
Decision Making: Applications in Management and Engineering  
Vol. 5, Issue 1, 2022, pp. 264-289. 
ISSN: 2560-6018 
eISSN: 2620-0104  

 DOI:_https://doi.org/10.31181/dmame0311022022t 

* Corresponding author. 
 E-mail addresses: belkistorgul@gmail.com (B. Torğul), edemiralay@ktun.edu.tr (E. 
Demiralay), tpaksoy@yahoo.com (T. Paksoy) 

TRAINING AIRCRAFT SELECTION FOR DEPARTMENT OF 
FLIGHT TRAINING IN FUZZY ENVIRONMENT 

Belkız Torğul1*, Enes Demiralay1 and Turan Paksoy2 

1 Konya Technical University, Faculty of Engineering and Natural Sciences, Department 
of Industrial Engineering, Turkey 

2 Necmettin Erbakan University, Faculty of Aviation and Space Sciences, Department of 
Aviation Management, Turkey 

 

Received: 1 September 2021;  
Accepted: 8 January 2022;  
Available online: 11 February 2022. 

 
Original scientific paper 

Abstract: The last two decades have seen a growing trend towards the use of 
aircraft as transportation tools. However, there is a lack of routes because of 
the insufficient number of pilots. Therefore, the increase in usage of aircraft 
has been limited.  To respond to this increase in Turkey, it indicates a rise in 
the number of flight academies. Flight academies have emerged as powerful 
and expensive platforms for flight training. In the new global economy, the 
aircraft selection problem has become a central issue for Flight Training 
Departments, which is planned to open in government universities. In this 
study, an approach based on the fuzzy BWM method is proposed to select more 
suitable training aircraft in government universities. Criterion weights and 
alternative aircraft rankings were determined using the fuzzy BWM method. 
Afterward, a mathematical model was developed to calculate how many 
aircraft we need to buy under certain constraints. Necmettin Erbakan 
University, which wants to train new and qualified pilots, needs training 
aircraft and trainers that can provide pilot training. A case study of training 
aircraft selection was conducted for the Necmettin Erbakan University 
Department of Flight Training. As a result, it can be said that 13 aircraft will 
be sufficient for the Flight Training department to start education. 

Key words: Training aircraft selection, Flight training, BWM, Fuzzy Sets, 
Linear programming model. 

1. Introduction 

When asked what the term aviation means, the first answer has been usually to 
travel by aircraft. However, the design, manufacture, and maintenance operations of 
aircraft required to travel are also included in the aviation term. It is unknown what 
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will bring about the combination of advancing time and constantly developing 
technologies for aeronautics. Today, aircraft have been used for human and cargo 
transportation, agricultural spraying, and military purposes. For those types of 
aviation to be used actively, personnel who will design and manufacture aircraft; 
know-hows; new technologies; pilots to use aircraft; and technicians to undertake 
maintenance and repair of aircraft are required.  

The beginning of aviation history dates back to the 9th century when Abbas Ibn 
Firnas made the first flying glider (Lienhard, 2019). The Chinese book Poo Phu Tau 
had been claiming the existence of rotary-wing aircraft in the 4th century. Leonardo 
da Vinci's glider design, which has survived to the present day, remained only a design 
in the 15th century but was produced in the 19th century with the materials used in 
the 15th century. Hezarfen Ahmet Çelebi had traveled 3 km from Galata Tower to the 
Anatolian side in 1638 with wings he designed inspired by birds. The modern era of 
aviation history has begun with the hot air balloon designed by the Montgolfier 
brothers (Kılıç, 2015). Modern aviation history has been continued the development 
with Alphonse Pénaud's first structurally balanced aircraft model, the first successful 
flight in history by Felix du Temple, and the first motorized aircraft flight of Orville and 
Wilbur Wright’s brothers. Airports have begun to be built in many cities during World 
War II. After World War II, with the pilots' demobilization and the introduction of the 
aircraft used by the soldiers but surplus to the civilians, there was a great increase in 
the use of private and commercial aviation, especially in North America. Today, the 
increase in airlines' use in different transportation types such as passenger 
transportation, cargo transportation, and dangerous goods transportation continues 
at an accelerated rate. Even in the coming years, an increase in using space tourism 
will be observed with the development of services, increased security, and reliability, 
as in airline tourism (Webber, 2013). 

Airline transportation, which is still not widely used in Turkey, is developing 
rapidly in the world. Transportation with aircraft is a more reliable transportation 
choice in a shorter time compared to other transportation methods. Although 
technological developments are of great importance for airline transportation to take 
superiority over other transportation methods, the number of well-trained pilots is 
also crucial. Universities working towards the more widespread use of aviation in 
Turkey have started studies to open flight training departments. Necmettin Erbakan 
University intends to purchase training aircraft to train pilots in its Department of 
Flight Training by progressing towards this aim. 

However, the increased fuel costs and aircraft costs which have increased due to 
the economic difficulties experienced in the last few years and the changes in exchange 
rates, have adversely affected the aviation market. While the aviation market has been 
affected so much, the number of criteria to be considered for selecting aircraft has 
increased. For this reason, determining the criteria for the selection of training aircraft 
is of great importance. Thus, the aircraft selection process has turned into a multi-
criteria decision-making (MCDM) problem. There are different options for the solution 
of MCDM problems. 

In this study, an approach based on the fuzzy BWM method is proposed for 
purchasing training aircraft. A case study of the Necmettin Erbakan University 
Department of Flight Training has been conducted to show the approach's 
applicability. The nine crucial criteria affecting aircraft selection problem (Max Cruise 
Speed, Max Range, Takeoff and Landing Roll, Max Climb Rate, Power Output, Weight, 
Price, Useful Fuel Capacity, and Time Before Overhaul) has been determined from the 
surveys conducted with decision-makers who are the academic members of 
Necmettin Erbakan University Aviation and Space Sciences Faculty. In the next step, 
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according to the experts' evaluations, criterion weights that affect the aircraft 
selection problem have been determined with the fuzzy BWM method. The most 
important feature that distinguishes this study from other studies in the literature is 
developing a linear programming model that determines how many aircraft should be 
bought under certain constraints (Budget, Minimum flying before overhaul, and Fuel 
consumption). 

An original approach consisting of fuzzy BWM and a mathematical model are 
proposed. A case study is made on which criteria should be considered in the training 
aircraft selection process to set an example for developing flight departments in 
Turkey. A literature study is conducted in the field of aircraft selection, and as a result, 
a literature matrix is created that relates the studies and the methods used, and it is 
ensured that the gap in the literature can be seen in future studies. Unlike previous 
studies, more technical features of training aircraft are discussed. 

The rest of this paper is arranged as follows. In Section 2, a literature review is 
presented. In Section 3, a detailed methodology is presented. Section 4 provides the 
relevant problem definition and developed mathematical model. In Section 5, a case 
study of aircraft selection is presented and demonstrated how the proposed approach 
works. Finally, in Section 6, the conclusion of this paper and suggestions for future 
work are presented. 

2. Literature Review 

This section presents a comparative discussion of the former studies on aircraft 
selection to highlight the proposed study's contributions. This study differs from other 
studies because the criteria that affect the training aircraft selection problem are 
carefully determined, determined which type of aircraft should purchase by flight 
academies, and the number of aircraft required for the flight academy. The literature 
review is divided into three paragraphs to avoid complexity. In the paragraphs, 
aircraft selection studies using MCDM methods in crisp, fuzzy, and both crisp and fuzzy 
environments are given, respectively. Table 1 presents the previous studies and their' 
criteria and methods used. 

See et al. (2004) firstly have demonstrated the strengths and weaknesses of MCDM 
methods which own theoretical and practical flaws commonly employed, using the 
speed, max cruise range, and the number of passengers criteria for the airline aircraft 
selection problem. Then, a method based on hypothetical equivalent has been 
proposed and expanded to include hypothetical inequivalent. In this study, criteria 
affecting the problem have not expressed the aircraft selection process sufficiently 
was observed. Liu & Wu (2010) have proposed an evaluation model based on 
Information Entropy and Data Envelopment Analysis methods to analyze suitable 
alternatives for aircraft fleet selection in local transportation airlines. The applicability 
of the proposed approach has been shown with a numerical example. Six alternative 
aircraft were evaluated under five main criteria, with ten sub-criteria. The approach 
has been developed in a fuzzy environment to avoid uncertainties during the decision-
making process. Sun et al. (2011) have proposed a new approach for the hypothetical 
airline aircraft selection problem using ELECTRE, SAW, and TOPSIS methods. 
Uncertainties may arise in every decision-making problem. The uncertainties have 
been eliminated using Taguchi loss functions to ensure robustness instead of 
developing the approach in a fuzzy environment. In this study, robustness has also 
been added as a criterion. Investigating the effect of robustness as a criterion on the 
ranking of alternatives has been conducted by sensitivity analysis. Dožić & Kalić 
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(2015a) have proposed a new approach using two different MCDM methods, AHP and 
ESM. A hypothetical airline aircraft selection study has demonstrated the applicability 
of the approach. Sensitivity analysis was performed to show the differences between 
AHP and ESM results. Dožić & Kalić (2015b) have developed a new fleet planning 
model for airlines operating on short and medium-haul routes. The fleet planning 
model consists of three stages: fleet composition, fleet sizing, and aircraft selection. 
The applicability of the model was demonstrated by a hypothetical airline case study 
located at the Belgrade airport. Five criteria evaluated seven alternative aircraft. It is 
inadequate in reaching the appropriate solution in the problem of aircraft selection 
with selected criteria. Paul et al. (2017) have proposed a TOPSIS method-based 
approach for fighter aircraft selection. The applicability of the proposed approach is 
shown with a numerical example. Four alternative fighter aircraft were evaluated with 
six criteria. The criteria chosen are not sufficient for alternative fighter aircraft 
selection. Ali et al. (2017) have created a scenario to select new and better aircraft for 
their existing fleets to develop Pakistan Air Force and Pakistan Air Defense 
capabilities. They have proposed an approach using the AHP method for the aircraft 
selection problem. Cost-Benefit Analysis has been carried out for the selected 
alternative to be compatible with Pakistan's financial budget. Six alternative aircraft 
have been evaluated with ten criteria. The criteria chosen are not sufficient for 
alternative fighter aircraft selection. Kiracı & Bakır (2018b) have proposed a TOPSIS 
method-based approach for choosing the most suitable aircraft for airlines with 
different flight networks. The applicability of the proposed approach is shown with an 
example of commercial aircraft selection. Eight decision-makers have evaluated four 
alternative aircraft types, most demanded by airline companies with five criteria. It is 
inadequate in reaching the appropriate solution in the problem of aircraft selection 
with selected criteria. Kiracı & Bakır (2018a) have proposed an approach based on 
AHP, COPRAS, and MOORA methods, considering cost, performance, and 
environmental factors for the commercial aircraft most demanded by airline 
companies. The proposed approach has been shown with a numerical example, and it 
has been observed that decision-making methods give consistent results. The 
decision-makers evaluated the four alternative aircraft most demanded by airlines, 
with seven criteria affecting the selection. No action has been taken to prevent 
uncertainties that may occur during the decision-making process. Petrovic & Kankaraš 
(2018) have proposed an approach based on the hybrid DEMATEL and AHP methods 
to select air traffic protection aircraft. The applicability of the proposed approach is 
shown with a numerical example. Forty-five decision-makers calculated the weight of 
52 sub-criteria under nine main criteria. No precautions have been taken for 
uncertainties that may arise during the criterion weighting process. Ilgın (2019) has 
proposed a new approach based on the linear physical programming method to 
remove the disadvantage of the fact that criteria obtained by different decision-
making methods take physically meaningless and subjective values. The applicability 
of the proposed approach is shown with a numerical example. Five criteria evaluated 
six alternative aircraft. (Yilmaz et al. (2020) have proposed an approach based on AHP 
and TOPSIS methods for aircraft selection.  Sixteen decision-makers who are teachers 
in Eskişehir Technical University Flight School evaluated six alternative training 
aircraft with four main criteria (strategic criteria, financial criteria, operational 
criteria, and maintenance criteria). The criteria for aircraft selection are not explicitly 
indicated. For this reason, the study is insufficient on an appropriate decision-making 
aspect. Hoan & Ha (2021) have proposed a novel decision-making approach with the 
integration of FUCOM and ARAS methods for aircraft selection. A case study of suitable 
fighter jets selection for the Vietnam People's Air Force has demonstrated the 
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proposed approach's applicability. Three alternative aircraft (Su-35, Mig-35, and F-
16) were examined under 13 criteria. However, the selected criteria do not provide 
proper outcomes for fighter aircraft selection. For instance, constraints such as the 
maximum range and the useful fuel capacity have been ignored. Sensitivity analyses 
have been conducted, and the results are compared with the weighted product method 
to prove the method's robustness. do Nascimento Maêda et al. (2021) have proposed 
a hybrid approach based on AHP and TOPSIS methods and the dual normalization 
procedure for the selection of helicopters to be purchased by the Brazilian Navy, which 
provides more logistics and combat capacity in naval operations. A real military case 
study was conducted to improve the performance of the Brazilian armed forces. 
Among the six helicopters evaluated by considering the attack helicopters used by 
developed countries during the selection process, the Ah-64E Apache was the most 
suitable helicopter for the Brazilian armed forces. 

