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Original scientific paper 

Abstract: In this paper, we formulate and solve an Imprecise Covering Ring 
Star Problem (ICRSP), a generalization of the Ring Star Problem (RSP). For a 
given network, the objective of this problem is to find a subset of nodes that 
forms a cycle, and other nodes are left-out nodes. This problem minimizes the 
total routing cost due to the cycle itself and assignment costs from the left-out 
nodes assigned to their nearest concentrators (i.e., nodes on the cycle). No 
assigned node exceeds a predetermined covering distance from its 
concentrator. The covering distance and the routing and assignment costs are 
considered fuzzy in the proposed ICRSP. A Modified Genetic Algorithm (MGA) 
has been developed and used to solve this model for different confidence levels 
depending on the corresponding imprecise parameters, reducing it to a 
deterministic form with fuzzy possibility and necessity approaches. Some 
comparisons with TSP benchmark problems are presented to justify the 
algorithm's performance. As individual cases, some practical ICRSPs are also 
solved and presented numerically. 

Key words: Covering Salesman Problem, Genetic Algorithm, Median 
Cycle Problem,  Ring Star Problem. 

1. Introduction  

1.1. Literature Review  

Labbé et al. (1999) proposed a branch-and-cut technique based on some 
polyhedral properties to solve the model. Kedad-Sidhoum (2010) gave a chain-based 
formulation of RSP and proposed a branch-and-cut algorithm to obtain its results. An 
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integer programming approach to the same problem was formulated by Simonetti et 
al. (2011) and solved it by their branch-and-cut method. A Greedy Randomized 
Adaptive Search procedure for RSP was developed by Dias et al. (2006). Calvete et al. 
(2013) proposed an evolutionary method based on selection, crossover, and mutation 
for the same problem considering the installation cost. All the above authors examined 
their algorithms for RSP over the benchmark instances of TSPLIB for Travelling 
Salesman Problem (TSP). 

Labbé et al. (2004) studied a similar problem called the Median Cycle Problem, 
where the objective is to find a cycle with minimum routing cost from a subset of 
vertices in a network subject to an upper bound of assignment cost of the unvisited 
nodes. A variable neighborhood Tabu-search method was proposed by Moreno P´erez 
et al.  (2003) for the median cycle problem. 

Capacitated m-ring star problem was introduced by Baldacci et al. (2007) where 
the goal is to find m rings with bounded capacity, which pass through a common depot 
and some other nodes, and all unvisited nodes are assigned to the visited nodes. The 
authors used a branch-and-cut algorithm for the model.  Later, Naji- Azimi et al. (2012) 
proposed a heuristic method for the same model which consists of an integer linear 
programming based improvement on a variable neighborhood search. Introducing the 
multiple depot concept in the same model, Baldacci et al. (2010) further generalized 
it. Sundar et al. (2017) studied a polyhedral analysis and proposed an exact algorithm 
to solve the multiple-depot ring-star problem. Later, Baldacci et al. (2017) discussed 
pricing strategies of capacitated RSPs using dynamic programming approaches. 

Covering Salesman Problem (CSP) is similar to RSP, which minimizes the total 
traveling cost of a cycle through a subset of nodes from a network. The nodes out of 
the tour are within a predetermined distance from the visited nodes. This model was 
first introduced by Current & Schilling (1989) and solved with their proposed simple 
heuristics COVTOUR. Later, Golden et al. (2012) defined some variants of CSP and 
proposed two local search algorithms LS1 and LS2, which he used on the data sets 
initiated from TSPLIB. Salari et al. (2012) introduced an integer programming-based 
local search process for CSP. Recently, a hybrid algorithm consisting of dynamic 
programming and ant colony optimization (ACO) was developed by Salari et al. 
(2015). 

Mukherjee et al. (2019, 2021) have worked on ring star and ring tree problems 
considering an extra layer of rings. This second layer consists of secondary sub-depots. 
The authors have used their single and multi-objective discrete versions of the antlion 
optimizer. Barma et al. (2021) proposed a multi-objective ring-star vehicle routing 
problem with perishable items. The authors have considered an m-ring star network 
to speed up the routing process. This problem has been solved using a non-dominated 
sorting-based GA and strength Pareto evolutionary algorithm. 

1.2. The Proposed Problem 

This paper introduces the concept of an Imprecise Covering Ring Star Problem 
(ICRSP). For a given network, a subset of nodes is to be selected to minimize the 
routing cost of the cycle through the selected nodes, added by the assignment cost of 
the unvisited nodes to their nearest concentrators. Also, the distance of each unvisited 
node to its nearest concentrator does not exceed a predetermined covering distance 
(Figure 1). Here, the routing cost, assignment costs and the covering distance are 
considered fuzzy and the shortest distance of one node to another node is considered 
crisp. A smooth formulation is given with possibility and necessity approaches for this 
model, which is reduced to deterministic forms in both cases. We have developed and 
used a modified genetic algorithm (MGA) where each binary chromosome implies a 
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subset of nodes of the given network. We assign the ith position of the chromosome as 
1 if it is on the cycle and 0 otherwise. The MGA consists of probabilistic selection 
(Mukherjee et al., 2017), random crossover with proposed bi-part mating pool 
strategy, 4 types of mutations, i.e., exchange, inverse, reduction and augmentation 
mutations. The fitness function of each chromosome is the sum of the routing and 
assignment costs of the network. First, the MGA is compared with some of the best-
known RSP results (Calvete et al., 2013) to justify the performance of the algorithm. 
After comparing the RSP results with the most renowned for some instances, a 
numerical experiment is performed to illustrate our ICRSP model. For the proposed 
ICRSP model, results with different confidence levels of routing cost, assignment costs 
and covering distance are presented in this paper. As individual cases, some practical 
ICRSPs are presented numerically. 

