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Original scientific paper 

Abstract. In order to fulfil the ever increasing requirements of various hard 
and difficult-to-machine materials in automobile, turbine, nuclear, aviation, 
tool and die making industries, the conventional material removal processes 
are now being continuously substituted by an array of non-traditional 
machining (NTM) processes. The efficient and improved capabilities of these 
NTM processes have made them indispensible for the present day 
manufacturing industries. While deploying a particular NTM process for a 
specific machining application, the concerned process engineer must be aware 
of its capability which is influenced by a large number of controllable 
parameters. In this paper, an intelligent decision model is designed and 
developed in VBASIC to guide the concerned process engineer to have an idea 
about the values of various NTM process responses for a given parametric 
combination. It would also advise about the tentative settings of different NTM 
process parameters for achieving a set of target response values. It would thus 
aim in assisting the process engineers and designers to efficiently identify the 
technically feasible NTM processes in the early design and machining stages, 
focusing more on developing the required product functionalities and 
appearance with the feasible processes in mind, utilizing the process 
characteristics more effectively. The operational procedure of this developed 
decision model is demonstrated with the help of three real time examples. 

Key words: Non-traditional machining process; Parameter; Response; 
Decision model; VBASIC. 

1. Introduction   

The emerging need for generating intricate and precise shape features in various 
advanced engineering materials, like high-strength-temperature-resistant alloys, 
tungsten carbide, titanium and its alloys, ceramics, fibre-reinforced composites, 
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stainless steel, refractories etc. has resulted in development of a group of new 
machining processes, collectively known as non-traditional machining (NTM) 
processes. These advanced materials, having higher strength, toughness, hardness, 
low machinability and other varied properties, are in demand in various 
manufacturing industries, like automobile, nuclear, aviation, missile, tool and die 
making etc. In conventional machining processes, material removal usually takes place 
in the form of chips while applying forces on the workpiece using a wedge-shaped 
cutting tool which is harder than the work material. These processes usually incur 
higher cost with respect to tool wear and poor quality due to the generation of residual 
stresses in work material. They are also incapable to attain the dimensional accuracy 
and surface finish as desired by the modern day manufacturing industries. In these 
processes, as the relative motion between the tool and workpiece is typically rotary or 
reciprocating, the generated shape is thus restricted to only circular or flat features, 
and except in computer-numerical control (CNC) tools, machining of three-
dimensional surfaces is extremely difficult. Thus, in order to cater the needs of higher 
dimensional accuracy (in micro- or nano-level), surface finish, capability to machine 
difficult-to-cut materials with high strength-to-weight ratio, low surface damage, 
minimum tolerance, automated data transmission and miniaturization, the 
conventional machining processes are now being gradually replaced by the NTM 
processes (Jain, 1980; Pandey & Shan, 1980; El-Hofy, 2005). In NTM processes, instead 
of sharp cutting tools, energy in its direct form is employed to remove material from 
the workpiece surface. These processes usually adopt mechanical, thermal, electrical 
and chemical energies or any combination of them for removing materials in the shape 
of micro-chips or atoms to achieve the desired accuracy and machined surface without 
any burr. In these processes, there is also no physical contact between the tool and 
workpiece, and the related material removal mechanism is not dependant on the 
mechanical properties of the work materials. Some of the NTM processes can also 
machine workpieces in areas inaccessible for the conventional machining techniques. 
Thus, these enhanced and efficient capabilities of NTM processes have made them 
almost indispensible and popular at the shop floor (Rajurkar et al., 2017). Over the 
years, more than 20 different NTM processes have been successfully developed and 
deployed to meet the diverse needs of the present day manufacturing industries. In 
order to make efficient use of the NTM processes, it thus becomes necessary to 
understand the exact nature of the machining problem. They can never replace the 
conventional machining processes, and a particular NTM process may be highly 
acceptable for a given set of requirements, but it may sometimes fail to prove its 
acceptability under different machining conditions. Thus, an extensive knowledge 
regarding the capabilities of various NTM processes is crucial in order to select the 
most suitable NTM process to generate the desired shape feature on a given work 
material. Existence of a large number of NTM processes with diverse uniqueness and 
capabilities has compelled the process engineers to develop structured approaches for 
NTM process selection for assorted machining applications. In this direction, 
development of a decision making framework in the form of an intelligent knowledge-
based system is worth demanding. The developed intelligent decision model would 
help the process engineers in multi-directional ways, like (a) selecting the most 
suitable NTM process for a given problem, (b) managing a huge volume of machining 
data and responding quickly, (c) standardizing the conclusions drawn from a given 
data set, and (d) capturing the scarce expertise and making it available for subsequent 
use. 