Wang & Chang (2007) have proposed an approach based on the TOPSIS method in 
a triangular fuzzy environment in initial training aircraft selection for Taiwan Air 
Force. In the case study conducted to demonstrate the approach's applicability, 15 
decision-makers have evaluated seven aircraft under 16 criteria.  The selection 
process has been insufficient due to the usage of criteria alike and is not helpful enough 
to make the right decision for the training aircraft selection. Also, criteria weight has 
been calculated by taking the average of decision-makers' evaluations, not by any 
decision-making method. Yeh & Chang (2009) have proposed a new group method for 
MCDM problems in a fuzzy environment. A case study of Taiwan's domestic airline's 
empirical aircraft selection has demonstrated the model's applicability. Five 
alternative aircraft have been evaluated under three main criteria with 11 sub-criteria. 
The specified criterion has been insufficient to reach an appropriate judgment for the 
aircraft selection problem. Ozdemir & Basligil (2016) have proposed an approach for 
the aircraft selection problem using fuzzy ANP and Choquet Integral Method. An 
aircraft purchase case study has been conducted for a Turkish airline company. Three 
aircraft were evaluated with ten criteria. The criteria are not conducive to proper 
aircraft selection. The proposed approach results have been compared with fuzzy 
AHP, and the same results on F AHP have been obtained in all three methods. (Dožić 
et al. (2018) have proposed a new methodology to assist in selecting aircraft types that 
best meet market conditions and airline requirements for estimated travel demand 
based on known route networks and routes.  An AHP-Logarithmic Fuzzy Preference 
Programming method-based approach has been developed in the fuzzy environment 
to eliminate human uncertainty. The pairwise comparison matrix was created from 
interviews with experts from different airlines and universities. The applicability of 
the methodology has been demonstrated by the case study of regional airline aircraft 
selection. According to interviews conducted with experts from different airlines and 
universities, seven alternative aircraft have been evaluated with ten criteria. The 
selected criteria are not sufficient to reach the most suitable alternative aircraft. 
Kartika & Hanani (2019) have proposed a new approach based on FGD and AHP 
methods for aircraft selection. The approach's applicability is proved with a case study 
of Indonesia's national flag carrier airline company's aircraft selection to be used on 
new routes. Decision-makers evaluated four alternative aircraft with six criteria. In 
this study, it is insufficient to decide on the most suitable aircraft with the determined 
criteria. Ahmed et al. (2020) have proposed a new approach using the AHP and 
efficiency method in a fuzzy environment to eliminate human uncertainty in the 
regional aircraft selection problem, considering the environmental design and cost 
impact. Inspired by Canadian airlines, the framework of the approach was created. 
Four alternative aircraft were evaluated with 15 sub-criteria under five main criteria. 
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The consistency of the results of the proposed approach was checked using sensitivity 
analysis. The study is insufficient in an appropriate decision-making aspect since more 
emphasis on environmental criteria, and technical criteria essential for aircraft 
selection remain in the background. Kiracı & Akan (2020) have proposed a new hybrid 
AHP and TOPSIS approach in the Interval Type 2 fuzzy environment. The applicability 
of the proposed approach is shown with a numerical example. Four alternative 
commercial aircraft were evaluated under three main criteria (economic performance, 
technical performance, and environmental impact) with eight sub-criteria. The 
technical criteria required for aircraft selection do not fully reflect a real-life choice. 
Sánchez-Lozano & Rodríguez (2020) have proposed a new hybrid AHP and FRIM 
approach in a fuzzy environment to the aircraft selection problem. The applicability of 
the approach has been demonstrated by the Spanish Air Force aircraft selection case 
study. The necessary evaluations of the proposed approach's application were 
obtained from the questionnaires conducted with the flight instructors in the 23rd 
Fighter and Attack Training wing. Four alternative aircraft have been evaluated under 
13 criteria. The criteria required for the training aircraft selection have been selected, 
but some crucial criteria like the time before maintenance or usable fuel capacity seem 
to have been overlooked. Karamaşa et al. (2021) have proposed an approach based on 
neutrosophic AHP and MULTIMOORA methods for training aircraft selection for flight 
training organizations. The aircraft has been evaluated with the help of 
questionnaires. In order to check the accuracy of the developed approach, a 
comparative analysis with existing approaches has been made. In line with the 
comparative analysis, it is observed that the approach produces productive results. 
Bakır et al. (2021) have proposed an approach based on hybrid PIPRECIA and 
MARCOS methods in the fuzzy environment for regional aircraft selection. In the case 
study to demonstrate the approach's feasibility, five decision-makers evaluated six 
aircraft alternatives under 14 criteria. In addition, a three-stage sensitivity analysis 
was conducted to demonstrate the accuracy of the approach. 

Mello et al. (2012) have proposed a novel approach based on the NAIDE method 
for the aircraft selection problem. The applicability of the proposed approach has been 
proved with a numerical illustration of a turboprop aircraft selection. Eight alternative 
aircraft have been evaluated under 11 criteria which can be stochastic, fuzzy, or crisp 
measurements. The criteria determined for aircraft selection are not sufficient to lead 
to the appropriate judgment. The criteria should be elected more specifically. The 
authors observed a lack of simplicity when approaching diverse types' variables as a 
weak point of the method. Gomes et al. (2014) have proposed a new approach based 
on the NAIDE method to aircraft selection. An aircraft selection case study of an airline 
company investing in regional charter flights in Brazil has demonstrated the 
applicability of the approach. Eight alternative aircraft have been evaluated under 11 
different criteria: crisp, stochastic, and fuzzy.  Schwening et al. (2014) have proposed 
a hybrid AHP and TOPSIS method-based approach for agricultural aircraft selection. 
The applicability of the model has been demonstrated with a case study. The approach 
has been developed in a fuzzy environment to avoid uncertainties during the decision-
making process. Four alternative agricultural aircraft were evaluated under nine 
criteria. 
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Table 1. Summary of previous researches on aircraft selection 

Author 
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U
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T
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O
 

T
A

 

C
 

F
 

Method 

(See et al., 2004) ✓ ✓     ✓ (Max Takeoff)     ✓  
Multi-attribute 

Method 

(Wang & Chang, 
2007) 

✓  ✓ ✓    ✓  ✓  ✓ TOPSIS 

(Yeh & Chang, 
2009) 

 ✓      ✓     ✓ 
New Fuzzy group 

MCDM 

(Liu & Wu, 2010)  ✓  ✓   ✓ (Max Takeoff) ✓    ✓  

Information Entropy 
and Data 

Envelopment 
Analysis 

(Sun et al., 2011) ✓     ✓ (Max Takeoff)  ✓   ✓  
ELECTRE, SAW, and 

TOPSIS 
(Mello et al., 

2012) 
✓  ✓ ✓    ✓    ✓ ✓ NAIADE 

(Gomes et al., 
2014) 

✓  ✓ ✓    ✓    ✓ ✓ NAIADE 

(Schwening et al., 
2014) 

  ✓ ✓ ✓   ✓   ✓ ✓ AHP and TOPSIS 

(Dožić & Kalić, 
2015a) 

     ✓ (Max Takeoff) ✓    ✓  
AHP and Even Swaps 

Method 

(Dožić & Kalić, 
2015b) 

     ✓ (Max Takeoff) ✓    ✓  Even Swaps Method  

(Ozdemir & 
Basligil, 2016) 

      ✓     ✓ 
ANP and Choquet 
Integral Method 

(Ali et al., 2017) ✓     ✓ (Max Takeoff) ✓    ✓  
AHP and Cost Benefit 

Analysis 

(Paul et al., 2017) ✓  ✓    ✓ (Payload) ✓    ✓  TOPSIS 

(Dožić et al., 
2018) 

 ✓    ✓ (Max Takeoff) ✓     ✓ 

AHP and Logarithmic 
Fuzzy Preference 

Programming 
Method 

(Kiracı & Bakır, 
2018b) 

✓ ✓     ✓ ✓   ✓  TOPSIS 

(Kiracı & Bakır, 
2018a) 

✓ ✓    ✓ (Payload) ✓ ✓   ✓  
AHP, COPRAS and 

MOORA 

(Petrovic & 
Kankaraš, 2018) 

      ✓    ✓  DEMATEL and AHP 

(Ilgın, 2019)  ✓     ✓ ✓   ✓  
Linear Physical 
Programming 

(Kartika & 
Hanani, 2019) 

     ✓ (Max Takeoff)      ✓ AHP and TOPSIS 

(Yilmaz et al., 
2020) 