1.3. Motivation 

In the case of Disaster Management, the routing costs from one node to 
another and assignment costs at nodes vary depending upon the type of the used 
conveyance, road condition, and climate condition at the time of journey, etc. 
Similarly, in the case of telecommunication, also, these costs are not permanently 
fixed. In- stead, these costs may be vague in a practical sense. Again, in the above-
mentioned practical problems, the covering distance of left out nodes from the 
corresponding connecting nodes is not fixed, like fixed ‘l’ distance units. Instead, 
the covering distances are considered “near about ‘l’ distance units”. It can be 
little more than ‘l’ or slightly less than  ‘l.’  The  practical  considerations  motivated  
us  to  take  up the present investigation. 
 

 
Fig 1. The Proposed ICRSP 

 

1.4. Novelty  

Thus, the new features/concepts on RSP introduced in the present paper are: 
• The impreciseness of routing and assignment costs are considered. 
• The covering distance at each nearest concentrator from the left-out nodes is 

imprecise. 
• The proposed fuzzy optimization problem is transformed into a deterministic 

one using possibility and necessity measures. 
• A Modified Genetic Algorithm (MGA) with a bi-part mating pool crossover 

strategy is proposed to solve NP-hard problems like ICRSP. 
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The rest of the paper has been organized as follows. Section 2 recalls some 
mathematical preliminaries. Section 3 describes the mathematical formulation of the 
proposed problem. The solution procedure is presented in Section 4. Sections 5 and 6 
include the numerical illustration and the discussion based on it, respectively. Some 
particular ICRSP is projected in section 7. Lastly, section 8 concludes the paper. 

2. Mathematical Preliminaries 

2.1. Fuzzy Possibility and Necessity Approach   

Let �̃� and �̃� be two fuzzy numbers 𝜇�̃�(𝑥)  and  𝜇�̃�(𝑥) are their membership 
functions respectively. Then according to Zadeh (1994), 

 pos(ã* b̃) = sup{min(μã(x), μb̃(y)), x, y ∈ R, x*y}                (1)  

where pos stands for possibility, and 

𝑛𝑒𝑠(𝑎 ∗ �̃�)  =  1 −  𝑝𝑜𝑠 (𝑎 ∗ �̃�̅̅ ̅̅ ̅̅̅)             (2) 

where nes stands for necessity. 

If �̃�, �̃� ∈ ℜ  and  �̃� = 𝑓(�̃�, �̃�)  where 
𝑓:ℜ × ℜ → ℜ, then  𝜇𝑐̃ of  c̃ is  defined  as For each 𝑧 ∈ ℜ, 
𝜇𝑐̃(𝑧) = sup {min (𝜇�̃�(𝑥), 𝜇�̃�(𝑦))}           (3) 

𝑥, 𝑦 ∈ ℜ, 𝑧 = 𝑓(𝑥, 𝑦) 
The following lemmas can easily be derived (Zadeh et al., 1994) from the above 

given definitions. 
Lemma 1 If    �̃� = (𝑎1, 𝑎2, 𝑎3)  be a TFN with  0 < 𝑎1  and  𝑏  is  a  crisp  number 
then  

  𝑃𝑜𝑠(�̃� < 𝑏) ≥ 𝛽 iff    
𝑏−𝑎1

𝑎2−𝑎1
≥ 𝛽 

Lemma 2 If    �̃� = (𝑎1, 𝑎2, 𝑎3)  be a TFN with  0 < 𝑎1  and  𝑏  is  a  crisp  number 
then  

  𝑛𝑒𝑠(�̃� < 𝑏) ≥ 𝛽  iff     
𝑎3−𝑏

𝑎3−𝑎2
≤ 1 − 𝛽 

 

Lemma 3 If   �̃�  be a TFN with  0 < 𝑎1  and  𝑏  be  a  crisp  number then 

  𝑝𝑜𝑠(�̃� > 𝑏) ≥ 𝜂  iff     
𝑎3−𝑏

𝑎3−𝑎2
≥ 𝜂 

Lemma 4 If   �̃�  be a TFN with  0 < 𝑎1  and  𝑏  be a crisp  number then 

  𝑛𝑒𝑠(�̃� > 𝑏) ≥ 𝜂  iff     
𝑏−𝑎1

𝑎2−𝑎1
≤ 1 − 𝜂 

where β and η are predefined confidence levels. 

3. Model Formulation 

3.1. Ring Star Problem 

𝑁 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} being a set of nodes which defines the complete network, 

find a complete cycle  (𝑥1, 𝑥𝛼1 , 𝑥𝛼2 , 𝑥𝛼3 , … , 𝑥𝛼𝑚}, 𝑥1), where 

{𝑥1}⋃𝑥𝛼𝑖

𝑚

𝑖=1

= 𝑁′ ⊆ 𝑁,𝑚 ≤  𝑛 − 1  

which minimizes the sum of the routing cost of the cycle through 𝑁′ and the 
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assignment costs of the vertices out of the cycle to their nearest concentrators on the 

cycle, where the node 𝑥1 is considered as depot. Hence the objective is to  

minimize 

𝑐(𝑥1, 𝑥𝛼1) + ∑ 𝑐(𝑥𝛼𝑖 , 𝑥𝛼𝑖+1) + 𝑐(𝑥𝛼𝑚 , 𝑥1)
𝑚−1
𝑖=1 + ∑ 𝑑(𝑥𝑗, 𝑦𝑘)𝑥𝑗∈ 𝑁′

𝑦𝑘∈ 𝑁∖ 𝑁′
𝑑𝑒𝑔(𝑦𝑘)=1

       (4) 

where 𝑥1 ≠ 𝑥𝛼𝑖 and 𝑥𝛼𝑖 ≠ 𝑥𝛼𝑗  for 𝑖 ≠ 𝑗; ∀𝑖, 𝑗 = 1,2,3, … ,𝑚, 𝑐(𝑖, 𝑗) = routing cost from 

node 𝑖 to node 𝑗, 𝑑(𝑖, 𝑗) = assignment cost of node 𝑗 to node 𝑖. 