The remainder of the paper is organized as follows. Section 2 presents the 
applications of different methodologies adopted by the past researchers for NTM 
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processes selection. Section 3 describes the developmental framework of the decision 
model. Section 4 presents three examples to demonstrate the applicability and 
usefulness of the developed model. Finally, Section 5 concludes the paper, highlighting 
its assumptions, limitations and future directions. 

2. Literature review 

Yurdakul & Cçogun (2003) proposed an NTM process selection method for a given 
application requirement while combining analytic hierarchy process (AHP) and 
technique for order of preference by similarity to the ideal solution (TOPSIS). The 
alternative NTM processes were first narrowed down to a set of feasible solutions 
which were subsequently ranked based on their suitability for the desired application. 
Chakraborty & Dey (2006) developed an AHP method-based expert system with a 
graphical user interface to find out the most apposite NTM process with the highest 
acceptability index value. Chakraborty & Dey (2007) applied quality function 
deployment (QFD) methodology for identification of the most suitable NTM process 
for a given industrial application based on the development of a house of quality 
matrix for comparing the considered product and process characteristics. Chakladar 
& Chakraborty (2008) integrated AHP and TOPSIS methods in order to select the most 
appropriate NTM process for a specific work material and shape feature combination. 
Chandraseelan et al. (2008) developed a web-based knowledge base system for 
identification of the most suitable NTM process based on some input parameters and 
process capability requirements. Chakladar et al. (2009) proposed a digraph-based 
approach to entirely automate the NTM process selection procedure. Based on the 
capabilities of the considered NTM processes to generate a desired shape on a given 
material, they were subsequently ranked in decreasing order of preference. 
Sugumaran et al. (2010) presented a neural network-based approach to help the 
process engineers in preparing a list of feasible NTM processes for a specific 
machining operation on a given work material. Karande & Chakraborty (2012) solved 
four real time NTM process selection problems while applying an integrated 
PROMETHEE (preference ranking organization method for enrichment evaluation) 
and GAIA (geometrical analysis for interactive aid) approach. Temuçin et al. (2013) 
employed both fuzzy and crisp-based approaches to solve NTM process selection 
problems, and developed a decision support model to assist the process engineers to 
arrive at the correct NTM process selection decision. Roy et al. (2014) first applied 
fuzzy AHP method for estimating the relative importance of various NTM processes 
based on several product and process characteristics, and later adopted QFD 
methodology for evaluating the performance scores of various NTM processes to 
choose the best one. Sarkar et al. (2015) proposed a multi-objective optimization on 
the basis of ratio analysis (MOORA) method-based decision support system for 
selection of NTM processes having a given set of quantitative and qualitative selection 
attributes. Madić et al. (2015b) combined AHP, MOORA and TOPSIS methods for 
determination of the relative significance of various quality criteria, and hence, 
selection of the most suitable NTM process for a given application. Based on a hybrid 
multi-criteria decision making (MCDM) framework, Azaryoon et al. (2015) developed 
a knowledge-based system for identification of NTM processes. The developed 
approach employed the combined applications of decision making trial and evaluation 
laboratory (DEMATEL), analytic network process (ANP) and VIKOR 
(VIšekriterijumsko KOmpromisno Rangiranje) methods to evaluate various 
performance measures, such as applicability of workpiece material and shape 
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features, process capabilities, and cost-related factors. Madić et al. (2015a) applied 
operational competitiveness rating analysis (OCRA) method as an MCDM tool for 
selection of the NTM processes from a large number of candidate alternatives. Saenz 
et al. (2015) proposed a novel method for selection and comparison of non-traditional 
sheet metal cutting processes. Khandekar & Chakraborty (2016) applied fuzzy 
axiomatic design principles for selection of the most appropriate NTM processes for 
generating cavities on ceramics, and micro-holes on hardened tool steel and titanium 
materials. Chatterjee et al. (2017) presented a novel hybrid approach consisting of 
factor relationship (FARE) and multi-attributive border approximation area 
comparison (MABAC) methods for selection and evaluation of NTM processes. The 
FARE method was first applied to determine the corresponding criteria weights, and 
the alternative NTM processes are later ranked using MABAC method. Roy et al. 
(2017) proposed a combined application of fuzzy AHP and QFD methods for 
investigating the relative significance of different technical requirements in an NTM 
process selection approach, and also identified the suitability of electrochemical 
machining process for a specified industrial application. Prasad & Chakraborty (2018) 
developed a decision guidance framework to assist the process engineers in choosing 
the most suitable NTM process for a given machining application and identifying the 
ideal process parameter settings for the said process. Yurdakul et al. (2019) presented 
intuitionistic and triangular fuzzy-based models for ranking of the suitable NTM 
processes for machining of some specific shape features on the given work materials. 
The performance of those models was later compared with that of crisp-based models. 
Amalnik (2019) proposed a feature-based expert system for optimization of design of 
an abrasive waterjet machining process. The corresponding database would consist of 
lists of 20 work materials, eight abrasive types and four machine types. The developed 
expert system would aid the process engineers while providing information with 
respect to machining cycle time, machining cost and cutting rate.  Rohith et al. (2019) 
first adopted a data envelopment analysis (DEA)-based model for shorlisting the 
efficient NTM processes for a given shape feature and work material combination, and 
then employed AHP, TOPSIS and OCRA methods for ranking and selection of the 
efficient NTM processes. Yurdakul & İç (2019) presented the applications of fuzzy-
based models of AHP and TOPSIS methods for NTM process selection for a particular 
work material and shape feature combinations. Talib and Asjad (2019) developed a 
model using AHP method for prioritizing as well as ranking of various NTM processes 
based on 27 evaluation criteria. Chakraborty et al. (2020) integrated rough numbers 
with MABAC method to identify the most feasible NTM processes for generation of 
standard through holes in glass and deep through cavities in titanium work materials. 
Based on firefly algorithm, Singh & Shukla (2020) developed a graphical user 
interface for selecting the optimal input parameters for electrochemical machining, 
electrochemical micro-machining and electrochemical turning processes.  