     ✓ (Max Takeoff) ✓    ✓  AHP and TOPSIS 

(Ahmed et al., 
2020) 

 ✓ ✓   ✓ (Payload) ✓ ✓  ✓  ✓ 
AHP and Efficacy 

Method 

(Kiracı & Akan, 
2020) 

✓  ✓ ✓   ✓ (Max Takeoff) ✓ ✓    ✓ AHP and TOPSIS 

(Sánchez-Lozano 
& Rodríguez, 

2020) 
 ✓ ✓   ✓ (Max Takeoff) ✓   

✓ 
(Military

) 

 ✓ 
AHP and The 

Reference Ideal 
Method 

(Hoan & Ha, 
2021) 

✓    ✓ ✓ ✓ (Max Takeoff) ✓    ✓  FUCOM and ARAS 

(Do Nascimento 
Maêda et al., 

2021) 
✓ ✓    ✓ (Payload)     ✓  AHP, TOPSIS, and 2N 

(Karamaşa et al., 
2021) 

  ✓    ✓     ✓ 
AHP and 

MULTIMOORA 
(Bakır et 
al.,2021) 

✓ ✓          ✓ 
PIPRECIA and 

MARCOS 

This Study ✓ ✓ ✓ ✓ ✓ ✓ (Empty) ✓ ✓ ✓ ✓  ✓ 
BWM and Linear 

Model 

* MCS - Max Cruise Speed; MR - Max Range; TLGR - Takeoff and Landing Ground Roll; MCR - Max Climb Rate; PO - Power Output; 
W – Weight; P – Price; UFC - Useful Fuel Capacity; TBO - Time Before Overhaul; TA - Training Aircraft; C – Crisp; F - Fuzzy 
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3. Methodologies 

The solution to real-world MCDM problems is too complex to be described with 
quantitative numbers. This complexity is due to uncertain and conflicting qualitative 
factors. In MCDM problems, criteria or alternatives are evaluated with qualitative 
judgments. Human qualitative judgments often contain uncertainty and abstraction. 
The fuzzy set theory simulates human logic using a mathematical model, and a solution 
to real-world problems can be provided according to the human thinking style.  For 
this reason, fuzzy sets have been used to provide a more flexible, convenient, and 
effective solution for the decision-makers and to obtain results more compatible with 
real situations in the training aircraft selection problem.  

In this section, fuzzy set theory, triangular fuzzy numbers, and graded mean 
integration representation (GMIR) of triangular fuzzy numbers used in our study are 
briefly mentioned.  Moreover, fuzzy BWM suggested by Dong et al. (2021) based upon 
triangular fuzzy numbers for MCDM is presented in detail.  

3.1. Fuzzy set theory 

In 1965, L. A. Zadeh noticed that human thinking is primarily fuzzy and interpreted 
fuzzy sets.  Fuzzy set theory has been utilized for modeling decision-making processes 
based upon vague and uncertain information such as decision-makers' judgments 
(Kumar et al., 2017; Lima Junior et al., 2014). 

3.2. Triangular fuzzy numbers 

A fuzzy set is described with a membership function, and all elements of a fuzzy set 
have membership degrees that range from 0 to 1 (Zadeh, 1965). A triangular fuzzy 
number is indicated in Figure 1.  A triangular fuzzy number is indicated as (l, m, u) 
with l < m< u (Kargı, 2016; Lima Junior et al., 2014; Alosta et al., 2021). 

 

 

Figure 1. Triangular Membership Function. 

A triangular membership function and its elements are represented as follows 
(Muhammad et al., 2021): 
                                                          

𝜇�̃�(𝑥) =

{
 
 

 
 
 0              𝑓𝑜𝑟 𝑥 < 𝑙,         
𝑥−𝑙

𝑚−𝑙
     𝑓𝑜𝑟 𝑙 ≤ 𝑥 ≤ 𝑚,

 
𝑢−𝑥

𝑢−𝑚
    𝑓𝑜𝑟 𝑚 ≤ 𝑥 ≤ 𝑢,

0            𝑓𝑜𝑟 𝑥 > 𝑢,         

                                                                                                              (1) 
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3.3. Graded mean integration representation method 

GMIR method proposed by Chen & Hsieh (2000). GMIR 𝑅(�̃�𝑖) of a triangular fuzzy 
number �̃�𝑖 = (𝑙𝑖 , 𝑚𝑖, 𝑢𝑖) can be calculated by  
 

𝑅(�̃�𝑖) =
𝑙𝑖+4𝑚𝑖+𝑢𝑖

6
                                                                                                                                (2) 

 
The smaller value of 𝑅(�̃�𝑖), the smaller the triangular fuzzy number �̃�𝑖 . 

 
If w̃𝑗 = (𝑤𝑗

𝑙 , 𝑤𝑗
𝑚 , 𝑤𝑗

𝑢)  is a triangular fuzzy number (j=1, 2, …, n). A triangular fuzzy 

weight vector w̃ = [�̃�1, �̃�2, … , �̃�𝑛] is called a normalized fuzzy weight vector if for 
every j∈ {1, 2, …, n}, the following holds (Bas et al., 2019; Dong et al., 2021; Guo & Zhao, 
2017; Liao et al., 2013): 
 
∑ 𝑤𝑗

𝑚𝑛
𝑗=1 = 1,    𝑤𝑗

𝑢 + ∑ 𝑤𝑖
𝑙𝑛

𝑖=1,𝑖≠𝑗  ≤  1, 𝑤𝑗
𝑙 + ∑ 𝑤𝑖

𝑢𝑛
𝑖=1,𝑖≠𝑗 ≥  1                                            (3)     

 

3.4. Fuzzy Best Worst Method 

In this section, we present fuzzy BWM suggested by Dong et al. (2021) based upon 
triangular fuzzy numbers for MCDM. Fuzzy BWM was previously developed by Guo 
and Zhao (2017) and used in many studies. However, according to Dong et al. (2021), 
the multiplication and subtraction operations of triangular fuzzy numbers in Fuzzy 
BWM developed by Guo and Zhao (2017)  are not in accordance with the operation 
laws of triangular fuzzy numbers. Moreover, their final model is a non-linear 
programming model, whose global optimal solution may not exist. Whereas the Fuzzy 
BWM model proposed by Dong et al. (2021) is linear in contrast to other papers, it is 
more reasonable to construct a linear programming model to obtain the optimal fuzzy 
weights of criteria. We agree with them and therefore used the fuzzy BWM method 
suggested by Dong et al. (2021) for our study.  

3.4.1. Constructing of the mathematical programming model 

The optimal weight of all criteria is one where, each pair of 𝑤𝐵/𝑤𝑗  and 𝑤𝑗/𝑤𝑤  have 

𝑤𝐵/𝑤𝑗= 𝑎𝐵𝑗  and 𝑤𝑗/𝑤𝑊  =𝑎𝑗𝑊 (Rezaei, 2015). However, it is hard to achieve 𝑤𝐵/𝑤𝑗= 𝑎𝐵𝑗  

and 𝑤𝑗/𝑤𝑊  =𝑎𝑗𝑊  for all j. Because these formulas are equivalent to 𝑤𝐵  = 𝑤𝑗𝑎𝐵𝑗  and 𝑤𝑗  

=𝑎𝑗𝑊𝑤𝑊   respectively, it is anticipated to find the fuzzy weights to ensure 𝑤𝐵  = 𝑤𝑗𝑎𝐵𝑗  

and 𝑤𝑗  =𝑎𝑗𝑊𝑤𝑊  as much as possible. That is, 

 
(𝑤𝐵

𝑙 , 𝑤𝐵
𝑚 , 𝑤𝐵

𝑢) = (𝑤𝑗
𝑙 , 𝑤𝑗

𝑚 , 𝑤𝑗
𝑢)(𝑎𝐵𝑗

𝑙 , 𝑎𝐵𝑗
𝑚 , 𝑎𝐵𝑗

𝑢 ),                                                                              (4) 

(𝑤𝑗
𝑙 , 𝑤𝑗

𝑚 , 𝑤𝑗
𝑢) = (𝑎𝑗𝑊

𝑙 , 𝑎𝑗𝑊
𝑚 , 𝑎𝑗𝑊

𝑢 )(𝑤𝑊
𝑙 , 𝑤𝑊

𝑚 , 𝑤𝑊
𝑢 ),                                                                         (5) 

 
Eq. (4) and Eq. (5) are regarded as fuzzy equations, that is; 
(𝑤𝐵

𝑙 , 𝑤𝐵
𝑚 , 𝑤𝐵

𝑢) ≅ (𝑤𝑗
𝑙𝑎𝐵𝑗
𝑙 , 𝑤𝑗

𝑚𝑎𝐵𝑗
𝑚 , 𝑤𝑗

𝑢𝑎𝐵𝑗
𝑢 ),                                                                                    (6) 

(𝑤𝑗
𝑙 , 𝑤𝑗

𝑚 , 𝑤𝑗
𝑢) ≅ (𝑎𝑗𝑊

𝑙 𝑤𝑊
𝑙 , 𝑎𝑗𝑊

𝑚 𝑤𝑊
𝑚, 𝑎𝑗𝑊

𝑢 𝑤𝑊
𝑢 ),                                                                                (7) 

Where ∼ denotes the fuzzy number and so, the symbol ‘‘≅” is a fuzzy version of ‘‘=” 
for a real number set, and it has the linguistic explanation ‘‘fuzzy equal to”. Then, Eqs. 
(6) and (7) are equal fuzzy equations as follows: 
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𝑤𝐵
𝑙 − 𝑤𝑗

𝑙𝑎𝐵𝑗
𝑙 ≅ 0, 𝑤𝐵

𝑚 − 𝑤𝑗
𝑚𝑎𝐵𝑗

𝑚 ≅ 0, 𝑤𝐵
𝑢 − 𝑤𝑗

𝑢𝑎𝐵𝑗
𝑢 ≅ 0,                                                       (8) 

𝑤𝑗
𝑙 − 𝑎𝑗𝑊

𝑙 𝑤𝑊
𝑙 ≅ 0, 𝑤𝑗

𝑚 − 𝑎𝑗𝑊
𝑚 𝑤𝑊

𝑚 ≅ 0, 𝑤𝑗
𝑢 − 𝑎𝑗𝑊

𝑢 𝑤𝑊
𝑢 ≅ 0,                                                    (9) 

 
For convenience; 

 
𝑅(𝑤𝑗

𝑙) = 𝑤𝐵
𝑙 − 𝑤𝑗

𝑙𝑎𝐵𝑗
𝑙 ≅ 0, 𝑅(𝑤𝑗

𝑚) = 𝑤𝐵
𝑚 − 𝑤𝑗

𝑚𝑎𝐵𝑗
𝑚 ≅ 0, 𝑅(𝑤𝑗

𝑢) = 𝑤𝐵
𝑢 − 𝑤𝑗

𝑢𝑎𝐵𝑗
𝑢 ≅ 0,       (10) 

