold and f: M — N

a smooth map. Then the second fundamental form of f is given by

(VI 2Z) =V f.Z = f(Vy Z), forY,Z € T(T,M), (2.15)
where we denote conveniently by V the Levi-Civita connections of the metrics gj; and gy and V£
is the pullback connection.

We recall that a differentiable map f between two Riemannian manifolds is totally geodesic if
(VI)Y,Z)=0, forall Y, Z e T(TM).

A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base

space in proportion to arc lengths.

3 Quasi bi-slant submersions

Let f be quasi bi-slant submersion from an almost contact metric manifold (M, ¢, &,n, gar) onto a

Riemannian manifold (N, gn). Then, we have
TM = ker f, @ (ker f.)*. (3.1)
Now, for any vector field U € I'(ker f.), we put
U=PU+ QU+ RU +n(U), (3.2)

where P, @ and R are projection morphisms of ker f, onto D, D; and Ds, respectively. For any
U e T'(ker f.), we set
oU = YU + wU, (3.3)

where U € T'(ker f,) and wU € T'(ker f,)*.

Now, let Uy, Us and Us be vector fields in D, Dy and Dy respectively. Since D is invariant, i.e.
oD = D, we get wU; = 0. For any U € I'(D1) we get wUs € I'(wD4) and for any Us € T'(D2) we
get wU3 € I'(wD3), hence wUs ® wUs € T'(wD; ® wD3) C T(ker f,)t.

From equations (3.2) and (3.3), we have

oU = ¢(PU)+ ¢(QU) + ¢(RU),
= Y(PU)+w(PU)+¥(QU) +w(QU) + v(RU) + w(RU).



CUBO

24, 1 (2022)

Since ¢D = D, we get wPU = 0.

Hence above equation reduces to

Quasi bi-slant submersions in contact geometry 7
oU = Y PU +9YQU 4+ wQU + Yy RU + wRU. (3.4)

Thus we have the following decomposition according to equation (3.4)
p(ker f.) = (¢ D) & (YD1 & ¢ D32) & (wD1 © wDy), (3.5)

where @ denotes orthogonal direct sum.

Further, let U € T'(D;) and V € I'(D3). Then
gu (U, V) =0.
From Definition 2.3 (4i%), we have
gm(oU,V) = gu(U, V) = 0.
Now, consider
gu (WU, V) = g (oU — wU, V) = gn (U, V) = 0.

Similarly, we have
g]\4(U,¢V) =0.

Let W € I'(D) and U € I'(D;). Then we have

as D is invariant, i.e., oW € I'(D).

Similarly, for W € T'(D) and V € I'(D3), we obtain

g]\{[(wva W) = 01

From above equations, we have
gu (WU, V) =0,

and

gum (WU, wV) =0,
for all U € T'(D;) and V € I'(Ds).

So, we can write

YD1 NpDy = {0}, wDiNwDy = {O}

If 6 = T, then R = 0 and D, is anti-invariant, i.e., ¢(Dz) C (ker fot.
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We also have

o(ker f) =D & YD1 & wD1  wDo. (3.6)
Since wD; C (ker f.)*, wDs C (ker f,)1. So we can write
(ker f*)J‘ =wDL ®wDy ® YV,

where V is invariant and orthogonal complement of (wD; @ wDs) in (ker f.) .

Also for any non-zero vector field W € T'(ker f)*, we have
W = BW + CW, (3.7)

where BW € T'(ker f) and CW € T'(V).

Lemma 3.1. Let f be a quasi bi-slant submersion from an almost contact metric manifold

(M, $,&,m,90m) onto a Riemannian manifold (N, gn). Then, we have
Y2U 4+ BwU = —U +n(U)¢, wiypU + CwU =0,
wBW + C?*W = -W, ¢BW + BCW =0,
for all U € T'(ker f.) and W € T'(ker f,)*.

Lemma 3.2. Let f be a quasi bi-slant submersion from an almost contact metric manifold

(M, ¢,&,n,9m) onto a Riemannian manifold (N, gn). Then, we have
(i) ¥*U = —(cos? 61)U,
(ii) gar (WU, V) = cos? O1ga (U, V),

(iii) gar(wU,wV) = sin® 01gp (U, V),

for all U,V € T'(Dy).