From an extensive review of the existing literature, it has been observed that 
varieties of expert systems have already been developed so as to help the process 
engineers in identifying the most competent NTM processes for different work 
material and shape feature combinations. Those developed expert systems have also 
been integrated with several other mathematical techniques, like AHP, ANP, TOPSIS, 
DEA, QFD etc. for arriving at the best courses of action. Those expert systems have 
been so designed and developed that they could only identify the most apposite NTM 
processes for varying machining applications. The expert system developed by Prasad 
& Chakraborty (2018) could only advise the concerned process engineers about the 
tentative parametric settings of the chosen NTM processes, apart from selecting the 
most competent NTM processes to fulfil different  application requirements.  
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No research work has been carried out till date so as to predict the most probable 
values of various responses based on a given combination of different NTM process 
parameters or envisage the tentative settings of various NTM process parameters so 
as to achieve the most desired values of the considered responses. In this paper, an 
attempt is thus put forward so as to design and develop an intelligent decision model 
in Visual BASIC (VBASIC) that would help the process engineers in advising about the 
achievable values of different responses for a specific set of NTM process parameters 
or selecting the optimal parametric mix in order to attain a set of target responses. The 
developed system is supposed to be flexible and versatile enough as it encompasses 
all the available NTM processes, work materials and shape features, and also user-
friendly and interactive as it always guides the end users in arriving at the optimal 
selection decision.  

3. Development of the Decision Model   

The procedural steps in the form of a flowchart in order to run this developed 
intelligent decision model without any error are exhibited in Figure 1.  

 