𝑄(𝑤𝑗
𝑙) = 𝑤𝑗

𝑙 − 𝑎𝑗𝑊
𝑙 𝑤𝑊

𝑙 ≅ 0, 𝑄(𝑤𝑗
𝑚) = 𝑤𝑗

𝑚 − 𝑎𝑗𝑊
𝑚 𝑤𝑊

𝑚 ≅ 0, 𝑄(𝑤𝑗
𝑢) = 𝑤𝑗

𝑢 − 𝑎𝑗𝑊
𝑢 𝑤𝑊

𝑢 ≅ 0,  (11) 

 
The membership functions are constructed below for Eq. (10) and Eq. (11) 

respectively; 
 

𝜇(𝑅(𝑤𝑗
𝑡)) =

{
  
 

  
 

     1,   𝑖𝑓 𝑅(𝑤𝑗
𝑡) = 0

1 −
𝑅(𝑤𝑗

𝑡)

𝑑𝑗
𝑡 , 𝑖𝑓 0 ≤ 𝑅(𝑤𝑗

𝑡) ≤ 𝑑𝑗
𝑡

    1 +
𝑅(𝑤𝑗

𝑡)

𝑑𝑗
𝑡 , 𝑖𝑓 − 𝑑𝑗

𝑡 ≤ 𝑅(𝑤𝑗
𝑡) < 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                 (12) 

𝜇(𝑄(𝑤𝑗
𝑡)) =

{
  
 

  
 

     1,   𝑖𝑓 𝑄(𝑤𝑗
𝑡) = 0

1 −
𝑄(𝑤𝑗

𝑡)

𝑞𝑗
𝑡 , 𝑖𝑓 0 ≤ 𝑄(𝑤𝑗

𝑡) ≤ 𝑞𝑗
𝑡

    1 +
𝑄(𝑤𝑗

𝑡)

𝑞𝑗
𝑡 , 𝑖𝑓 − 𝑞𝑗

𝑡 ≤ 𝑄(𝑤𝑗
𝑡) < 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                   (13) 

 
Where the tolerance parameters 𝑑𝑗

𝑡 > 0 and 𝑞𝑗
𝑡 > 0 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢). The 

membership function of the fuzzy equation 𝑅(𝑤𝑗
𝑡) = 𝑤𝐵

𝑡 − 𝑤𝑗
𝑡𝑎𝐵𝑗
𝑡 ≅ 0 is shown in 

Figure 2. 

 

Figure 2. Membership function of the fuzzy equation 𝑅(𝑤𝑗
𝑡) = 𝑤𝐵

𝑡 −

𝑤𝑗
𝑡𝑎𝐵𝑗
𝑡 ≅ 0. 

A fuzzy decision 𝑆 could be considered as a fuzzy set, 𝑆 = {(w̃, 𝜇𝑆(w̃))|w̃ ∈ 𝑊}, 
where 

 𝜇𝑆(w̃) = 𝛽 = 𝑚𝑖𝑛{𝜇(𝑅(𝑤𝑗
𝑡)), 𝜇(𝑄(𝑤𝑗

𝑡))|𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢},                                  (14) 

 



Torğul et al./Decis. Mak. Appl. Manag. Eng. 5 (1) (2022) 264-289 

274 

Then, Eq. (14) are transformed into: 
 

{

𝜇(𝑅(𝑤𝑗
𝑡)) ≥ 𝛽 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)

𝜇(𝑄(𝑤𝑗
𝑡)) ≥ 𝛽 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)

0 ≤ 𝛽 ≤ 1                          

                                                                               (15)      

 
Where 𝛽 indicates the minimum satisfaction degree of the fuzzy constraints. For 

obtaining the optimal fuzzy weight vector w̃∗ = [�̃�1
∗, �̃�2

∗, … , �̃�𝑛
∗], the following 

mathematical programming model, which maximizes the minimum 𝛽 is proposed 
(Dong et al., 2021). 
 
          𝑀𝑎𝑥 𝛽 

𝑠. 𝑡. {

𝜇(𝑅(𝑤𝑗
𝑡)) ≥ 𝛽 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)

𝜇(𝑄(𝑤𝑗
𝑡)) ≥ 𝛽 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)

0 ≤ 𝛽 ≤ 1                          

                                                                       (16)    

3.4.2. Solution of the constructed mathematical programming model 

Since Eq. (12) and Eq. (13) are piecewise functions, the solution of Eq. (16) depends 
on the risk attitude of the decision-maker. Therefore, four approaches are proposed to 
solve Eq. (16).  
 
 𝐶𝐵 is the best criterion, and its weight �̃�𝐵 should be the maximum. For 𝑅(𝑤𝑗

𝑡) =

𝑤𝐵
𝑡 − 𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡 ≅ 0, an optimistic decision-maker might believes 𝑅(𝑤𝑗

𝑡) = 𝑤𝐵
𝑡 −

𝑤𝑗
𝑡𝑎𝐵𝑗
𝑡 > 0 and for this selects 𝜇(𝑅(𝑤𝑗

𝑡)) = 1 −
𝑅(𝑤𝑗

𝑡)

𝑑𝑗
𝑡  as the membership function, 

i.e., the right side of Fig. 2 and a pessimistic decision-maker might believes 𝑅(𝑤𝑗
𝑡) =

𝑤𝐵
𝑡 − 𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡 < 0 and for this chooses 𝜇(𝑅(𝑤𝑗

𝑡)) = 1 +
𝑅(𝑤𝑗

𝑡)

𝑑𝑗
𝑡   as the membership 

function, i.e., the left side of Fig. 2.  
 𝐶𝑊 is the worst criterion, and its weight �̃�𝑊 should be the minimum. For 𝑄(𝑤𝑗

𝑡) =

𝑤𝑗
𝑡 − 𝑎𝑗𝑊

𝑡 𝑤𝑊
𝑡 ≅ 0, an optimistic decision-maker might believes 𝑄(𝑤𝑗

𝑡) = 𝑤𝑗
𝑡 −

𝑎𝑗𝑊
𝑡 𝑤𝑊

𝑡 > 0 and for this chooses 𝜇(𝑄(𝑤𝑗
𝑡)) = 1 −

𝑄(𝑤𝑗
𝑡)

𝑞𝑗
𝑡  as the membership 

function and a pessimistic decision-maker might believes 𝑄(𝑤𝑗
𝑡) = 𝑤𝑗

𝑡 − 𝑎𝑗𝑊
𝑡 𝑤𝑊

𝑡 <

0 and for this selects 𝜇(𝑄(𝑤𝑗
𝑡)) = 1 +

𝑄(𝑤𝑗
𝑡)

𝑞𝑗
𝑡  as the membership function.  

 
There are also two cases for a neutral decision-maker. 

 Case 1- The neutral decision-maker chooses 𝜇(𝑅(𝑤𝑗
𝑡)) = 1 −

𝑅(𝑤𝑗
𝑡)

𝑑𝑗
𝑡   and 

𝜇(𝑄(𝑤𝑗
𝑡)) = 1 +

𝑄(𝑤𝑗
𝑡)

𝑞𝑗
𝑡  as the membership functions for the fuzzy equations 

𝑅(𝑤𝑗
𝑡) = 𝑤𝐵

𝑡 −𝑤𝑗
𝑡𝑎𝐵𝑗

𝑡 ≅ 0 and 𝑄(𝑤𝑗
𝑡) = 𝑤𝑗

𝑡 − 𝑎𝑗𝑊
𝑡 𝑤𝑊

𝑡 ≅ 0 respectively. 



Training aircraft selection for department of flight training in fuzzy environment 

275 

 Case 2- The neutral decision-maker chooses 𝜇(𝑅(𝑤𝑗
𝑡)) = 1 +

𝑅(𝑤𝑗
𝑡)

𝑑𝑗
𝑡   and 

𝜇(𝑄(𝑤𝑗
𝑡)) = 1 −

𝑄(𝑤𝑗
𝑡)

𝑞𝑗
𝑡  as the membership functions of the fuzzy equations 

𝑅(𝑤𝑗
𝑡) = 𝑤𝐵

𝑡 −𝑤𝑗
𝑡𝑎𝐵𝑗

𝑡 ≅ 0 and 𝑄(𝑤𝑗
𝑡) = 𝑤𝑗

𝑡 − 𝑎𝑗𝑊
𝑡 𝑤𝑊

𝑡 ≅ 0 respectively. 

For all decision-makers, by plugging 𝜇(𝑅(𝑤𝑗
𝑡)) of Eq. (12) and 𝜇(𝑄(𝑤𝑗

𝑡)) of Eq. 

(13), which they have chosen according to their stances above, into Eq. (16), and Eq. 
(16) is converted into the following linear programming models. 

 
(1) Optimistic approach:  

           𝑀𝑎𝑥 𝛽 

𝑠. 𝑡.

{
  
 

  
 1 −

𝑤𝐵
𝑡 −𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡

𝑑𝑗
𝑡 ≥ 𝛽, 0 ≤ 𝑤𝐵

𝑡 − 𝑤𝑗
𝑡𝑎𝐵𝑗

𝑡 ≤ 𝑑𝑗
𝑡 (𝑗 = 1, 2,… , 𝑛; 𝑡 = 𝑙, 𝑚, 𝑢)                        

1 −
𝑤𝑗
𝑡−𝑎𝑗𝑊

𝑡 𝑤𝑊
𝑡

𝑞𝑗
𝑡 ≥ 𝛽, 0 ≤ 𝑤𝑗

𝑡 − 𝑎𝑗𝑊
𝑡 𝑤𝑊

𝑡 ≤ 𝑞𝑗
𝑡  (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙, 𝑚, 𝑢)                     

0 ≤ 𝛽 ≤ 1                                                                                                                              

∑ 𝑤𝑗
𝑚𝑛

𝑗=1 = 1, 𝑤𝑗
𝑢 + ∑ 𝑤𝑖

𝑙𝑛
𝑖=1,𝑖≠𝑗  ≤  1, 𝑤𝑗

𝑙 +∑ 𝑤𝑖
𝑢𝑛

𝑖=1,𝑖≠𝑗  ≥  1 (𝑖, 𝑗 = 1, 2,… , 𝑛)

   (17) 

  
(2) Pessimistic approach:   

           𝑀𝑎𝑥 𝛽 

𝑠. 𝑡.