Lemma 3.3. Let f be a quasi bi-slant submersion from an contact metric manifold (M, ,&,m, gar)

onto a Riemannian manifold (N, gn). Then, we have
(i) V2W = —(cos? 02)W,

(i1) g (YW, Z) = cos? Oagp (W, Z),

(i1i) ga(WW,wZ) = sin? Oagp (W, Z),

for all W, Z € T'(Dy).
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Lemma 3.4. Let f be a quasi bi-slant submersion from a cosymplectic manifold (M, d,&,m, gnr)

onto a Riemannian manifold (N, gn). Then, we have

VWV + TowV = vVViV + BTV, (3.8)
TobV +HVywV = wVVyV + CTyV, (3.9)
VVxBY + AxCY = AxY + BHV Y, (3.10)
AxBY + HVxCY = wAxY 4+ CHV XY, (3.11)
VVuBX + TuCX =Ty X + BHVy X, (3.12)
ToBX + HVyCX =wTu X + CHVp X, (3.13)
VVy U + AywU = BAyU + ¢ VVy U, (3.14)
Ay U + HVywU = CAyU + wVVy U, (3.15)
for any U,V € T(ker f.) and X,Y € T'(ker f,)*.
Now, we define
(Vu)V = VWV — ViV, (3.16)
(Vyw)V = HVpwV —wVViV, (3.17)
(VxO)Y = HVxCY — CHV xY, (3.18)
(VxB)Y = VWxBY — BHVxY, (3.19)

for any U,V € T'(ker f.) and X,Y € ['(ker f,)*.

Lemma 3.5. Let f be a quasi bi-slant submersion from a cosymplectic manifold (M, ®,&,m, gnr)

onto a Riemannian manifold (N, gn). Then, we have
(Vu)V = BTyV — TywV,
(Vyw)V =CTyV = TuyV,
(VxC)Y =wAxY — AxBY,
(VxB)Y = AxY — AxCY,

for any vectors U,V € T'(ker f,) and X,Y € T'(ker f.)*.

The proofs of above Lemmas follow from straightforward computations, so we omit them.
If the tensors ¢ and w are parallel with respect to the linear connection V on M respectively, then
BTUV = TUwV,

and
CToV = TuV,
for any U,V € T'(T'M).
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Lemma 3.6. Let f be a quasi bi-slant submersion from a cosymplectic manifold (M, ®,&,m, gnr)

onto a Riemannian manifold (N, gn). Then, we have

(i) g(VxY,6) =0 for all X, Y € T(D @& D1 & D>),

(i) gr([X,Y],8) =0 for all X, Y € T(D @& D1 ® Ds).
Proof. Let X, Y € T'(D & D; & Ds), consider

Vx{gu(Y;8)} = (Vxgm)(Y,6) + g (VxY,6) + gu (Y, Vx§).

Since X and Y are orthogonal to £ ie.

g (VxY,§) = —gu (Y, Vx&),

using equation (2.7) and the property that metric tensor is V—parallel, we have both results of

this lemma. O

Theorem 3.7. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, ¢,&,n,9Mm) onto a Riemannian manifold (N, gn). Then, the invariant distribution D is in-

tegrable if and only if
g (TvpU = TupV,wQW + wRW) = g (VVupV — VYU, QW + pRW), (3.20)

for U,V € I'(D) and W € T'(D; @ D).

Proof. For U,V € T'(D), and W € T'(Dy @ D), using equations (2.1)—(2.4), (2.6), (2.7), (2.10),
(3.2), (3.3) and Lemma 3.6 we have

gu([U, VI, W) = gu(VugV,oW) +n(W)n(VoV) — gu (Vv oU, W) —n(W)n(VvU),
= gu(VuV,oW) — gu (Vv U, oW),
= gu(ToYV — TvypU,wQW + wRW) — gy (VVupV — VWU, QW + Yy RW),

which completes the proof. O

Theorem 3.8. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, $,&,m,9m) onto a Riemannian manifold (N, gn). Then, the slant distribution D1 is integrable
if and only if

g (TwwpZ — TzwpW, X) = gu(TwwZ — TzwW,¢PX +pRX)
+9u(HVwwZ — HV zwW,wRX), (3.21)

for ol W, Z € T'(D1) and X € T'(D & D).