3.2. Imprecise Covering Ring Star Problem 

In this case, the objective is to  

minimize 

�̃�(𝑥1, 𝑥𝛼1) + ∑ �̃�(𝑥𝛼𝑖 , 𝑥𝛼𝑖+1) + �̃�(𝑥𝛼𝑚 , 𝑥1)
𝑚−1
𝑖=1 + ∑ �̃�(𝑥𝑗, 𝑦𝑘)𝑥𝑗∈ 𝑁′

𝑦𝑘∈ 𝑁∖ 𝑁′
𝑑𝑒𝑔(𝑦𝑘)=1

         (5) 

subject to 

 𝑥𝑗 ∈ �̅� (𝑥1, Δ1̃) ∪ �̅�(𝑥𝛼𝑖 , Δ𝛼𝑖
̃ ) ∀ 𝑗 ∈ 𝑁 and for some 𝑖           (6) 

where 𝑥1 ≠ 𝑥𝛼𝑖 and 𝑥𝛼𝑖 ≠ 𝑥𝛼𝑗  for 𝑖 ≠ 𝑗; ∀𝑖, 𝑗 = 1,2,3, … ,𝑚, �̃�(𝑖, 𝑗) = fuzzy routing cost 

from node 𝑖 to node 𝑗,  �̃�(𝑖, 𝑗) = fuzzy assignment cost of node 𝑗 to node 𝑖, �̅�(𝑎, 𝑟) = 
closed disc with centre 𝑎 and radius 𝑟,  Δ�̃� = fuzzy covering distance at node 𝑖. 
 Considering the aforesaid costs and the covering distance as triangular fuzzy 
number (TFN), the problem can be rewritten as: 

3.2.1. Possibility Approach (Optimistic) 

Determine a complete cycle  (𝑥1, 𝑥𝛼1 , 𝑥𝛼2 , 𝑥𝛼3 , … , 𝑥𝛼𝑚 , 𝑥1)  

to minimize  𝐹1 + 𝐹2               (7) 
subject to 

𝑃𝑜𝑠(�̃�(𝑥1, 𝑥𝛼1) + ∑ �̃�(𝑥𝛼𝑖 , 𝑥𝛼𝑖+1)
𝑚−1
𝑖=1 + �̃�(𝑥𝛼𝑚 , 𝑥1) < 𝐹1) ≥ 𝛽1         (8) 

𝑃𝑜𝑠

(

 ∑ �̃�(𝑥𝑗, 𝑦𝑘)𝑥𝑗∈ 𝑁′

𝑦𝑘∈ 𝑁∖ 𝑁′
𝑑𝑒𝑔(𝑦𝑘)=1

< 𝐹2

)

 ≥ 𝛾1     (9) 

𝑃𝑜𝑠(𝛿(𝑥𝑗, 𝑥1) ≤ Δ1̃) ≥ 𝜂1   and        

𝑃𝑜𝑠(𝛿(𝑥𝑗, 𝑥𝛼𝑖) ≤ Δ𝛼𝑖
̃ ) ≥ 𝜂1              (10) 

∀𝑗 ∈ 𝑁 and for some 𝛼𝑖 , 
where 𝛽1, 𝛾1 and 𝜂1 are confidence levels for routing cost, assignment costs and 

covering distance and 𝛿(𝑥𝑖 , 𝑥𝑗) is the shortest distance between 𝑥𝑖  and 𝑥𝑗 . 

The above equations (7)-(10) can be rewritten as: Determine a complete cycle  

(𝑥1, 𝑥𝛼1 , 𝑥𝛼2 , 𝑥𝛼3 , … , 𝑥𝛼𝑚 , 𝑥1) 

to minimize  𝐹1 + 𝐹2       (11) 

subject to 𝑃𝑜𝑠(𝐶 ̃ < 𝐹1) ≥ 𝛽1     (12) 

where, 
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𝐶 ̃ = �̃�(𝑥1, 𝑥𝛼1) + ∑ �̃�(𝑥𝛼𝑖 , 𝑥𝛼𝑖+1)

𝑚−1

𝑖=1

+ �̃�(𝑥𝛼𝑚 , 𝑥1), 

𝑃𝑜𝑠(𝐷 ̃ < 𝐹2) ≥ 𝛾1     (13) 

and,  

�̃� = ∑ �̃�(𝑥𝑗 , 𝑦𝑘)
𝑥𝑗∈ 𝑁′

𝑦𝑘∈ 𝑁∖ 𝑁′
𝑑𝑒𝑔(𝑦𝑘)=1

 

𝑃𝑜𝑠(𝛿(𝑥𝑗, 𝑥1) ≤ Δ1̃) ≥ 𝜂1   and        

   𝑃𝑜𝑠(𝛿(𝑥𝑗, 𝑥𝛼𝑖) ≤ Δ𝛼𝑖
̃ ) ≥ 𝜂1             (14) 

∀𝑗 ∈ 𝑁 and for some 𝛼𝑖 . 
Considering all imprecise costs and covering distances as triangular fuzzy numbers, 
namely, 

 𝐶 ̃ = (𝐶1, 𝐶2, 𝐶3), �̃� = (𝐷1, 𝐷2, 𝐷3),  

 Δ̃𝑘 = ((Δ𝛼𝑘)1
 , (Δ𝛼𝑘)2

, (Δ𝛼𝑘)3
) 

and following lemmas 1 and 3, the equations (11) to (14) can be transformed to: 

Determine a complete cycle  (𝑥1, 𝑥𝛼1 , 𝑥𝛼2 , 𝑥𝛼3 , 𝑥𝛼𝑚 , 𝑥1) 

to minimize  𝐹1 + 𝐹2            (15) 
 
subject to  

    
𝐹1−𝐶1

𝐶2−𝐶1
≥ 𝛽1                (16) 

    
𝐹2−𝐷1

𝐷2−𝐷1
≥ 𝛾1                        (17) 

    
(Δ𝛼𝑖)3

−𝛿(𝑥𝑗,𝑥𝛼𝑖)

(Δ𝛼𝑖)3
−(Δ𝛼𝑖)2

≥ 𝜂1            (18) 

∀𝑗 ∈ 𝑁 and for some 𝛼𝑖 . 
 