Figure 1. Flowchart exhibiting procedural steps of the developed decision 

model 

At first, it would ask the end user to select the type of the NTM operation to be 
performed along with the combination of work material to be machined and 
shape/sub-shape feature to be generated. Once the NTM operation is specified, two 
lists containing the controllable parameters and responses associated with the 
selected NTM process would now appear in the next screen of the developed system. 
The end user would then be directed to preselect the machining parameters as 
available in that NTM process along with the set of desired responses in order to fulfil 
the end product requirements. The end user can also choose all the available NTM 
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process parameters and responses while pressing the ‘SELECT ALL’ functional key. It 
would then direct the end user to input the desired values of the identified NTM 
process parameters based on which the tentative values of the selected responses 
would be provided on pressing of the ‘OK’ button. Here, only the available values of 
the selected process parameters for a particular NTM process would appear in the 
screen in the form of drop-down menus. The reverse approach can also be augmented 
in this decision model while selecting the ‘RESPONSE TO PP’ functional key. The end 
user can also choose all the available NTM process parameters and responses while 
pressing the ‘SELECT ALL’ functional key, and select the ‘RESPONSE TO PP’ for having 
the tentative values of the NTM process parameters. It would then direct the end user 
to input the desired ranges of the identified NTM responses as beneficial and non-
beneficial criteria based on which the conditional values of the selected process 
parameters would be provided on pressing the ‘OK’ button. Here, only the available 
values of the selected responses for a particular NTM process would appear in the 
screen in the form of drop-down menu. If the end user opts for generating infeasible 
shape features or machining unsuitable materials using any of the considered NTM 
processes, an error message would appear indicating the incapability of that NTM 
process to generate the chosen shape feature on the given material. In this case, the 
end user has to repeat the procedural steps of NTM process selection from the 
beginning. In this paper, 17 NTM processes, i.e. (a) abrasive jet machining (AJM), (b) 
abrasive water jet machining (AWJM), (c) electron beam machining (EBM), (d) 
electrochemical grinding (ECG), (e) electrochemical machining (ECM), (f) 
electrochemical discharge machining (ECDM), (g) electro-discharge machining (EDM), 
(h) electro jet drilling (EJD), (i) focused ion beam machining (FIB), (j) hot chlorine 
machining (HM), (k) laser beam machining (LBM), (l) magnetorheological finishing 
(MRF), (m) plasma arc machining (PAM), (n) photochemical milling (PCM), (o) 
ultrasonic machining (USM), (p) wire electro-discharge machining (WEDM) and (q) 
water jet machining (WJM) are considered for subsequent development of the 
intelligent decision model. Similarly, the list of the considered work materials consists 
of  (a) Alumina, (b) Aluminium, (c) Boron carbide, (d) Ceramics, (e) Composites, (f) 
Cemented tungsten carbide, (g) Duralumin, (h) Inorganic glass, (i) Inconel 718, (j) 
Inconel 800, (k) Inconel 825, (l) Incoloy, (m) Monel 400, (n) Monel K-500, (o) Nickel, 
(p) Nimonics, (q) Plastics, (r) Refractories, (s) Silicon nitride, (t) Silicon carbide, (u) 
Steel, (v) Stainless steel, (w) Titanium (ASTM Grade I), (x) Tungsten carbide and (y) 
Titanium-based super alloys. This system takes into consideration the following shape 
and sub-shape features for subsequent generation on the selected work material: 

 (a) Holes 
(i) Precision holes (D ≤ 0.25 mm) (where D = diameter) 
(ii) Precision holes (D > 0.25 mm)  
(iii) Standard holes (L/D ≤ 20)   (where L/D = length/diameter = slenderness 
ratio) 
(iv) Standard holes (L/D > 20) 

(b) Cavities 
(i) Precision (aspect ratio ≤ 5) 
(ii) Standard  

(c) Surfacing 
(i) Double contouring 
(ii) Surface of revolution 

(d) Through cutting 
(i) Shallow (depth of cut < 40 µm) 

     (ii) Deep (depth of cut > 40 µm) 
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(e) Finishing. 
The entire database containing the capabilities of all the considered NTM processes 

with respect to workpiece material, and shape and sub-shape features to be generated 
is stored in MS-ACCESS linked with VBASIC, and the decisions regarding values of 
various responses and settings of the NTM process parameters are arrived at based 
on sets of simple IF-THEN rules.  

4. Illustrative examples   

In order to demonstrate the applicability and usefulness of the developed decision 
model in the domain of NTM processes, the following three examples are cited.  

4.1 Example 1: Electro-discharge machining 

In this example, it is supposed that precision cavities with aspect ratio ≤ 5 need to 
be generated on Inconel 718 alloy using EDM process. For this machining application, 
the corresponding input window in the form of a graphical user interface is shown in 
Figure 2.  