CUBO

Quasi bi-slant submersions in contact geometry 11

24, 1 (2022)

Proof. For all W, Z € T'(D;) and X € T'(D @ D3), we have
gM([Wv Z]vX) = gM(vWZaX) - gM(VZVVvX)

Using equations (2.1)—(2.4), (2.6), (2.7), (2.11), (3.2), (3.3) and Lemma 3.2 we have

gm (W, Z], X) g (VwoZ,0X) — gu(VzoW, X)),

= gu(VwvZ,0X) + gu(VwwZ,0X) — gu(VzyW, 0X) — gu(VwwZ, ¢.X),
= cos? g (VwZ, X) — cos? 0190 (V2 W, X) — g (Tww Z — TzwpW, X)
o (HVwwZ + TivwZ, 6PX + $RX + wRX)
— g (HV z0W + TzwW, oPX + ¢y RX + wRX).

Now, we obtain

sin? 019 (W, 2], X) = gu(TwwZ — TzwW,¢PX + YRX) + gy (HVwwZ — HV zwW, wRX)
—gu(TwwpZ — TzwypW, X),

which completes the proof. O

Theorem 3.9. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, ¢,&,n,9m) onto a Riemannian manifold (N, gn). Then, the slant distribution Dy is integrable
if and only if

am (TUw’L/JV — vawU, Y) = 4JdmMm (HVUWV — HVV(UU, WQY)
+9m (TowV — TywU, oPY + QYY) (3.22)

for allU,V € T'(D2) and Y € T'(D & Dy).

Proof. For all U,V € TI'(D3) and Y € I'(D & D), using equations (2.1)-(2.4), (2.6), (2.7), (3.3)

and Lemma 3.6 we have
g (U, V]LY) = gu(VuyV, oY) + gu(VowV, oY) — gu(VvypU, ¢Y) — gu(VywU, Y).
From equations (2.9), (3.2) and Lemma 3.3 we have

au([U,V],Y) = cos?Oagr([U,V],Y) + g (HVpwV — HVywU, wQY)
+9m (TowV — TywU, oPY + QYY) — gy (TowtbV — TywpU,Y).

Now, we have

sin? ogn ([U,V],Y) = gu(TowV — TvwU, gPY + QYY) — ga(TowhV — TywipU,Y)
+9m(HVywV — HVywU, wQY),

which the proof follows from the above equations. O
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Theorem 3.10. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, ¢,&,m,90m) onto a Riemannian manifold (N, gn). Then the horizontal distribution (ker f.)*
defines a totally geodesic foliation on M if and only if

g (AuV, PW + cos? 01.QW + cos® . RW) = gy (HVuV,wp PW + wipQW + wip RW)
—gui(Au BV + HV OV, wW), (3.23)

for all U,V € T'(ker f.)* and W € T'(ker f.).

Proof. For U,V € T'(ker f,)* and W & I'(ker f.), we have
gu(VuV, W) = gu(VuV, PW + QW + RW + n(W)E).

Using equations (2.1)—(2.4), (2.6), (2.7), (2.12), (2.13), (3.2), (3.3), (3.7) and Lemmas 3.2 and 3.3

we have

g (VuV, W) g (OVuV, oPW) + grn(9VuV, QW) + gu (dVu V, pRW),
= gu(ApV, PW + cos® 0,QW + cos® 0, RW)
— g (HVuV,wp PW + wpQW + wip RW)

+9m(AuBV + HVy CV,wPW 4+ wQW + wRW).
Taking into account wPW + wQW + wRW = wW and wPW = 0 in the above, one obtains

au(VoV, W) = gu(AyV, PW + cos® QW + cos® 0, RW)
—gm(HVuV,wp PW + wipQW + wp RW)
“l‘gM(AUBV + HVyCV, wW). 0

Theorem 3.11. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, ¢,&,n,90m) onto a Riemannian manifold (N, gn). Then the vertical distribution (ker f.) defines
a totally geodesic foliation on M if and only if

gu (Tx PY + cos? 0; Tx QY + cos? 02 Tx RY,U) = gar(HV xwip PY + HV xwihQY + HV xwiyRY, U)
+ g (TxwY, BU) + gy (HV xwY, CU), (3.24)

for all X,Y € T'(ker f.) and U € T'(ker f.)*.