{
  
 

  
 1 +

𝑤𝐵
𝑡 −𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡

𝑑𝑗
𝑡 ≥ 𝛽, −𝑑𝑗

𝑡 ≤ 𝑤𝐵
𝑡 −𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡 ≤ 0 (𝑗 = 1, 2,… , 𝑛; 𝑡 = 𝑙, 𝑚, 𝑢)                     

1 +
𝑤𝑗
𝑡−𝑎𝑗𝑊

𝑡 𝑤𝑊
𝑡

𝑞𝑗
𝑡 ≥ 𝛽, −𝑞𝑗

𝑡 ≤ 𝑤𝑗
𝑡 − 𝑎𝑗𝑊

𝑡 𝑤𝑊
𝑡 ≤ 0 (𝑗 = 1, 2,… , 𝑛; 𝑡 = 𝑙, 𝑚, 𝑢)                 

0 ≤ 𝛽 ≤ 1                                                                                                                              

∑ 𝑤𝑗
𝑚𝑛

𝑗=1 = 1, 𝑤𝑗
𝑢 +∑ 𝑤𝑖

𝑙𝑛
𝑖=1,𝑖≠𝑗  ≤  1, 𝑤𝑗

𝑙 + ∑ 𝑤𝑖
𝑢𝑛

𝑖=1,𝑖≠𝑗  ≥  1 (𝑖, 𝑗 = 1, 2, … , 𝑛)

  (18) 

 
(3) Mixed approach I:   

           𝑀𝑎𝑥 𝛽 

𝑠. 𝑡.

{
  
 

  
 1 −

𝑤𝐵
𝑡 −𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡

𝑑𝑗
𝑡 ≥ 𝛽, 0 ≤ 𝑤𝐵

𝑡 −𝑤𝑗
𝑡𝑎𝐵𝑗

𝑡 ≤ 𝑑𝑗
𝑡 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙, 𝑚, 𝑢)                       

1 +
𝑤𝑗
𝑡−𝑎𝑗𝑊

𝑡 𝑤𝑊
𝑡

𝑞𝑗
𝑡 ≥ 𝛽, −𝑞𝑗

𝑡 ≤ 𝑤𝑗
𝑡 − 𝑎𝑗𝑊

𝑡 𝑤𝑊
𝑡 ≤ 0 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)                 

0 ≤ 𝛽 ≤ 1                                                                                                                              

∑ 𝑤𝑗
𝑚𝑛

𝑗=1 = 1, 𝑤𝑗
𝑢 + ∑ 𝑤𝑖

𝑙𝑛
𝑖=1,𝑖≠𝑗  ≤  1, 𝑤𝑗

𝑙 + ∑ 𝑤𝑖
𝑢𝑛

𝑖=1,𝑖≠𝑗  ≥  1 (𝑖, 𝑗 = 1, 2,… , 𝑛)

   (19) 

 
(4) Mixed approach II:   

           𝑀𝑎𝑥 𝛽 

𝑠. 𝑡.

{
  
 

  
 1 +

𝑤𝐵
𝑡 −𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡

𝑑𝑗
𝑡 ≥ 𝛽, −𝑑𝑗

𝑡 ≤ 𝑤𝐵
𝑡 −𝑤𝑗

𝑡𝑎𝐵𝑗
𝑡 ≤ 0 (𝑗 = 1, 2,… , 𝑛; 𝑡 = 𝑙, 𝑚, 𝑢)                    

1 −
𝑤𝑗
𝑡−𝑎𝑗𝑊

𝑡 𝑤𝑊
𝑡

𝑞𝑗
𝑡 ≥ 𝛽, 0 ≤ 𝑤𝑗

𝑡 − 𝑎𝑗𝑊
𝑡 𝑤𝑊

𝑡 ≤ 𝑞𝑗
𝑡 (𝑗 = 1, 2,… , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢)                    

0 ≤ 𝛽 ≤ 1                                                                                                                              

∑ 𝑤𝑗
𝑚𝑛

𝑗=1 = 1, 𝑤𝑗
𝑢 + ∑ 𝑤𝑖

𝑙𝑛
𝑖=1,𝑖≠𝑗  ≤  1, 𝑤𝑗

𝑙 + ∑ 𝑤𝑖
𝑢𝑛

𝑖=1,𝑖≠𝑗  ≥  1 (𝑖, 𝑗 = 1, 2,… , 𝑛)

   (20) 

 
The optimal weight vector w̃∗ can be attained by solving Eqs. (17) -(20) separately 

for all decision-makers. Each of Eqs. (17)–(20) should have a unique optimal solution 
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if the tolerance parameters values 𝑑𝑗
𝑡  and 𝑞𝑗

𝑡 (𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢) are big enough, 

and the bigger values of 𝑑𝑗
𝑡  and 𝑞𝑗

𝑡, provide the bigger value for the optimal objective 

value 𝛽∗. As per Eq. (14), if the attained optimal objective value 𝛽∗= 1, then all of the 
criteria comparisons are fully consistent, and thus,  𝛽∗can be utilized to measure the 
consistency level of the criteria comparisons (Dong et al., 2021; Pamucar & Savin, 
2020; Pamucar & Dimitrijevic, 2021). 

3.4.3. Fuzzy consistency index 

A comparison is fully consistent when �̃�𝐵𝑗 × �̃�𝑗𝑊 = �̃�𝐵𝑊 for all 𝑗 = 1, 2, … , 𝑛. On the 

other hand, it is possible for some 𝑗 which lead to not fully consistent, that is, the 
following inequality applies (Guo & Zhao, 2017): 
  
�̃�𝐵𝑗 × �̃�𝑗𝑊 ≠ �̃�𝐵𝑊                                                                                                                             (21) 

 
Let ζ̃ = (ζ𝑙 , ζ𝑚, ζ𝑢) be a triangular fuzzy number that must be subtracted from �̃�𝐵𝑗 =

(𝑎𝐵𝑗
𝑙 , 𝑎𝐵𝑗

𝑚 , 𝑎𝐵𝑗
𝑢 ) and �̃�𝑗𝑊 = (𝑎𝑗𝑊

𝑙 , 𝑎𝑗𝑊
𝑚 , 𝑎𝑗𝑊

𝑢 ) of Eq. (21) and added to �̃�𝐵𝑤 =

(𝑎𝐵𝑊
𝑙 , 𝑎𝐵𝑊

𝑚 , 𝑎𝐵𝑊
𝑢 ) of Eq. (21) to obtain the highest inequality of Eq. (21) (Dong et al., 

2021). That is; 
 

((𝑎𝐵𝑗
𝑙 , 𝑎𝐵𝑗

𝑚 , 𝑎𝐵𝑗
𝑢 ) − (ζ𝑙 , ζ𝑚 , ζ𝑢)) × ((𝑎𝑗𝑊

𝑙 , 𝑎𝑗𝑊
𝑚 , 𝑎𝑗𝑊

𝑢 ) − (ζ𝑙 , ζ𝑚, ζ𝑢)) = (𝑎𝐵𝑊
𝑙 , 𝑎𝐵𝑊

𝑚 , 𝑎𝐵𝑊
𝑢 ) +

(ζ𝑙 , ζ𝑚, ζ𝑢)                                                                                                                                          (22) 
 

As for the minimum consistency �̃�𝐵𝑗 = �̃�𝑗𝑊 = �̃�𝐵𝑊 ; 
 

((𝑎𝐵𝑊
𝑙 , 𝑎𝐵𝑊

𝑚 , 𝑎𝐵𝑊
𝑢 ) − (ζ𝑙 , ζ𝑚, ζ𝑢)) × ((𝑎𝐵𝑊

𝑙 , 𝑎𝐵𝑊
𝑚 , 𝑎𝐵𝑊

𝑢 ) − (ζ𝑙 , ζ𝑚, ζ𝑢)) =

(𝑎𝐵𝑊
𝑙 , 𝑎𝐵𝑊

𝑚 , 𝑎𝐵𝑊
𝑢 ) + (ζ𝑙 , ζ𝑚, ζ𝑢)                                                                                                      (23) 

 
With regards to the operation rules of triangular fuzzy numbers, Eq. (23) could be 

rewritten as follows (Dong et al., 2021): 
 
(𝑎𝐵𝑊

𝑙 − ζ𝑢, 𝑎𝐵𝑊
𝑚 − ζ𝑚 , 𝑎𝐵𝑊

𝑢 − ζ𝑙) × (𝑎𝐵𝑊
𝑙 − ζ𝑢 , 𝑎𝐵𝑊

𝑚 − ζ𝑚, 𝑎𝐵𝑊
𝑢 − ζ𝑙) = (𝑎𝐵𝑊

𝑙 + ζ𝑙 , 𝑎𝐵𝑊
𝑚 +

ζ𝑚, 𝑎𝐵𝑊
𝑢 + ζ𝑢)                                                                                                                                          (24) 

 
→ ((𝑎𝐵𝑊

𝑙 − ζ𝑢)2, (𝑎𝐵𝑊
𝑚 − ζ𝑚)2, (𝑎𝐵𝑊

𝑢 − ζ𝑙)2) = (𝑎𝐵𝑊
𝑙 + ζ𝑙 , 𝑎𝐵𝑊

𝑚 + ζ𝑚, 𝑎𝐵𝑊
𝑢 + ζ𝑢)           (25) 

 
Thus, the following equations can be derived (Dong et al., 2021): 

 

{

(𝑎𝐵𝑊
𝑙 − ζ𝑢)2 = 𝑎𝐵𝑊

𝑙 + ζ𝑙

(𝑎𝐵𝑊
𝑚 − ζ𝑚)2 = 𝑎𝐵𝑊

𝑚 + ζ𝑚

(𝑎𝐵𝑊
𝑢 − ζ𝑙)2 = 𝑎𝐵𝑊

𝑢 + ζ𝑢
                                                                                                                (26)      

 

After solving Eq. (26), the FCI ζ̃ = (ζ𝑙 , ζ𝑚 , ζ𝑢) is attained for different �̃�𝐵𝑊  values, as 
displayed in Table 2.  

Table 2. FCI for fuzzy BWM. 

�̃�𝑩𝑾 (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2) 
FCI ( 𝜁) (0, 0, 0) (0, 0, 1.36) (0.34, 0.44, 2.16) (0.71, 1, 4.29) (1.31, 1.63, 5.69) 

�̃�𝑩𝑾 (9/2, 5, 11/2) (11/2, 6, 13/2) (13/2, 7, 15/2) (15/2, 8, 17/2) (17/2, 9, 19/2) 
FCI ( �̃�) (1.96, 2.30, 7.04) (2.65, 3, 8.35) (3.36, 3.73, 9.64) (4.09, 4.47, 10.91) (4.85, 5.23, 12.15) 
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3.4.4. Fuzzy consistency ratio 

To determine the fuzzy consistency ratio (FCR), we require to minimize the 
maximum among the deviation between �̃�𝐵

∗  and �̃�𝑗
∗�̃�𝐵𝑗and the deviation between �̃�𝑗

∗ 

and �̃�𝑗𝑊�̃�𝑊
∗  for all 𝑗 = 1, 2, … , 𝑛. That is, to calculate 𝑚𝑖𝑛𝑚𝑎𝑥{|�̃�𝐵

∗ − �̃�𝑗
∗�̃�𝐵𝑗|,|�̃�𝑗

∗ −

�̃�𝑗𝑊�̃�𝑊
∗ |} that is represented by 𝜉∗ = (𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢). Since subtraction, multiplication, 

and absolute operations of triangular fuzzy numbers are approximate operations, to 
attain the exact fuzzy deviation 𝜉∗ = (𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢) is difficult. Therefore, the approach 
below is proposed to determine the fuzzy deviation. 
 