 

Figure 2. Input window for the first example 

Pressing of the ‘OK’ functional key then leads the end user to the next window, as 
exhibited in Figure 3, where the lists of all the important EDM process parameters, i.e. 
peak current, open circuit voltage, pulse-on time, duty factor, flushing pressure, pulse-
off time, dielectric level, tool electrode lift time, polarity, type of the tool and flushing 
speed, and responses, like surface crack density, tool wear ratio (TWR), 
perpendicularity error (PE), material removal rate (MRR), surface roughness (SR), 
overcut (OC), electrode wear rate, edge deviation, white layer thickness and micro-
harness are displayed. In this example, at first, the end user selects peak current, open 
circuit voltage, pulse-on time, duty factor, polarity and type of the tool as the 
controllable process parameters as available in the considered EDM set-up. On the 
other hand, based on the end product requirements, surface crack density, TWR, PE, 
MRR, SR and micro-hardness are treated with utmost importance. The end user can 
also choose all the EDM process parameters and responses while pressing the ‘SELECT 
ALL’ key. Now, when the ‘NEXT’ button is pressed, in the subsequent window, as 
depicted in Figure 4, the end user is opted to enter the appropriate values for the 
preselected EDM process parameters based on which the approximate values of the 
shortlisted responses would be predicted. In this example, the end user chooses the 
options as peak current = 9 A, open circuit voltage = 60V, pulse-on time = 100 µs, duty 
factor = 70%, polarity = positive and tool material = copper.  Now, when the ‘OK’ 
button is pressed, this decision model would guide the end user to have an idea about 
various responses envisaged as surface crack density = 0.0055-0.0057 µm/µm2, MRR 
= 89.12-89.18 mm3/min, SR = 6.2-6.7 µm, PE = 0.09-1.11%, micro-hardness = 392.40-
392.50 HV and TWR = 0.0012-0.0016.  
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Figure 3. Window for selection of EDM process parameters and responses  

In Figure 3, when the end user presses the ‘RESPONSE TO PP’ functional key, the 
settings of the preselected EDM process parameters can be predicted based on the 
chosen values of the shortlisted EDM responses.  As exhibited in Figure 5, the end user 
desires to have high value of MRR (59.881-89.164 mm3/min), and low values of 
electrode wear rate (0.011-0.059 mm3/min), SR (2.133-4.866 µm), OC (0.03-0.19 
mm), surface crack density (0.008-0.011 µm/µm2), white layer thickness (16.646-
17.866 µm) and micro-hardness (352.600-407.755 HV). Based on these input 
response values, the developed decision model predicts the related EDM process 
parameters as open circuit voltage = 47-50 V, peak current = 10.5-11.5 A, pulse-on 
time = 190-200 µs, duty factor = 78-82%, flushing pressure = 0.15-0.25 bar, type of the 
tool = copper, polarity = positive and pulse-off time = 25-35 µs. It is worthwhile to 
mention here that among the considered responses, material removal rate is the sole 
beneficial attribute requiring its higher value, whereas, lower values for the remaining 
non-beneficial responses are preferred. Based on the past experimental data on EDM 
processes (Ray, 2016; Datta et al., 2017), all the related response values are classified 
into three groups, i.e. low, medium and high so as to relieve the end user in providing 
an exact value for a specific response which may sometimes be a difficult task. 
According to the end product requirements, the end user can now be able to opt for 
only low, medium or high value for a particular response of interest. The derived 
parametric settings of the considered EDM process are only tentative. In order to 
achieve most accurate target values of the responses, fine-tuning of those parameters 
may often be needed.  
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Figure 4. Prediction of responses based on EDM process parameters 

 

Figure 5. Prediction of EDM process parameters based on the responses 

In Figure 6, when the end user opts for performing deep through cutting operation 
(depth of cut > 40 µm) on ceramic materials using the EDM process, an error message 
would appear indicating the incapability of EDM process to generate the chosen shape 
feature on ceramics. It can be interestingly noticed that with increasing values of all 
the EDM process parameters, MRR would also increase. Higher values of gap voltage, 
peak current and pulse-on time are all responsible for the available discharge energy 
to increase, resulting in more melting and vaporization of material from the 
workpiece. The impulsive force in the spark gap also increases, which is responsible 
for higher MRR (Gopalakannan et. al., 2012). Increments in gap voltage and peak 
current generate stronger discharge energy, creating higher temperature and 
formation of larger craters on the machined surface, resulting in poor surface quality 
(Kiyak & Çakır, 2007) Similarly, TWR increases with higher values of gap voltage, peak 
current and cycle time. At these higher parametric settings, there are micro tool wears 
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due to availability of higher spark energy density at the machining zone. Generally, 
lower settings of these EDM process parameters tend to enhance the possibility of 
carbon deposition on the tool surface, which finally helps in lowering TWR value (Lin 
& Lee., 2008). The PE in the machined components occurs due to non-uniform 
undercut and OC which can be effectively controlled by proper settings of different 
EDM process parameters. With increasing values of gap voltage and peak current, PE 
shows an increasing trend. At higher gap voltage and peak current, there are 
occurrences of secondary spark discharges caused by poor flushing as well as sporadic 
machining which are responsible for inferior PE. During EDM operation, OC occurs due 
to side erosion and removal of debris. At higher settings of voltage, peak current and 
pulse-on time, availability of higher gap voltage and gap width allows breakdown of 
the dielectric at a wider gap due to higher electric field. At higher gap voltage and peak 
current, spark energy density would be more with a faster machining rate, which is 
also responsible for higher OC. Hence, the predicted parametric intermix for the EDM 
process would minimize the OC of the machined components. The above parametric 
setting can also be validated based on the observations of the past researchers (Ray, 
2016; Prasad & Chakraborty, 2018). 
 