Proof. For all X,Y € T'(ker f,) and U € T'(ker f,)+, by using equations (2.1)-(2.4), (2.6) and (2.7)

we have

g (VxY,U) = gu(VxoPY,oU) + gu(VxoQY, oU) + g (Vx ¢RY, ¢U).
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Taking into account of (2.10), (2.11), (3.2), (3.3), (3.7) and Lemmas 3.2 and 3.3 we have

g (VxY,U) = gu(TxPY,U) + cos?® 0190 (Tx QY, U) + cos? Oagpr (Tx RY, U)
—gr (MY xwb PY + HY xwbQY + HY xwibRY, U)
+9m (VxwPY + VxwQY + VxwRY, ¢U).

Since wPY 4+ wQY + wRY = wY and wPY =0, we derive

gu(VxY,U) = gu(TxPY + cos? 0, TxQY + cos® 0 Tx RY, U)
— g (HV xwp PY + HV xwpQY + HV xwy RY, U)
+9m(TxwY, BU) + gy (HV xwY, CU),

which completes the proof. O

From Theorems 3.10 and 3.11 we also have the following decomposition results.

Theorem 3.12. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, ¢,&,n,9Mm) onto a Riemannian manifold (N, gn). Then, the total space is locally a product
manifold of the form Myerf, X Merf,yt, where Myer s, and My, s, )1 are leaves of ker f. and
(ker f.)* respectively if and only if

g (AuV, PY 4 cos? 01QY + cos® 0oRY) = gy (HVyV,wpPY + wipQY + wipRY)
+9m(AuBV + HVy CV,wY),

and

gu(TxY + cos” 01 Tx QY + cos® 9, Tx RY, U) = gar (HV xwi PY + HV xwipQY + HV xwiRY, U)
+ gm (TxwY, BU) 4 gy (HV xwY, CU),

for all X,Y € T'(ker f..) and U,V € T'(ker f.)*.

Theorem 3.13. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, $,&,m,9m) onto a Riemannian manifold (N,gn). Then the distribution D defines a totally

geodesic foliation if and only if
gu(To PV, wQW + wRW) = —gn (VVu oPV, QW + yRW), (3.25)

and

gu(Tu 9PV, CY) = —gu(VVy PV, BY ), (3.26)

for all U,V € T(D),W € T'(D; ® Do) and Y € I'(ker f,)*.
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Proof. For all U,V € T(D), W € T'(D; ® D3) and Y € D'(ker f.), using equations (2.1)-(2.4),
(2.6), (2.7), (3.2), (3.3) and Lemma 3.6 we have
gu(VoV, W) = gu(VuoV, W),
= gu(VudPV,eQW + ¢RW),
= gu(Tu¢PV,wQW + wRW) + gu (VVu PV, QW + Y RW).

Now, again using equations (2.10), (3.2), (3.3) and (3.7) we have

gu(VuVY) = gu(VuoV,eY),
= gM(VU(bPV,BY—I—CY),
= gu(VVuoPV,BY) + gu(TugpPV,CY),

which completes the proof. O

Theorem 3.14. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, ¢,&,n,9Mm) onto a Riemannian manifold (N, gn). Then the distribution Dy defines a totally
geodesic foliation if and only if

g (TwwZ,U) = gu (TwwQZ, pPU + Y RU) + g (HVwwQZ, wRU), (3.27)
and
IM(HVwwZ,Y) = gy (HVwwZ,CY) + gu(TwwZ, BY ), (3.28)
for all W, Z € T(D1),U € T(D @ D) and Y € I'(ker f.)" .