𝜉′𝑙 =
1

2𝑛
∑ (|𝑤𝐵

∗𝑙 − 𝑤𝑗
∗𝑙𝑎𝐵𝑗

𝑙 | + |𝑤𝑗
∗𝑙 − 𝑎𝑗𝑊

𝑙 𝑤𝑊
∗𝑙|),𝑛

𝑗=1                                                                   (27) 

 

𝜉′𝑚 =
1

2𝑛
∑ (|𝑤𝐵

∗𝑚 − 𝑤𝑗
∗𝑚𝑎𝐵𝑗

𝑚 | + |𝑤𝑗
∗𝑚 − 𝑎𝑗𝑊

𝑚 𝑤𝑊
∗𝑚|),𝑛

𝑗=1                                                          (28) 

 

𝜉′𝑢 =
1

2𝑛
∑ (|𝑤𝐵

∗𝑢 −𝑤𝑗
∗𝑢𝑎𝐵𝑗

𝑢 | + |𝑤𝑗
∗𝑢 − 𝑎𝑗𝑊

𝑢 𝑤𝑊
∗𝑢|),𝑛

𝑗=1                                                               (29) 

 
Where 𝜉′𝑙 , 𝜉′𝑚 and 𝜉′𝑢 describe the possible lower bound, mode and upper bound 

of the fuzzy deviation 𝜉∗ = (𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢), respectively. To ensure 𝜉∗𝑙 ≤ 𝜉∗𝑚 ≤ 𝜉∗𝑢, i.e., 

the attained 𝜉∗ = (𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢) is a triangular fuzzy number, it is taken;  
 
𝜉∗𝑙 = min{𝜉′𝑙 , 𝜉′𝑚, 𝜉′𝑢},   𝜉∗𝑚 = median{𝜉′𝑙 , 𝜉′𝑚, v′𝑢} ,   ζ̃∗𝑢 = max{𝜉′𝑙 , 𝜉′𝑚, 𝜉′𝑢},       (30) 
 

The aim of Eq. (30) is to assure 𝜉∗𝑙 ≤ 𝜉∗𝑚 ≤ 𝜉∗𝑢, such that the fuzzy deviation 𝜉∗ =
(𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢) is a triangular fuzzy number. 
 

FCR is identified as  
 

𝐹𝐶𝑅 =
�̃�∗

ζ̃
                                                                                                                                            (31) 

Where is demonstrated in Table 2 and 𝜉∗ = (𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢) is attained by Eq. (30). 
By the operation rules of triangular fuzzy numbers; 
 

𝐹𝐶𝑅 =
�̃�∗

ζ̃
=

  (𝜉∗𝑙,𝜉∗𝑚,𝜉∗𝑢)

(ζ𝑙,ζ𝑚,ζ𝑢) 
= (

𝜉∗𝑙

ζ𝑢
,
𝜉∗𝑚

ζ𝑚
,
𝜉∗𝑢

ζ𝑙
 )                                                                                   (32) 

Then, based on Eq. (2), we could calculate GMIR R(FCR) of the FCR; 
 

𝑅(𝐹𝐶𝑅) =
1

6
(
𝜉∗𝑙

ζ𝑢
, 4

𝜉∗𝑚

ζ𝑚
,
𝜉∗𝑢

ζ𝑙
)                                                                                                          (33) 

 
 If 𝑅(𝐹𝐶𝑅) ≤ 0.1, then the comparisons are acceptable consistent.  
 If 𝑅(𝐹𝐶𝑅) = 0, then all comparisons are fully consistent.  
 If 𝑅(𝐹𝐶𝑅) > 0.1, then the comparisons are unacceptable consistent and some of 

the comparisons must be identified to be adjusted until  𝑅(𝐹𝐶𝑅) ≤ 0.1 (Dong et al., 
2021). For this, the identification and adjustment processes are described in detail 
in Dong et al. (2021). 

3.4.5. Steps of fuzzy BWM 

Step 1: Determine a set 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑛) of decision criteria. 
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Step 2: Determine the best (e.g., the most important or the most desirable) criterion 
𝐶𝐵 and the worst (e.g., the least important or the least desirable) criterion 𝐶𝑊 . 

Step 3: Determine the fuzzy preference of the best criterion overall the other 
criteria using the linguistic terms and triangular fuzzy numbers listed in Table 3. The 
resulting Best-to-Others vector would be �̃�𝐵 = [�̃�𝐵1, �̃�𝐵2, … , �̃�𝐵𝑛]  where �̃�𝐵𝑗  

demonstrates the fuzzy preference of the best criterion 𝐶𝐵 over criterion 𝐶𝑗 . �̃�𝐵𝑗 =

(𝑎𝐵𝑗
𝑙 , 𝑎𝐵𝑗

𝑚 , 𝑎𝐵𝑗
𝑢 ), 𝑗 = 1, 2, … , 𝑛 and �̃�𝐵𝐵 = (1, 1, 1). 

Step 4:  Determine the fuzzy preference of all the other criteria over the worst 
criterion using the linguistic terms and triangular fuzzy numbers listed in Table 3. The 
resulting Others-to-Worst vector would be �̃�𝑊 = [�̃�1𝑊 , �̃�2𝑊 , … , �̃�𝑛𝑊]  where �̃�𝑗𝑊 

indicates the fuzzy preference of criterion 𝐶𝑗  over the worst criterion 𝐶𝑊 . �̃�𝑗𝑊 =

(𝑎𝑗𝑊
𝑙 , 𝑎𝑗𝑊

𝑚 , 𝑎𝑗𝑊
𝑢 ), 𝑗 = 1, 2, … , 𝑛 and �̃�𝑊𝑊 = (1, 1, 1) (Dong et al., 2021; Guo & Zhao, 2017; 

Rezaei, 2015). 
Step 5: Determine the suitable tolerance parameters’ values 𝑑𝑗

𝑡  and 𝑞𝑗
𝑡 (𝑗 =

1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢) for Eqs. (17)– (20) according to your preference and the 
decision-making problems’ characteristics. In general, 𝑑𝑗

𝑡  and 𝑞𝑗
𝑡 can take any values 

from the interval [1, 9]. 
Step 6: Solve one of Eqs. (17)– (20) according to the risk attitude (i.e., pessimistic, 

optimistic or neutral) of the decision-maker to get the optimal fuzzy weight vector 
w̃∗ = [�̃�1

∗, �̃�2
∗, … , �̃�𝑛

∗] and the optimal objective value 𝛽∗ by using a mathematical 
software. 

Step 7: Compute 𝜉∗ = (𝜉∗𝑙 , 𝜉∗𝑚, 𝜉∗𝑢) by Eq. (30). 
Step 8: Attain the FCI by Table 2 and calculate FCR by Eq. (32). 
Step 9: Calculate GMIR R(FCR) of the attained FCR by Eq. (33). 
Step 10: Check the consistency (Dong et al., 2021). 

In the step of final ranking of alternatives, with optimal defuzzified weights of the 
criteria and the normalized scores of the alternatives on the different criteria, X𝑖𝑗 ; the 

final aggregate score per alternative, 𝑉𝑖; could be calculated using Eq. (34) (Rezaei et 
al., 2016); 
 
𝑉𝑖 = ∑ 𝑊𝑗  X𝑖𝑗𝑗                                                                                                                                           (34) 

 

 X𝑖𝑗 = {

 X𝑖𝑗

max { X𝑖𝑗}
, 𝑖𝑓 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑠𝑢𝑐ℎ 𝑎𝑠 𝑞𝑢𝑎𝑙𝑖𝑡𝑦),

1 −
 X𝑖𝑗

max{ X𝑖𝑗}
, 𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑠𝑢𝑐ℎ 𝑎𝑠 𝑝𝑟𝑖𝑐𝑒).

                                                        (35) 

4. Problem Definition 

An aircraft selection model was designed to provide training aircraft for a Flight 
Training department that will start education. For this, in the study, potential training 
aircraft will be evaluated in terms of important criteria for decision-makers and will 
decide the number of aircraft to be purchased, taking into account the current 
constraints and the aircraft weights obtained. 

The Flight Training Department is a 4-year undergraduate department that trains 
professional pilots with the necessary skills, competence, theoretical and practical 
experience to meet national and international airline companies' needs. In addition to 



Training aircraft selection for department of flight training in fuzzy environment 

279 

laboratories, students carry out their practical training using training aircraft. Pilots 
who graduate from this department can find the opportunity to work in many general 
aviation sectors, especially in domestic and foreign airlines. To deal with this decision 
problem, that is essential to consider the candidate aircraft and analyze the criteria 
requirements representing the technical specification that the aircraft should have in-
depth.  

This study suggests a two-stage solution approach for aircraft evolution.  In the 
first stage, fuzzy BWM is used to get the weights of criteria and then aircraft ranking. 
Then, the linear programming formulation of aircraft selection is constructed. In the 
second stage, aircraft’ weights (priority scores) are combined into the linear 
programming model with some resource constraints to determine the optimal order 
number of aircraft. The aircraft’ weights are utilized as coefficients in the objective 
function to increase purchasing value and how much will be ordered from which plane 
is determined. All information such as budget, total flying time, and total fuel 
consumption was assumed fixed and already known.  

4.1. Mathematical Model  

Index:  

i: Set of aircraft (𝑖 = 1, 2, … , 𝑁) 
 
Parameters: 
𝑃𝑖 :  Unit purchasing cost of aircraft i 
𝑇𝑖  : Actual flying time before overhaul of aircraft i 
𝐹𝑖  :  Fuel cost per mile of aircraft i 
𝑊𝑖: The weight (priority value) of the aircraft i 
B: Total budget allocated to aircraft 
M: Total flying time before overhaul 
Y: Total fuel consumption cost per mile  
 
Decision Variable: 

𝑋𝑖   : Number of aircraft i 
 
Objective Function: 

𝑀𝑎𝑥 𝑍= ∑ 𝑊𝑖  𝑋𝑖
𝑁
𝑖                                                                                                                            (36) 

 
Constraints: 

∑  𝑃𝑖𝑋𝑖
𝑁
𝑖  ≤ B                                                                                                                                                            (37) 

∑  𝑇𝑖  𝑋𝑖
𝑁
𝑖  ≥ M                                                                                                                                                          (38) 

∑  𝐹𝑖 𝑋𝑖
𝑁
𝑖  ≤ Y                                                                                                                                                           (39) 

𝑋𝑖 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ,     ∀𝑖                                                                                                                                     (40) 
 

The objective function (36) maximizes the total purchasing value. In other words, it 
allows purchasing aircraft with a higher weight, which means that the best aircraft, 
according to the criterion evaluation, will be purchased more. Constraint (37) is the 
budget constraint implies that the total purchasing cost of aircraft cannot exceed the 
allocated budget amount. Constraint (38) is the minimum flying time before overhaul 
constraint means that no aircraft need overhaul until the specified maintenance time, 
in other words, the flying time of the aircraft should be at least the minimum flying 
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time. Constraint (39) is the fuel consumption constraint means that the amount of fuel 
burned by aircraft per mile should not exceed the budget allocated for it. Constraint 
(40) is the non-negativity and integrity constraint. 