 

Figure 6. An error message for EDM process 

4.2 Example 2: Ultrasonic machining 

Here, the end user desires to generate standard holes with slenderness ratio of less 
than equal to 20 on Titanium (ASTM Grade I) work material while utilizing USM 
process. Figure 7 exhibits the input window for this example. In Figure 8, from a list of 
the available controllable parameters for the USM process, type of the abrasive 
material, abrasive grit size, amplitude of vibration, machining time, type of the tool 
material, power rating and slurry concentration are first shortlisted. On the other 
hand, conicity, MRR, SR, tool wear rate (TW) and micro-harness are opted as the 
important responses. Depending on the requirements, the entire lists for the available 
USM process parameters and responses can also be selected. The entire information 
related to these USM process parameters and responses are accumulated from (Kumar 
& Khamba, 2010; Kataria et al., 2017).  
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Figure 7. Input window for example 2 

Now, in Figure 8, when the ‘NEXT’ functional key is pressed, the developed decision 
model would seek for the values of the shortlisted USM process parameters in another 
window, as portrayed in Figure 9.  

 

Figure 8. Window for selection of USM process parameters and responses  

In this case, the end user chooses the values of different USM parameters as type 
of the abrasive material = Boron carbide, abrasive grit size = 280, amplitude of 
vibration = 25 µm, machining time = 8.70 min, type of the tool material = Tungsten 
carbide, power rating = 550 W and slurry concentration = 45%. The drop-down menu 
attached with each of the process parameters guides the user to opt for the most 
apposite value as available in a particular USM set-up.  
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Figure 9. Prediction of responses based on USM process parameters 

Based on these requirements, the developed system predicts the responses as 
conicity = 0.023-0.038º, SR = 0.78-0.85 µm, MRR = 0.025-0.035 mm3/min, TW = 0.98-
1.05 mm3/min and micro-hardness = 155-160 HV. Now, when the ‘RESPONSE TO PP’ 
functional key is pressed in Figure 8, this system would jump to a new window, as 
shown in Figure 10, where the end user is asked to input the desired values of the 
preselected responses in order to guide him/her about the tentative settings of 
different USM process parameters.  

 

Figure 10. Prediction of USM process parameters based on the responses 

Here, high value of MRR (0.066-0.870mm3/min), and low values for conicity 
(0.014-0.032º), out-of-roundness (0.200-0.285 mm), SR (0.48-0.87 µm) and hole 
oversize (0.075-0.265mm) are sought by the end user. Depending on these 
requirements, it advises the user to set the corresponding USM parameters as type of 
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the abrasive material = Silicon carbide, abrasive grit size = 400, type of the tool 
material = HSS, power rating = 400-450 W, slurry concentration = 35-37%, slurry flow 
rate = 6.5-7.5 l/min and feed rate = 1.12-1.28 mm/min. In order to achieve more 
accurate machining performance, fine-tuning of the settings of the considered USM 
process parameters may often be required. When the end user chooses the same USM 
process for generation of precision holes (D ≤ 0.25 mm) to be machined on Aluminium 
work material, an error message, as shown in Figure 11, would automatically be 
generated by the system indicating the fact that it cannot machine precision holes on 
Aluminium material.  