 The above equations (15)-(18) can be rewritten as: Determine a complete 

cycle  (𝑥1, 𝑥𝛼1 , 𝑥𝛼2 , 𝑥𝛼3 , 𝑥𝛼𝑚 , 𝑥1) 
to minimize 

  𝐶1 + 𝛽1(𝐶2 − 𝐶1) + 𝐷1 + 𝛾1(𝐷2 − 𝐷1)            (19) 
subject to  

  (Δ𝛼𝑖)3
− 𝜂1 {(Δ𝛼𝑖)3

− (Δ𝛼𝑖)2
} ≥ 𝛿(𝑥𝑗, 𝑥𝛼𝑖)            

(20) 

∀𝑗 ∈ 𝑁 and for some 𝛼𝑖 . 

3.2.2. Necessity Approach (Pessimistic) 

For necessity approach, following the 2 and 4, the equations (5), (6) can be 
transformed to: 

Determine a complete cycle  (𝑥1, 𝑥𝛼1 , 𝑥𝛼2 , 𝑥𝛼3 , 𝑥𝛼𝑚 , 𝑥1) 

to minimize  𝐹1 + 𝐹2            (21) 
 
subject to  
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𝐶3−𝐹1

𝐶3−𝐶2
< 1 − 𝛽1                 (22) 

   
𝐷3−𝐹2

𝐷3−𝐷2
< 1 − 𝛾1                    

(23) 

   
𝛿(𝑥𝑗,𝑥𝛼𝑖)−(Δ𝛼𝑖)1

(Δ𝛼𝑖)2
−(Δ𝛼𝑖)1

< 1 − 𝜂1             

(24) 

∀𝑗 ∈ 𝑁 and for some 𝛼𝑖 , where 𝛽2, 𝛾2 and 𝜂2 are confidence levels for cycle cost, 
assignment costs and covering distance. 
 
The above equations (21)-(24) can be rewritten as: Determine a complete cycle  

(𝑥1, 𝑥𝛼1 , 𝑥𝛼2 , 𝑥𝛼3 , 𝑥𝛼𝑚 , 𝑥1) 
to minimize 

   𝐶2 + 𝛽2(𝐶3 − 𝐶2) + 𝐷2 + 𝛾2(𝐷3 − 𝐷2)         (25) 
subject to  

(Δ𝛼𝑖)2
− 𝜂1 {(Δ𝛼𝑖)2

− (Δ𝛼𝑖)1
} ≥ 𝛿(𝑥𝑗, 𝑥𝛼𝑖) (26) 

∀𝑗 ∈ 𝑁 and for some 𝛼𝑖 . 

4. Solution Procedure using MGA 

4.1. Description 

In the MGA for ICRSP, each chromosome is represented as a binary string (Calvete 

et al., 2013) equal to the total number of nodes contained in the network. The 𝑖𝑡ℎ  
element of the array is 1 if the corresponding node is on the cycle and it is 0 otherwise. 
As we fix the first node considering as the depot, so the first element of the string is 
always 1. For the other strings, we randomly generate 0’s and 1’s and fill each of the 
chromosomes of the total populations. This process is called the initialization 
procedure. 

Probabilistic selection (Mukherjee et al., 2017) is an efficient selection procedure which 

selects the chromosomes in each generation on the basis of the fitness function  

 fitness(chromosome) = TSP(chromosome) + Assignment(chromosome). 

It is tested by Mukherjee et al. (2017) that the probabilistic selection technique is more 

efficient than ordinary roulette-wheel selection in most cases. After performing the selection 

procedure, the new population is archived to a set S1 with the considered population size m. 
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Fig 2. Representation of a chromosome, random crossover and inverse mutation 

 
We propose a bi-part strategic-based mating pool selection procedure to obtain 

offspring. At first, mating pools are selected based on the probability of crossover pc =
0.7 and sorted according to their fitness in descending order. Let the selected number 
of parents be 2q. After sorting, the parents are divided into two groups, each of which 
contains q chromosomes. Hence, the random crossover technique is performed 
between ith and (q + i)th parents, where 1 ≤  i ≤  q,, i.e., each corresponding parent 
between two groups. The proposed bi-part mating pool strategy is represented in 
Figure 3.  

In the next step, four types of mutations have been used to maintain diversity and 
have a better chance of finding near optimality. These are inverse mutation 
(Mukherjee et al., 2017) (with probability of mutation pm = 0.2) along with exchange 
mutation, reduction and augmentation local searches (Calvete et al., 2013) (with pm =
0.5). A mutated chromosome can replace the corresponding previous one if it has a 
better fitness value. 

For TSP evaluation in the fitness function, we use the 2-opt procedure keeping in 
mind the total time-consuming factor due to the impreciseness of the model, and the 
cost is calculated depending on confidence level β. Another cost, i.e., assignment cost 
in the fitness function, can easily be evaluated considering the corresponding 
confidence level γ of impreciseness.  