5. Case Study: Necmettin Erbakan University, Faculty of Aviation and 
Space Sciences 

Necmettin Erbakan University, Faculty of Aviation and Space Sciences, was 
established in 2010. Flight Training Undergraduate Program is a department of the 
Faculty of Aviation and Space Sciences. The faculty also includes aircraft engineering, 
space and satellite engineering, and aviation management departments.  Departments 
other than the Flight Training department actively give education. The Flight Training 
department has not started education yet, as it does not have sufficient infrastructure. 
The university wants to activate its Flight Training department and so should be meet 
needs such as runway, training aircraft, instructors, maintenance technicians. 
Therefore, for this reason, the university should first determine examining suitable 
criteria and alternatives, and expert decision-makers should evaluate training aircraft 
alternatives, and this is the subject of our study. 

The criteria and alternatives for the problem were examined in line with the fuzzy 
BWM, and the evaluation process was initiated by the instructors’ committee 
consisting of experts. After the preliminary screening, the group of experts 
(instructors of the Flight Training department) identified nine specification criteria 
(Max Cruise Speed, Max Range, Take-off and Landing Ground Roll, Max Climb Rate, 
Power Output, Empty Weight, Price, Useful Fuel Capacity, Time Before Overhand) and 
eight training aircraft (Cessna Skyhawk SP (172S), Cessna Skylane (182T), Cessna 
Turbo Stationair HD (206), Cirrus SR22, Cirrus SR20, Diamond DA62, Diamond DA40 
NG, Diamond DA42) for the further evaluation process. 

5.1. Implementing The Fuzzy BWM 

The importance weights for criteria are described with linguistic variables by the 
decision-makers. The linguistic expressions and their corresponding triangular fuzzy 
numbers indicating the importance ratings of criteria are given in Table 3. 

Table 3.  Linguistic variables and fuzzy numbers used in the evaluation of 

criteria (Dong et al., 2021; Gan et al., 2019; Guo & Zhao, 2017).  

Linguistic variables for the importance weight of each criterion 

Linguistic Variables Triangular Fuzzy Numbers 

Equally Important (EI)  (1, 1, 1) 

Weakly Important (WI) (2/3, 1, 3/2) 

Intermediate-Weakly to Moderately Important- (WM) (3/2, 2, 5/2) 

Moderately Important (MI) (5/2, 3, 7/2) 

Intermediate-Moderately to Strongly Important- (MS) (7/2, 4, 9/2) 

Strongly Important (SI) (9/2, 5, 11/2) 

Intermediate-Strongly to Very Important- (SV) (11/2, 6, 13/2) 

Very Important (VI) (13/2, 7, 15/2) 

Intermediate-Very to Extremely Important- (VE) (15/2, 8, 17/2) 

Extremely Important (EEI) (17/2, 9, 19/2) 
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The best criterion is the most important one, while the worst criterion is the least 
important one in aircraft selection based on the opinion of an expert/decision-maker. 
As a result of interviews with experts, the best criterion was determined as Price, and 
the worst criterion was determined as Empty Weight for aircraft selection. Next, they 
performed the criteria comparison by filling out a survey based on the application of 
the fuzzy BWM, as shown in Table 4. 

Table 4.  Pairwise comparison vectors for best and worst criteria  

BO 
Max 

Cruise 
Speed 

Max 
Range 

Take-off 
and 

Landing 
Ground 

Roll 

Max 
Climb 
Rate 

Power 
Output 

Empty 
Weight 

Price 
Useful 
Fuel 

Capacity 

Time 
Before 

Overhand 

Best 
objective 
functions: 

Price 

VI MS WM VI MS EEI EI SV SI 

OW    Worst objective functions: Empty Weight 

Max Cruise Speed MI 

Max Range SV 

Take-off and Landing Ground Roll VE 

Max Climb Rate MS 

Power Output SV 

Empty Weight EI 

Price EEI 

Useful Fuel Capacity MI 

Time Before Overhand MS 

 
Then, the fuzzy Best-to-Others vector, �̃�𝐵 = [�̃�𝐵1, �̃�𝐵2, … , �̃�𝐵9] where  �̃�𝐵1= (13/2, 

7, 15/2), �̃�𝐵2= (7/2, 4, 9/2), �̃�𝐵3= (3/2, 2, 5/2), �̃�𝐵4= (13/2, 7, 15/2), �̃�𝐵5= (7/2, 4, 9/2), 
�̃�𝐵6= (17/2, 9, 19/2), �̃�𝐵7= (1, 1, 1), �̃�𝐵8= (11/2, 6, 13/2) and �̃�𝐵9= (9/2, 5, 11/2), and 
the fuzzy Others-to-Worst vector, �̃�𝑊 = [�̃�1𝑊 , �̃�2𝑊 , … , �̃�9𝑊] where �̃�1𝑊= (5/2, 3, 7/2), 
�̃�2𝑊= (11/2, 6, 13/2), �̃�3𝑊= (15/2, 8, 17/2), �̃�4𝑊= (7/2, 4, 9/2), �̃�5𝑊= (11/2, 6, 13/2), 
�̃�6𝑊= (1, 1, 1), �̃�7𝑊= (17/2, 9, 19/2), �̃�8𝑊= (5/2, 3, 7/2) and �̃�9𝑊= (7/2, 4, 9/2) are 
obtained according to Table 4. The values of all tolerance parameters 𝑑𝑗

𝑡  and 𝑞𝑗
𝑡 

(𝑗 = 1, 2, … , 𝑛; 𝑡 = 𝑙,𝑚, 𝑢) are taken as 1. 
Four separate linear programming models are constructed for all decision-makers 

by putting fuzzy preferences �̃�𝐵j, �̃�𝑗W and tolerance parameters 𝑑𝑗
𝑡  , 𝑞𝑗

𝑡 given above into 

Eqs. (17)-(20), and the optimal fuzzy weights  w̃𝑗
∗ and minimal satisfaction degrees β 

are obtained by using the GAMS/CPLEX 24.0 software separately for all approaches as 
seen in Table 5. Then the values of the fuzzy deviations 𝜉∗, FCR and R(FCR) for all 
approaches are calculated separately based on Eqs. (30), (32), and (33) respectively 
and presented in Table 5. 

Since all R(FCR) < 0.1, obtained according to the four approaches, it can be seen 
that the comparisons for all decision makers' approaches are acceptably consistent. In 
our study, considering that the decision-maker has the optimistic approach with the 
best consistency, these weights obtained by this approach will be used in the ranking. 
In this context, the optimistic approach's fuzzy weights are defuzzified using Eq. (2) as 
follows, and thus they are ready for use in the next step. 

 
�̃�1
∗= 0.052, �̃�2

∗= 0.087, �̃�3
∗= 0.161,  �̃�4

∗= 0.052, �̃�5
∗= 0.083, �̃�6

∗= 0.012, �̃�7
∗= 0.396,  

�̃�8
∗= 0.060 and �̃�9

∗= 0.087. 
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Table 5.  Criteria weights (�̃�𝑗
∗) and minimal satisfaction degrees (β) according to the 

attitude of the decision-maker 

Criteria 
The attitude of the decision-maker 

Optimistic approach 
Pessimistic 
approach 

Mixed approach I Mixed approach II 

Max Cruise Speed (0.042, 0.054, 0.054) (0.043, 0.063, 063) (0.025, 0.033, 0.054) (0.060, 0.069, 0.077) 
Max Range (0.077, 0.089, 0.089) (0.081, 0.085, 0.105) (0.048, 0.091, 0.091) (0.111, 0.129, 0.129) 
Take-off Ground Roll (0.161, 0. 161, 0. 161) (0.188, 0.188, 0.188) (0.120, 0.163, 0.163) (0.214, 0. 231, 0. 231) 
Max Climb Rate (0.042, 0.054, 0.054) (0.043, 0.063, 0.063) (0.025, 0.054, 0.054) (0.060, 0.077, 0.077) 
Power Output (0.077, 0.083, 0.089) (0.081, 0.085, 0.105) (0.048, 0.091, 0.091) (0.111, 0.129, 0.129) 
Empty Weight (0.012, 0.012, 0.012) (0.033, 0.036, 0.036) (0.043, 0.043, 0.043) (0.017, 0.017, 0.017) 
Price (0.390, 0. 396, 0. 402) (0.283, 0.322, 0.342) (0.366, 0. 387, 0. 409) (0.146, 0. 154, 0. 163) 
Useful Fuel Capacity (0.050, 0.062, 0.062) (0.051, 0.072, 0.072) (0.039, 0.063, 0.063) (0.072, 0.089, 0.089) 
Time Before Overhand (0.077, 0.089, 0.089) (0.063, 0.086, 0.086) (0.074, 0.074, 0.074) (0.105, 0.105, 0.105) 

β 0.711 0.871 0.798 0.584 

ξ̃∗ (0.084, 0.057, 0.050) (0.026, 0.063, 0.088) (0.012, 0.063, 0.078) (0.108, 0.157, 0.181) 

FCR (0.007, 0.011, 0.010) (0.002, 0.012, 0.018) (0.010, 0.012, 0.016) (0.009, 0.030, 0.037) 
R(FCR) 0.010 0.011 0.012 0.028 
FCI(ζ̃) (4.85, 5.23, 12.15) - from Table 2, because aBW=a76= (17/2, 9, 19/2)  

 
The following steps have been implemented to establish the aircraft selection 

framework; 
First, the aircraft performance on the different criteria is determined by its service 

centers and decision-makers of the relevant case institution using the technical 
specification data for aircraft. The scores of aircraft alternatives are shown in Table 6. 
The data of the training aircraft were obtained in light of the information shared on 
the web pages of the manufacturing companies (Cessna Aircraft, 2021; Circus Aircraft, 
2021; Diamond Aircraft, 2021). 