 

Figure 11. A typical error message for USM process 

In USM process, when the amplitude of vibration increases, energy at the tool tip 
also increases, resulting in higher SR due to increased impact of the abrasive particles 
on the workpiece. Furthermore, TW also increases due to increase in the slurry flow 
rate containing harder abrasive particles, which are bombarded on the tool tip. The 
cavitation effects also lead to an increase in TW. With increase in amplitude of 
vibration, there is an increment in MRR as higher amplitude attributes to higher 
momentum imparted to the abrasive particles before striking the workpiece. It raises 
the energy with which the abrasive particles collide on the work surface and hence, 
the micro-crack or micro-crater created by each impact facilitates the material 
removal process. On the other hand, MRR decreases because the successive impacts 
between the abrasive grains and the work material may lead to large amount of plastic 
deformation resulting in the formation of a work-hardened layer, causing reduction in 
MRR (Bhosale et al., 2014). An increment in slurry concentration is responsible for 
more impact on the work surface leading to higher SR. This also causes an increase in 
TW since more abrasive particles come into contact with the tool over a given period 
of time. However, the material removal tendency decreases because of the loss of 
energy possessed by the abrasives in the slurry. As the number of particles between 
the tool and the work surface increases due to higher slurry concentration, loss of 
energy due to interparticle collision may prevail during this phenomenon (Kataria et 
al., 2017; Chakraborty et al., 2020). 

4.3 Example 3: Plasma arc machining 

In this example, deep through cutting operation with depth of cut > 40 µm needs 
to be performed on a workpiece made of stainless steel using PAM process. In order 
to satisfy these requirements, the corresponding NTM process, work material, shape 
feature and sub-shape feature are accordingly selected in Figure 12.  
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Figure 12. Input window for example 3 

For the PAM process, based on an extensive survey of the existing literature (Xu et 
al., 2002; Das et al., 2014; Adalarasan et al., 2015; Ramakrishnan et al., 2018), arc 
voltage, cutting current, cutting speed, feed rate, torch stand-off distance, plasma gas 
pressure and pierce height are identified as the predominant control parameters 
influencing its machining performance. On the other hand, the important responses 
are shortlisted as conicity, chamfer, dross, heat affected zone (HAZ), kerf width, MRR 
and SR. Now, in Figure 13, the end user preselects arc voltage, cutting current, feed 
rate and torch stand-off distance as the available PAM process parameters, and 
chamfer, dross, kerf width and SR as the desired responses.  

 

Figure 13. Window for selection of PAM process parameters and 

responses 

The values of these four shortlisted PAM process parameters are set as arc voltage 
= 120 V, cutting current = 42.5 A, feed rate = 945 mm/min and torch stand-off distance 
= 2.5 mm, as exhibited in Figure 14. Based on this parametric combination, the 
developed decision model predicts the shortlisted responses as chamfer = 1.80-1.85 
mm, dross = 3.60-3.64 mm2, kerf width = 2.70-2.75 mm and SR = 0.76-0.85 µm. Thus, 
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this system would help the process engineers to have an idea about the achievable 
values of different responses based on a preselected set of parametric combinations.  

 

 

Figure 14. Prediction of responses based on PAM process parameters 

In Figure 13, if the end user presses the ‘RESPONSE TO PP’ functional key, a new 
input window, as shown in Figure 15, would now be available where the ranges of 
values for different responses can be set according to the end product requirements. 
In this example, the end user opts for high value of MRR (2.06-2.80 mm3/min), and 
low values for conicity (0.009-0.021º), HAZ (325-400 µm), chamfer (1.00-1.32 mm), 
dross (0.45-3.49 mm2), kerf width (1.93-2.53 mm) and SR (0.724-0.875 µm). Now, 
based on these response requirements, the developed system would advise the 
process engineer to set different parameters of the PAM process as feed rate = 930-
950 mm/min, cutting speed = 2260-2280 mm/min, plasma gas pressure = 4.57-4.92 
kg/cm2, arc voltage = 115-125 V and torch stand-off distance = 2.5-4.5 mm. These are 
only the tentative settings of the considered PAM setup. The process engineer may 
require to fine-tune these settings in order to achieve more accurate results. 
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Figure 15. Prediction of PAM process parameters based on the responses 

As shown in Figure 16, when the end user wants to machine precision holes on 
refractories using the available PAM process, the system would automatically 
generate an error message highlighting its inability to machine the specified work 
material.  