After crossover and mutations, the new population is archived in another set S2 
with size m. Among the total 2m chromosomes of S1∪ S2, the best m chromosomes are 
selected without repetition and sent to the next generation. Each chromosome is 
considered feasible at each generation if it satisfies the covering distance constraint 
depending on the confidence level η of covering distance. The representation of a 
chromosome, random crossover, and inverse mutation are shown in Figure 2. 
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4.2. Algorithm in details 

4.2.1. Initialization 

Input: number of nodes n, population size (pop-size) 
Output: a set of pop-size chromosomes each having n bits 
1. 𝑓𝑜𝑟(𝑖 =  1 to 𝑝𝑜𝑝-𝑠𝑖𝑧𝑒){ 
2. 𝑐ℎ𝑟𝑜𝑚𝑒[𝑖][1] = 1; 
3. 𝑓𝑜𝑟(𝑗 =  2 𝑡𝑜 𝑛){ 
    𝑡 = 𝑟𝑎𝑛𝑑( )%2; 
      𝑖𝑓 (𝑡 = 1){ 
        𝑐ℎ𝑟𝑜𝑚𝑒[𝑖][𝑗] = 1; 
                       } 
       𝑒𝑙𝑠𝑒  𝑐ℎ𝑟𝑜𝑚𝑒[𝑖][𝑗] = 0;  
       } 
     } 

4.2.2. Probabilistic Selection 

This is a more efficient selection procedure used previously by the authors 
Mukherjee et al. (2017). This technique was first tested on some TSP benchmark 
problems and justified its better efficiency and hence used in MGA. 

4.2.3. Random Crossover 

Input: total number of nodes 𝑛, 𝑝𝑎𝑟𝑒𝑛𝑡1, 𝑝𝑎𝑟𝑒𝑛𝑡2, fitness function 𝑓 

Output: 𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2 
 

1. 𝑐ℎ𝑖𝑙𝑑1[1] = 𝑐ℎ𝑖𝑙𝑑2[1] = 1; 
2. 𝑓𝑜𝑟 (𝑖 = 2 𝑡𝑜 𝑛){ 
 𝑠 = 𝑟𝑎𝑛𝑑( )%2; 
 𝑖𝑓(𝑠 = 1){ 
  𝑐ℎ𝑖𝑙𝑑1[𝑖] = 𝑝𝑎𝑟𝑒𝑛𝑡1[𝑖]; 
   } 
 𝑒𝑙𝑠𝑒{ 
  𝑐ℎ𝑖𝑙𝑑1[𝑖] = 𝑝𝑎𝑟𝑒𝑛𝑡2[𝑖]; 
  } 
             } 
3. . 𝑓𝑜𝑟 (𝑖 = 2 𝑡𝑜 𝑛){ 
 𝑡 = 𝑟𝑎𝑛𝑑( )%2; 
 𝑖𝑓(𝑡 = 1){ 
  𝑐ℎ𝑖𝑙𝑑2[𝑖] = 𝑝𝑎𝑟𝑒𝑛𝑡2[𝑖]; 
   } 
 𝑒𝑙𝑠𝑒{ 
  𝑐ℎ𝑖𝑙𝑑2[𝑖] = 𝑝𝑎𝑟𝑒𝑛𝑡1[𝑖]; 
  } 
             } 
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Fig 3. Graphical representation of Bi-part mating pool strategic crossover 

 

4.2.4. Inverse Mutation 

Inverse mutation (Mukherjee et al. 2017) is a well-known mutation technique that 
works faster than conventional random mutation (Mukherjee et al. 2017). Exchange, 
reduction (vertex removal) and augmentation (vertex addition) mutations are three 
local search techniques that have been implemented inspired by the authors Calvete 
et al. (2013) and Salari et al. (2015). 

4.2.5. Procedure MGA 

Input: Maximum number of generation (𝑚𝑎𝑥-𝑔𝑒𝑛), 𝑝𝑜𝑝-𝑠𝑖𝑧𝑒, number of nodes 𝑛, 

cost matrix, distance matrix crossover probability 𝑝𝑐 , mutation probability 𝑝𝑚 , 

probability of crossover 𝑝𝑠  
Output: Minimum ICRSP cost 

1. Procedure_Initialization 
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2. Set gen← 1, 𝑔𝑙𝑜𝑏-𝑏𝑒𝑠𝑡 = 𝑙𝑜𝑐-𝑏𝑒𝑠𝑡 = 𝑀𝐴𝑋-𝐼𝑁𝑇 

3. Procedure_Probabilistic selection based on 𝑝𝑠  

4. Archive the population to the set 𝑆1 (size 𝑚) 

5. for(i=1 to 𝑝𝑜𝑝-𝑠𝑖𝑧𝑒){  

           if(rand[0,1] < pc) {  

               𝑖𝑡ℎ is selected for crossover 
    } 
   } 
6. Procedure_random crossover with bi-part strategy among the mating pools 

7. 𝑓𝑜𝑟(𝑖 = 1 to 𝑝𝑜𝑝-𝑠𝑖𝑧𝑒){ 

       𝑖𝑓(𝑟𝑎𝑛𝑑[0,1] < 𝑝𝑚){ 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑖𝑡ℎ chromosome for mutation 
    } 
   } 
8. Procedure_inverse, exchange, augmentation and reduction mutations according 

to their 𝑝𝑚 

9. Archive the new population to another set 𝑆2 (𝑠𝑖𝑧𝑒 𝑚) 
10. Select best 𝑚 chromosomes from the set 𝑆1 ∪ 𝑆2 

11. 𝑓𝑜𝑟(𝑖 = 1 to 𝑝𝑜𝑝-𝑠𝑖𝑧𝑒){  

  𝑖𝑓(𝑓[𝑖] < 𝑙𝑜𝑐-𝑏𝑒𝑠𝑡 and covering constraint satisfied){ 

   𝑙𝑜𝑐-𝑏𝑒𝑠𝑡 =  𝑐𝑜𝑠𝑡[𝑖] 
    } 
   } 

12. 𝑔𝑒𝑛 ←  𝑔𝑒𝑛 + 1 

13. 𝑖𝑓(𝑙𝑜𝑐-𝑏𝑒𝑠𝑡 < 𝑔𝑙𝑜𝑏 − 𝑏𝑒𝑠𝑡){  

  𝑔𝑙𝑜𝑏-𝑏𝑒𝑠𝑡 ← 𝑙𝑜𝑐-𝑏𝑒𝑠𝑡 
 } 

14. 𝑖𝑓(𝑔𝑒𝑛 < 𝑚𝑎𝑥𝑔𝑒𝑛){ 

  𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 3 

𝑒𝑙𝑠𝑒 
  Goto step 15 
 } 

15. end 
 

The MGA program is operated until the termination condition is reached. We 
terminate the program if it yields the same solution in consecutive 50 generations. 