Proof. For all W, Z € T'(D1), U € T'(D @ D3) and Y € T'(ker f,)*, using equations (2.1)—(2.4),
(2.6), (2.7), (2.11), (3.2), (3.3) and Lemma 3.2, we have
gm(VwZ,U) = gu(VwoZ,¢U)
= gu(VwZ,9U) + gu(VwwZ, ¢U),
= cos? 019 (Viw Z,U) — gur (Twwyp Z,U)
+ a9 (TwwQZ, pPU + YRU) + gy (HVwwQZ,wRU).

Now, we obtain
sin? 019 (VwZ,U) = —gu(Twwo Z,U) + g (TwwQZ, pPU + Y RU) + gy (HVwwQZ,wRZ)
Next, from equations (2.1)—(2.4), (2.6), (2.7), (2.12), (3.3), (3.7) and Lemma 3.2, we have
gmM(VwZ,Y) = gu(VwoZ,6Y),
= gu(VwZ,9Y) + gu(VwwZ, ¢Y),
= cos® 019 (VwZ,Y) — gu(HVwwiy Z,Y)
+9gn (HVW(UZ, CY) + gm (TWwZ, BY)
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Now, we arrive
sin® 1gn(Vw Z,Y) = —gu(HVwwZ,Y) + gu(HVwwZ, CY) + gu(TwwZ, BY),
which completes the proof. O

Theorem 3.15. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold
(M, ¢,&,n,9Mm) onto a Riemannian manifold (N, gn). Then the distribution Do defines a totally

geodesic foliation if and only if
gm (TuwyV, W) =4gm (TU(UQV, oPW + (bRW) + g (HVywQV, wRW), (3.29)

and

g (HVywiyV,Y) = gy (HVywV, CY) + gu (TowV, BY ), (3.30)

for all U,V € T(D2),W € T(D @ D1) and Y € T'(ker f,)*.

Proof. For all U,V € T'(Dy),W € T'(D @ D;) and Y € I'(ker f.)*, by using equations (2.1)—(2.4),
(2.6), (2.7), (2.10), (3.3) and from Lemma 3.2 and Lemma 3.6, we have

gu(VuV,W) = gu(VudbV, W) + gu(VowV, W),
= cos’ bogn(VuV, W) — gu(TowyV, W)
+9m (TowQV, pPW + pRW) + gp (HVywQV, w RW).

Now, we get
sin? 0290 (Vi 'V, W) = —gu(TuwyV, W) + gm (TowQV, oPW + RW) + gumr (HVUWQV, wRW).
Next, from equations (2.1)—(2.4), (2.6), (2.7), (2.12), (3.2) (3.3), (3.7) and Lemma 3.2, we have

g (VuVY) = gu(VuyV,8Y) + gu(VowV, ¢Y),
= 0052 929M (VUV, Y) —adm (HVwav, Y)
+gm (HVU(UV, CY) + gm (TUOJV, BY).

Now, we obtain
sin? 0190 (VoV,Y) = —gu(HVpwidV,Y) + gy (HVuwV, CY) + ga (TowV, BY),

which completes the proof. O

We recall that a differentiable map f between two Riemannian manifolds is totally geodesic if

(VI)(Y,Z) =0, for all Y, Z € T(TM).

A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base

space in proportion to arc lengths.
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Theorem 3.16. Let f be a proper quasi bi-slant submersion from a cosymplectic manifold

(M, ¢,&,n,9Mm) onto a Riemannian manifold (N, gn). Then the map f is totally geodesic if and
only if

g (HVywypQV + HV ywip RV — cos® 01Ty QV — cos? 02 Ty RV, W)
= gu(VVuoPV + TuwQV + TywRV, BW) + gu (Tu PV + HVywQV + HVywRV, CW),

and

g (HVwwpQU + HVwwip RU — cos? 01 Aw QU — cos? 03 Aw RU, Z)
— gt (VWwdPU + AwwQU + AwwRU, BZ) + gar(Aw 6 PU + HVwwQU + HVwwRU, CZ),

for all U,V € T'(ker f.) and W, Z € T'(ker f.)*.