 
Table 6.  Decision Matrix of aircraft performance 

 
 Specification Criteria 1 2 3 4 5 6 7 8 9 
         

 
Aircraft Alternatives 

Max 
Cruise 
Speed 
(ktas) 

Max 
Range 
(nm) 

Take-off 
and Landing 
Ground Roll 

(ft) 

Max 
Climb 
Rate 

(fpm) 

Power 
Output 

(hp) 

Empty 
Weight 

(lbs) 

Price 
($) 

Useful 
Fuel 

Capacity 
(gal) 

Time 
Before 

Overhaul 
(hours) 

1 
Cessna Skyhawk SP 

(172S) 
124 640 960 730 180 1690 415000 53 2000 

2 Cessna Skylane (182T) 145 915 795 924 230 2000 530000 87 2000 

3 
Cessna Turbo Stationair 

HD (206) 
161 703 1060 960 310 2365 745000 87 2000 

4 Cirrus SR22 183 1169 1082 1270 310 2272 654900 92 2000 

5 Cirrus SR20 155 709 1685 781 215 2122 474900 56 2000 

6 Diamond DA62 192 1283 1574 1029 180 3505 1290000 86 1800 

7 Diamond DA40 NG 154 940 1214 1690 180 1984 535000 48 2000 

8 Diamond DA42 197 1215 919 1550 168 3109 869000 76,4 1800 

 
Then, the aircraft scores are normalized using Eq. (35). The normalized scores are 

summarized in Table 7. 
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Table 7.  Normalized Decision Matrix 
 

 Specification Criteria 1 2 3 4 5 6 7 8 9 
         

 
Aircraft Alternatives 

Max 
Cruise 
Speed 

(ktas)  

Max 
Range 
(nm)  

Take-off and 
Landing 

Ground Roll 
(ft)  

Max 
Climb 
Rate 

(fpm)
 

Power 
Output 
(hp)

Empty 
Weight 
(lbs)

Price 
($) 

 

Useful 
Fuel 

Capacity 
(gal)  

Time 
Before 

Overhaul 
(hours)  

1 Cessna Skyhawk SP (172S) 0.629 0.499 0.430 0.432 0.581 0.518 0.678 0.576 1.000 

2 Cessna Skylane (182T) 0.736 0.713 0.528 0.547 0.742 0.429 0.589 0.946 1.000 

3 
Cessna Turbo Stationair 

HD (206) 
0.817 0.548 0.371 0.568 1.000 0.325 0.422 0.946 1.000 

4 Cirrus SR22 0.929 0.911 0.358 0.751 1.000 0.352 0.492 1.000 1.000 

5 Cirrus SR20 0.787 0.553 0.000 0.462 0.694 0.395 0.632 0.609 1.000 

6 Diamond DA62 0.975 1.000 0.066 0.609 0.581 0.000 0.000 0.935 0.900 

7 Diamond DA40 NG 0.782 0.733 0.280 1.000 0.581 0.434 0.585 0.522 1.000 

8 Diamond DA42 1.000 0.947 0.455 0.917 0.542 0.113 0.326 0.830 0.900 

Weights of Criteria (Optimistic) 0.052 0.087 0.161 0.052 0.083 0.012 0.396 0.060 0.087 

 
Finally, weighted normalized scores (Table 8) and then the overall scores of the 

alternatives are found using Eq. (34) and, the result is summarized in Table 9. 
 
Table 8.  Weighted Normalized Decision Matrix 
 

 Specification Criteria 1 2 3 4 5 6 7 8 9 
 

Aircraft Alternatives 

Max 
Cruise 
Speed 
(ktas)  

Max 
Range 
(nm)  

Take-off and 
Landing 

Ground Roll 
(ft)  

Max 
Climb 
Rate 

(fpm) 

Power 
Output 

(hp)  

Empty 
Weight 

(lbs)  

Price 
($) 

 

Useful 
Fuel 

Capacity 
(gal)  

Time 
Before 

Overhaul 
(hours)  

1 Cessna Skyhawk SP (172S) 0.033 0.043 0.069 0.022 0.048 0.006 0.269 0.035 0.087 

2 Cessna Skylane (182T) 0.038 0.062 0.085 0.028 0.062 0.005 0.233 0.057 0.087 

3 
Cessna Turbo Stationair 

HD (206) 
0.042 0.048 0.060 0.030 0.083 0.004 0.167 0.057 0.087 

4 Cirrus SR22 0.048 0.079 0.058 0.039 0.083 0.004 0.195 0.060 0.087 

5 Cirrus SR20 0.041 0.048 0.000 0.024 0.058 0.005 0.250 0.037 0.087 

6 Diamond DA62 0.051 0.087 0.011 0.032 0.048 0.000 0.000 0.056 0.078 

7 Diamond DA40 NG 0.041 0.064 0.045 0.052 0.048 0.005 0.232 0.031 0.087 

8 Diamond DA42 0.052 0.082 0.073 0.048 0.045 0.001 0.129 0.050 0.078 

 
Table 9.  Outranking of Alternative Aircraft 
 

 Aircraft Scores Normal weights Ranks 

1 Cessna Skyhawk SP (172S) 0.605 0.134 3 
2 Cessna Skylane (182T) 0.658 0.144 1 

3 
Cessna Turbo Stationair HD 

(206) 
0.577 0.126 5 

4 Cirrus SR22 0.653 0.143 2 
5 Cirrus SR20 0.549 0.120 7 
6 Diamond DA62 0.363 0.079 8 
7 Diamond DA40 NG 0.605 0.132 4 
8 Diamond DA42 0.559 0.122 6 

 
The ranking of the aircraft in the order are Cessna Skylane (182T), Cirrus SR22, 

Cessna Skyhawk SP (172S), Diamond DA40 NG, Cessna Turbo Stationair HD (206), 
Diamond DA42, Cirrus SR20 and, Diamond DA62. 
The result of the proposed method, Cessna Skylane (182T) should be preferred if it is 
considered to purchase only one aircraft type. 
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In the next stage, to perform optimal order numbers, the aircraft’s weights based on 
the results of fuzzy BWM will be used as coefficients in the proposed linear 
programming model. 

5.2. Implementing The Proposed Model 

Aircraft quantitative information (𝑷𝒊 = Price($), 𝑻𝒊 = Time Before 

Overhaul(hours),  𝑭𝒊 =
Useful Fuel Capacity 

Max Range
∗ 6,44($/𝑛𝑚)) is given in Table 6 (1 gallon 

fuel fee is calculated as 6,44$), and the weights of aircraft have been obtained as a 
result of the fuzzy BWM.  

Additionally, the maximum acceptable total budget value (B) is taken 6000000 $ 
and the total flying time before overhaul value (M) is taken 25000 h, and the maximum 
acceptable total fuel consumption cost per mile value (Y) is taken 1 $/nm in the model. 
The linear formulation of the case problem is presented as: 
 
Z𝑚𝑎𝑥 = 0.134x1 + 0.144x2 + 0.126x3 + 0.143x4 + 0.120x5+ 0.079x6 + 0.132x7 + 0.122x8 
 
Subject to; 

415000x1 + 530000x2 + 745000x3 + 654900x4 + 474900x5 + 1290000x6

+ 535000x7 + 869000x8 ≤  6000000 

2000𝑥1 + 2000𝑥2 + 2000𝑥3 + 2000𝑥4 + 2000𝑥5 + 1800x6 + 2000x7 + 1800x8 ≥

25000  

0.535x1 + 0.612x2 + 0.799x3 + 0.509x4 + 0.509x5 + 0.431x6 + 0.328x7 + 0.406x8

≤ 1 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, x8 ≥ 0 

x1,  x2,  x3,  x4,  𝑥5, 𝑥6, 𝑥7, 𝑥8 are integer. 

 
The linear programming model was solved by GAMS/CPLEX 24.0 software package 

in accordance with these data, and the following results were obtained in Table 10. 
 

Table 9.  The optimal solution. 
 

Z𝑚𝑎𝑥  x1 x2 x3 x4 x5 x6 x7 x8 
1.746   9 1 0 0 0 0 3 0 

 
According to the solution results, it has been decided to purchase 13 aircraft, nine 

from Cessna Skyhawk SP (172S), one from Cessna Skylane (182T), and three from 
Diamond DA40 NG aircraft. The proposed model decided to purchase the Cessna 
Skylane (182T) aircraft with the largest weight, Cessna Skyhawk SP (172S) aircraft 
with 3rd weight, and Diamond DA40 NG aircraft with 4th weight to maximize the total 
value of purchasing. On the other hand, the reason for not buying the Cirrus SR22 
aircraft, the 2nd in the weight ranking, is that its price value is higher than our budget 
constraint. Instead of the Cirrus SR22 aircraft, the reason for choosing the Diamond 
DA40 NG aircraft is that it has a low price and low fuel consumption. 

Cessna Turbo Stationair HD (206), mainly because of its high fuel consumption, 
Diamond DA62 and Diamond DA42 because of high purchase prices, were not 
preferred. 
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As a result, it can be said that 13 aircraft will be sufficient for the Flight Training 
department to start education, and the university is in a position to cover all expenses 
of the aircraft to be purchased, such as purchasing, maintenance, and fuel with its 
existing resources. 

6. Conclusions 

Aircraft selection is a complex process and an important MCDM problem that 
considers various fundamental issues. In this context, an appropriate solution method 
should help top management efficiently evaluate various aircraft alternatives based 
on consistent criteria (Yilmaz et al., 2020). In this paper, we offered a linear 
programming model for the training aircraft selection problem. We specified the 
important specification and considered them as aircraft selection criteria. The 
problem maximizes the number of best aircraft (resulting from the criterion 
evaluation) to be purchased, while satisfying the budget requirement, fuel 
consumption limit, and flying time performance constraints. Firstly, we used fuzzy 
BWM to get the weights for criteria and then used them to evaluate the possible 
aircraft. Next, we improved a linear programming model to attain the optimum 
solution for the problem. Finally, we validated the model with a case study by solving 
it via GAMS/CPLEX 24.0 software. We believe that the proposed model framework is 
sufficiently valid and strong and could be easily applied in applications for a wide 
variety of decision-making problems. 

In the literature, the BWM method has proven useful in various problems, but it 
has been applied for the first time in training aircraft selection. This study can be 
evolved into a commercial aircraft selection study for airline companies by 
differentiating the criteria in the case study of the proposed approach. 

The limitation of the study is that it is limited to nine criteria and eight aircraft 
alternatives.  In future studies, different rankings can be obtained for alternatives by 
increasing the number of criteria, alternatives, and experts. In particular, all criteria 
cover the technical features of the aircraft. For example, qualifications such as flight 
training, the experience of decision-makers, and ergonomics can also be considered as 
criteria. Moreover, unlike the purchase cost, after the aircraft is purchased, costs such 
as operation and maintenance occur to the purchasing institution or person. However, 
this information is not provided by the manufacturers as open source. In addition, 
there are not enough studies in the literature on the selection of trainer aircraft. For 
this reason, accessible manufacturer data were considered in the training aircraft 
purchase process. The limitation of the proposed approach is that the input data 
expressed in linguistic terms is based on decision-makers' opinions and experiences 
and therefore includes subjectivity. 

Decision-makers practically might not have complete and certain information 
about objectives and constraints; therefore, for future research, objective function 
and/or constraints such as budget can be considered fuzzy. Besides, other than the 
fuzzy BWM method used in this study, other MCDM methods can be used and 
compared in terms of suitability. 
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