5. Numerical Experiments 

5.1. Verification with earlier RSP results 

To justify the performance of the developed MGA, we developed it in C 
programming language and tested it on a PC with Intel CORE i3. We choose some TSP 
benchmark problems and compare them with the RSP results obtained by Calvete et 
al.'s BBEA (Calvete et al., 2013) which has been the most efficient algorithm to 
outperform all other RSP algorithms, are given in Table 1. The routing costs 𝑐𝑖𝑗  and the 

assignment cost 𝑑𝑖𝑗   in the objective function being as follows: 

𝑐𝑖𝑗 = 𝛼 𝐼𝑖𝑗, 𝑑𝑖𝑗 = (10 − 𝛼)𝐼𝑖𝑗 
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where, 𝐼𝑖𝑗  is the travelling costs from node 𝑖 to node 𝑗 in TSP instances and 𝛼 =

3,5,7,9. The different values of 𝛼 consider the different distribution of weights on rings 
and stars. More precisely, when 𝛼 = 3, the optimal solution should include all the 
nodes in the ring, as the star nodes assume (10 − 3) = 7 weightage. Similarly, when 
𝛼 = 9, most vertices should be out of the ring. Here, for the TSP part in the fitness 
function, we use the same TSP solver algorithms as used by Calvete et al. (2013) and 
Salari et al. (2015) in their work on CSP, i.e., 2-𝑜𝑝𝑡, 3-𝑜𝑝𝑡, and the Lin-Kernighan 
method (Helsgaun, 2000) in the required cases. 

5.2. Experiment with Proposed Models 

To illustrate our proposed model, we consider 100 nodes and randomly generate 
a 100 × 100 fuzzy cost matrix whose elements are TFNs in the form (𝑎1, 𝑎2, 𝑎3) with 
30 ≤ 𝑎1 ≤ 120 and 𝑎2 = 𝑎1 + 1 + 𝑟𝑎𝑛𝑑()%3, 𝑎3 = 𝑎2 + 1 + 𝑟𝑎𝑛𝑑()%3 and a 100 ×
100 distance matrix with lower bound 22.5 and upper bound 90. For these fuzzy costs, 
the proposed imprecise model is reduced to deterministic ones (19, 20) and (25, 26) 
using the possibility and the necessity approaches respectively and solved by 
proposed MGA.  

In Table 2, some results for different parametric values of 𝛽 and 𝛾 along with no 
covering distance restrictions and with a crisp covering a distance of 70 distance units 
are presented using both the proposed MGA and BBEA (Calvete et al., 2013). The 𝛽 
and 𝛾 are the confidence levels of routing and related assignment costs, respectively. 
We have compared the results obtained by the proposed MGA of our ICRSP model only 
with BBEA (Calvete et al., 2013) since it is the best among all the existing RSP methods. 
To apply BBEA in our ICRSP model, we developed it into an equivalent imprecise form 
and then compared it with our proposed MGA.  

In Table 3, we present some results using MGA for different values of 𝛽, 𝛾, and 𝜂 

with a fuzzy covering distance (65,70,76), where 𝜂 is the confidence level of the 
covering distance.  

In the results with uncertain data, the fitness function is simply the sum of two 

costs-- the routing and assignment costs. Also, the 2-𝑜𝑝𝑡 procedure for solving TSPs 
is used in the program, as the program gets more intricate than the crisp case. 

 
Table 1 Verification of RSP results: Proposed MGA and BBEA (Calvete et al. 

2013) 
Instance α Best known cost 

using BBEA 
Best cost by MGA 
among 25 different 

runs 

Time 
(s) 

eil51 3 1278 1278 0.76 
eil51 5 1995 1995 1.92 
eil51 7 2113 2113 2.01 
eil51 9 1244 1244 2.27 

berlin52 3 22,626 22,626 0.68 
berlin52 5 36,115 36,115 1.91 
berlin52 7 37,376 37,376 2.04 
berlin52 9 20,361 20,361 2.15 
brazil58 3 76,185 76,185 1.94 
brazil58 5 115,045 115,045 2.54 
brazil58 7 126,807 126,807 1.86 
brazil58 9 83,690 83,690 1.77 

st70 3 2025 2025 1.22 
st70 5 3110 3110 2.41 
st70 7 3402 3402 2.64 
st70 9 2610 2610 2.88 
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Instance α Best known cost 
using BBEA 

Best cost by MGA 
among 25 different 

runs 

Time 
(s) 

eil76 3 1614 1614 2.72 
eil76 5 2460 2460 3.21 
eil76 7 2504 2504 2.87 
eil76 9 1710 1710 2.46 
pr76 3 324,477 324,477 2.82 
pr76 5 500,395 500,395 3.56 
pr76 7 555,845 555,845 3.74 
pr76 9 424,359 424,359 3.96 
rat99 3 3633 3633 4.11 
rat99 5 5885 5885 4.27 
rat99 7 6436 6436 4.82 
rat99 9 5150 5150 4.88 

kroA100 3 63,846 63,846 4.74 
kroA100 5 100,785 100,785 4.28 
kroA100 7 115,388 115,388 5.07 
kroA100 9 94,265 94,265 4.62 

     

 

 

Table 2 Numerical results of proposed ICRSP using proposed MGA and BBEA (Calvete 
et al. 2013) with crisp covering distance 