Proof. For all U,V € T'(ker f.) and W, Z € T'(ker f.)*, making use of (2.1)—(2.4), (2.6), (2.7),
(2.10), (2.11), (3.2), (3.3), (3.7) and from Lemma 3.2 and 3.3, we derive

gu(VuV,W) = gu(VuoV,¢W)
= gu(VudPV, W) + gu(VupQV, oW) + gr(VudRV, W),
= gu(VuoPV,oW) 4+ gu(VoypQV, ¢W) + gu (Vup RV, oW)
+9u (VuwQV, W) + g (VowRV, oW),
= gu(VVyoPV + TywQV + TywRV, W)
+9m (TudPV + HVywQV + HVywRV, CW)
4911 (cos? 01 TuQV + cos? 02Ty RV — HV ywiypQV — HV ywi RV, W).

Next, taking account of (2.1)~(2.4), (2.6), (2.7), (2.10), (2.12), (2.13), (3.2), (3.3), (3.7) and

Lemmas 3.2 and 3.3, we have

gu(VwU,Z) = gu(eVwU, ¢Z)

= gu(VwoU, ¢2),

= gu(VwoPU,¢Z) + gu(VwdQU, ¢Z) + gu(Vw ¢RU, ¢2),

= gu(VwoPU,¢Z) + gu(VwiQU, ¢Z) + gu(Vw iy RU, ¢2)
+9u(VwwQU, ¢Z) + gu (VwwRU, Z),

= gu(VVwoPU + AwwQU + AwwRU, BZ)
+9m (Aw oPU + HVwwQU + HVwwRU,CZ)
+gnr(cos® 01 Aw QU + cos® O A RU — HV wwipQU — HV wwiRU, Z),

which completes the proof. [l
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4 Examples
In this section, we are going to give some non-trivial examples. We will use the notation mentioned
in Example 2.1.
Example 4.1. Define a map
7 : RY RS
(X1, X2, o X7, Y1, Y2y - -+, Y7, 2) = (220801 — y3sinby, yo, x4 8in 0y — ys5 cos ba, x5, 7, y7),

which is a quasi bi-slant submersion such that

o0 0 0 0 0

X1=5—, Xo=5—, Xs=——sinfy + —cosb, X4=-——
1 EIo 2 o0 3 o1 sin 1+6y3 costy, X4 9z5’
X——cos@—i—asmH X X—i Xg=—
5 = (91'4 2 ayo 29 6 — a 4 7T = (91'6’ 8 — ay67

o0

X = = —

9 6 (92’

(kerm,) = (D ® D1 @ Dy @ (§)),

where
0 o0 0 0
D={(X;=— X —
< ' 0xy) oy 7T Owg’ ay6>’
. 0
D1 = X3 bln@l + COSs 91,X4 = —
Oxs 3 Ox3
Doy = <X5 = ——cosfy + 9 sinfs, Xg = 0 > ,
Oy Ys m
0
<§> - <X9 — £> )
and

0 0 o 0 0 o 9 0
ker 1, )t = 01 — —sinfy, —, —sinfly — — cosfy, —, —, —
(ker ) <8$2 cosfy — 95 sin 6y, 90’ D1 sin fy 0 cos 0, oy 8y7>’

with bi-slant angles 61 and 02. Thus the above example verifies the Lemmas 3.1, 8.2, 3.3 and 3.6.

Example 4.2. Define a map

which is a quasi bi-slant submersion such that

1 0 0 0 0 0
Xi=—=|—+—1), Xo=—"—, Xz3=—, Xy=—
! ﬁ(@xl 8:52) 2 6y2 3 4

1 0
X5 = ( +\/_ ) Xo =7~
8564
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0
X7 == 5 — &a
(kerm,) = (D ® Dy ® D2 ® (§)),
where
0 0
D_<X3_8—Q:P,’X4_3—y3>’

1/ 0 0 9
D2—<X5—§(a—x4+\/§a—x5)7X6_ay4>’
0
<§>—<X7—g>v
and
VA o 0 1 0 0 g 0 0
(ker ) _<8y17 5 3x1+8172)’2( 38I4_3x5)78y5’8176’8y6>7

with bi-slant angles 61 = % T Therefore, the above example verifies the Lemmas 3.1,

3.2, 8.8 and 3.6.
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