 

Figure 16. An error message for PAM process 

In PAM process, torch stand-off distance has the strongest effect on the quality 
characteristics. Stand-off distance is one of the crucial parameters in PAM process as 
it controls SR and conicity of the cut edge. It has also been observed that cutting 
current also influences the HAZ of the cut edge. It greatly influences SR of the cut due 
to the fact that the plasma gas beam is not of cylindrical shape but resembles the shape 
of a reversed candle flame.  Therefore, depending on the relative position of the plasma 
to the workpiece surface, the surface quality is drastically affected due to thermal 
properties of the material (Salonitis & Vatousianos, 2012). The MRR increases with an 
increase in gas pressure and high gas flow because it leads to an increase in mean arc 
voltage and its fluctuations as more heat is transferred into the workpiece, and 
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consequently, SR reduces. However, MRR remains constant with an increase in stand-
off distance as there is a slight fluctuation in energy. For higher plasma gas flow rate, 
arc voltage also becomes higher. As the gas flow rate increases, more energy is needed 
to ionize the gas, therefore the arc voltage should be higher. The kerf is narrower at 
the top, it widens at the middle, and again becomes narrower at the bottom, making 
heat distribution along the cut to be irregular. During PAM operation, dross formation 
at the bottom of the workpiece needs to be minimized while controlling the 
corresponding process parameters. At low speed, input energy to the workpiece is 
high, causing melting of more materials. Dross is formed when adequate force of the 
plasma jet is not available. To obtain a dross-free cut surface, plasma force and energy 
input to the workpiece need to be balanced properly. Plasma power increases with 
plasma gas flow rate and arc current. To achieve a square cut of narrow kerf with 
minimal dross, the decision model can efficiently predict the tentative ranges of the 
process parameters (Mittal & Mahajan, 2018). The same parametric combination for 
the PAM process is also well derived by the past researchers (Ramakrishnan et al., 
2018; Prasad & Chakraborty, 2018; Chakraborty et al., 2020). 

5. Conclusions   

In this paper, an attempt is made to design and develop an intelligent decision 
model in VBASIC so as to help the concerned process engineers in the domain of NTM 
processes. Based on the availability of a particular NTM process, and selected 
workpiece and shape feature combination, it can identify values of different responses 
for a given set of parametric combinations. On the other hand, it has also the capability 
of predicting the tentative settings of different NTM process parameters while meeting 
the specified values of a given set of responses. In this system, the decision making 
procedure is based on an exhaustive set of IF-THEN rules, and it consists of all the 
possible combinations of different NTM processes, work materials and shape features. 
It is easy to operate as the graphical user interface continuously interacts with the end 
users restricting them to commit any error. It has also the flexibility to cater any 
combination of NTM process, work material and shape feature. It warns the end user 
when a particular machining operation cannot be performed by a specific NTM 
process. The developed decision model assists the process engineers and designers to 
efficiently identify the technically feasible NTM processes in the early design and 
machining stages, enabling in developing the required product functionalities and 
appearance with the feasible processes in mind, while utilizing the process 
characteristics more effectively. After the detailed design is complete, the feasible 
processes identified in the earlier steps can be reevaluated, reassessing their technical 
feasibilities for manufacturing the designed product. The design can also be modified 
accordingly, if needed, to ensure manufacturability of the product. The main 
advantage of this decision model is that it does not require any in-depth technical 
knowledge regarding the applicability of the NTM processes. It also acts as an expert 
system to ease out and automate the NTM process selection procedure. 

This decision model has also some limitations. Firstly, it does not take into account 
the presently available hybrid machining and additive manufacturing processes.  
Moreover, it is developed based on a static database. It would be worth investigating 
the possibility of integrating the decision model into the ‘cloud’ under the Industry 4.0 
context, allowing prompt feedback and rapid update. It is also assumed that the 
developed decision model has no maintenance and operation costs. It lacks the 
creative responses of the human experts, and is also not able to explain the logic and 
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reasoning behind a decision to the end user. It opens opportunities to include 
micromachining, hybrid machining and additive manufacturing technology selection 
modules as well as improving selection results while incorporating more selection 
criteria and work materials in the model. It is expected that the developed model 
would be well accepted by the manufacturing industries for arriving at the prompt 
NTM process selection decisions. It can also be implemented in a group decision 
making environment involving opinions of different process engineers having varying 
background knowledge and expertise for more pragmatic results. Its capability, reach 
and usability may further be enhanced while making it entirely web-based to become 
accessible to its end users through an internet network.  
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