Appro

ach 

β γ optimal 

cost 

without 

covering 

distance 

   optimal cost 

with covering 

distance = 70 

distance units 

   

   Proposed 

MGA 

Time 

(s) 

BBEA 

 

Time Proposed 

MGA 

Time 

(s) 

BBEA 

 

Time 

(s) 

Pos 0.6 0.6 3416.39 6.16 = 7.31 3427.1 7.07 = 7.24 

  0.7 3402.6 5.41 = 6.87 3432.1 6.18 = 7.47 

  0.8 3504.59 5.22 = 6.43 3509.8 6.94 = 7.85 

  0.9 3423.1 4.82 = 5.79 3491.29 6.15 = 6.27 

  0.95 3383.09 5.27 3381.6* 7.92 3512.04 5.08 = 6.11 

 0.7 0.6 3399 5.59 = 5.74 3484.40 5.87 = 5.44 

  0.7 3399.89 4.23 = 6.08 3563.5 7.31 = 8.18 

  0.8 3443 5.52 = 5.97 3477.20* 6.80 3486.29 7.12 

  0.9 3435.34 7.98 = 7.76 3486.19 7.82 = 8.32 

  0.95 3428.65 5.69 = 7.11 3471.09 7.54 = 7.92 

 0.8 0.6 3497.20 6.76 = 7.83 3672.8 6.94 = 8.11 

  0.7 3506* 5.09 3517.89 6.87 3597.5 7.19 = 6.93 

  0.8 3511.39* 6.82 3519.1 5.38 3622.39 5.88 = 6.23 

  0.9 3442 5.19 = 7.86 3489.19 8.14 = 7.91 

  0.95 3424.1* 6.61 3430.29 7.11 3481.84* 7.56 3493 8.14 

 0.9 0.6 3454.69 7.25 = 6.57 3608.40 8.39 = 7.83 

  0.7 3434.90* 6.67 3452.6 7.18 3605.19* 8.14 3611.5 7.66 

  0.8 3446.6 5.17 = 7.22 3606.3 7.85 = 8.11 

  0.9 3464.59* 7.08 3467.2 5.47 3633.9* 8.17 3637.29 8.42 

  0.95 3456.94* 4.29 3462.1 6.22 3632.54* 5.49 3643.5 7.55 

 0.95 0.6 3445.94 5.28 = 7.45 3606.35 7.74 3604.49* 9.22 

  0.7 3497.04 6.94 = 7.88 3707.5* 8.21 3711.1 6.16 
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Appro

ach 

β γ optimal 

cost 

without 

covering 

distance 

   optimal cost 

with covering 

distance = 70 

distance units 

   

  0.8 3463.8* 6.67 3472.59 8.04 3686 5.86 = 6.22 

  0.9 3482.04 7.11 = 7.74 3720.20 7.66 = 7.89 

  0.95 3457.44 5.82 = 6.25 3628.84* 5.84 3634.5 5.17 

Nec 0.6 0.6 3664.20 7.26 = 8.14 3693.20 7.84 = 9.24 

  0.7 3634.6 6.51 = 5.22 3762.40 7.08 = 8.28 

  0.8 3637.8 7.12 = 9.37 3730.20* 8.02 3736.10 8.10 

  0.9 3630.70* 4.22 3642.20 6.28 3690.20 7.53 = 9.14 

  0.95 3547 5.72 = 7.29 3793.35 8.96 = 10.22 

 0.7 0.6 3750.6 5.65 = 6.24 3845 7.37 = 9.72 

  0.7 3606.8 6.58 = 7.55 3798.39 6.49 = 7.62 

  0.8 3579.89* 7.11 3586.6 6.86 3729.39 8.84 = 11.46 

  0.9 3721.5 6.62 = 8.11 4056.5 7.48 = 8.44 

  0.95 3674.69* 11.41 3686.8 6.73 4047.14 8.82 = 9.22 

 0.8 0.6 3653 6.71 = 8.43 3753.39 7.66 = 8.92 

  0.7 3501.6 5.16 = 6.74 3664.70 8.28 3658.1* 9.24 

  0.8 3581.8 7.62 = 6.22 3692.39 6.65 = 8.36 

  0.9 3633.1 11.85 = 9.52 3788.70 10.24 = 13.45 

  0.95 3622.85* 6.33 3645.6 7.42 3771.8 8.21 = 8.48 

 0.9 0.6 3822.69 7.33 = 6.46 3878.59 7.96 = 9.24 

  0.7 3786.19 8.94 = 10.41 3877.19 9.85 = 11.21 

  0.8 3785.19 7.16 = 8.64 3880.19 8.34 = 9.72 

  0.9 3797.20* 6.82 3801.19 8.52 3879.59 7.36 3878.19* 10.08 

  0.95 3711.1 5.89 = 6.74 3793.44 8.58 = 9.55 

 0.95 0.6 3812.20 7.65 = 9.52 3853* 9.86 3862.59 11.73 

  0.7 3555.3 6.82 = 7.58 3842.79 8.65 = 7.52 

  0.8 3667.20* 8.57 3674.49 6.28 3882.39 9.11 = 11.80 

  0.9 3648.8 11.15 = 14.53 3843.6 9.64 = 12.54 

  0.95 3642.6 9.25 = 10.55 3719.54 13.96 = 12.74 

 
Table 3 Numerical results of proposed ICRSP using proposed MGA and BBEA (Calvete et al. 

2013) with Fuzzy covering distance 
η β γ optimal cost with covering 

distance (65, 70, 76) 
Possibility-approach 

Time 
(s) 

optimal cost with covering 
distance (65, 70, 76) 
Necessity-approach 

Time 
(s) 

0.7 0.8 0.8 3449.5998 7.61 4018.6 8.51 
  0.9 3471.6999 7.40 4133.3999 10.02 
  0.95 3468.75 6.45 4188.1 9.29 
 0.9 0.8 3559.6 8.27 4110.3999 11.68 
  0.9 3587.1 7.19 4114.3999 7.26 
  0.95 3556.6999 8.22 4139.2998 9.12 
 0.95 0.8 3642.2001 9.67 4137 10.34 
  0.9 3665.6501 6.28 4116.2 10.11 
  0.95 3572.6499 9.03 4003.0541 8.41 

0.8 0.8 0.8 3562.6 7.59 4063 9.82 
  0.9 3548.6 8.95 4133.3999 8.76 
  0.95 3453.75 8.27 4188.1 8.14 
 0.9 0.8 3585.2001 9.17 4110.3999 10.27 
  0.9 3608 7.72 4114.3999 8.46 
  0.95 3537.5998 8.18 4139.2998 9.82 
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η β γ optimal cost with covering 
distance (65, 70, 76) 
Possibility-approach 

Time 
(s) 

optimal cost with covering 
distance (65, 70, 76) 
Necessity-approach 

Time 
(s) 

 0.95 0.8 3582.0998 7.08 4112.2001 6.94 
  0.9 3582.0998 9.58 4116.2001 7.49 
  0.95 3533.6 9.77 4141.1 7.73 

0.9 0.8 0.8 3562.6 8.65 4070.3999 8.02 
  0.9 3655.1999 9.19 4101.1 9.87 
  0.95 3484.75 8.74 4188.1 7.15 
 0.9 0.8 3563.1 7.67 4032 7.42 
  0.9 3624.5 9.91 4137.2001 9.37 
  0.95 3533.5998 8.71 4137.2998 9.91 
 0.95 0.8 3601.1499 9.45 3712.3999 9.29 
  0.9 3728.3498 9.43 3842.9501 8.77 
  0.95 3693.3 11.52 4188.9501 12.82 

0.95 0.8 0.8 3589.4501 8.38 3970.8 8.89 
  0.9 3691.1999 9.16 4137.2001 8.74 
  0.95 3453.75 9.78 4146.2998 9.26 
 0.9 0.8 3589 8.82 3974.7001 9.71 
  0.9 3565.1 10.22 3782.3999 11.33 
  0.95 3537.3999 9.11 4188.1 5.86 
 0.95 0.8 3582.0998 7.18 3834.35 7.54 
  0.9 3605.6 9.74 3714.3999 8.71 
  0.95 3613.25 9.52 4141.1 10.96 

 

 

Table 4  Some numerical results of particular ICRSP using MGA where the nodes 
4,21,44,67,82 and 91 are always present on the route 

 
η β γ optimal cost with covering 

distance (65, 70, 76) 
Possibility-approach 

Time 
(s) 

optimal cost with covering 
distance (65, 70, 76) 
Necessity-approach 

Time 
(s) 

0.95 0.8 0.8 3704.6999 8.74 4029.3999 8.48 
  0.9 3780.1 10.85 4157.25 9.82 
  0.95 3577.6 9.11 4164.35 8.37 
 0.9 0.8 3704.1999 9.28 4187.2001 11.41 
  0.9 3691.25 9.71 3994.1 8.58 
  0.95 3676.2998 8.91 4266.25 9.92 
 0.95 0.8 3714.1999 7.55 3952.3999 11.87 
  0.9 3689.1 8.93 3811.1999 8.52 
  0.95 3722.3999 8.46 4173.1 9.89 

6. Discussion 

In Table 1, the best result of the considered benchmark problems among 25 
different runs of the proposed MGA is the same as the results given by Calvete et al. 
(2013), where the parameter α and the objective function are considered the same as 
mentioned by the above authors. Table 2 presents near-optimal costs without and 
with a crisp covering distance separately, both in the possibility and the necessity 
approaches, using BBEA and proposed MGA. The route's cost with a covering distance 
is higher than that without the same restriction, which is as per our expectation. In 
most cases, the optimal solution is best at β=0.7 when γ is fixed. From the whole table, 
we notice that MGA performs better than BBEA in many results for different 
confidence levels, though sometimes it takes slightly more time than BBEA to result in 
a better solution. From Table 3, it is clear that the increase in the magnitude of η 
(confidence level of imprecise covering distance) increases the optimal cost for any 
fixed β and γ. In all cases, the possibility approach gives better optimal solutions than 
the necessity approach, which is as per expectations. 
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7. Conclusion 

An Imprecise Covering Ring Star Problem (ICRSP) is proposed and solved by a 
proposed modified genetic algorithm (MGA). The routing costs and the assignment 
costs are considered imprecise values. Also, an imprecise covering distance constraint 
is introduced, which is very significant in real-life cases and has not been discussed in 
the ring star problems by earlier researchers. Each type of cost is considered a fuzzy 
variable, and the ICRSP model is reduced to a deterministic form in both fuzzy 
possibility and necessity approaches. In our proposed MGA, we use probabilistic 
selection, which selects the best chromosomes from children and offspring sets at each 
generation. Bi-part mating pool strategy-based crossover keeps better diversity and 
good fitness values when making offsprings than the ordinary parent selection. At 
each iteration, the best population is collected from the union of populations before 
crossover and after mutation and sent to the next iteration, which speeds up the 
procedure. In most cases, our proposed MGA algorithm takes lesser time than BBEA 
to solve ICRSPs. Also, in many cases, MGA yields better results than BBEA, though 
sometimes it may take slightly more runtime, resulting in a better solution.  

This problem can also be formulated in different imprecise environments such as 
rough, random, fuzzy-random, fuzzy-rough, etc. It also can be extended to a multi-
objective ICRSP by considering other objective functions, such as maximizing flow rate 
or minimizing the congestion rate in the case of telecommunication networks. 
Moreover, the proposed MGA can be used for optimization problems in other areas 
such as inventory control, transportation, supply chain, etc. The MGA can also be 
extended to the multi-objective MGA with better strategies. 
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