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Abstract: The Multi-depot vehicle routing problem (MDVRP) is a real-world 
variant of the vehicle routing problem (VRP) where the customers are 
getting service from some depots. The main target of MDVRP is to find the 
route plan of each vehicle for all the depots to fulfill the demands of all the 
customers, as well as that, needs the least distance to travel. Here all the 
vehicles start from different depots and return to the same after serving the 
customers in its route. In MDVRP each customer node must be served by only 
one vehicle which starts from any of the depots.  In this paper, we have 
considered a homogeneous fleet of vehicles. Here a bio-inspired meta-
heuristic method named Discrete Antli-on Optimization algorithm (DALO) 
followed by the 2-opt algorithm for local searching is used to minimize the 
total routing distance of the MDVRP. The comparison with the Genetic 
Algorithm, Ant colony optimization, and known best solutions is also 
discussed and analyzed. 

Key words: Multi depot vehicle routing problem, Antlion Optimization 
(ALO), Bio-inspired Algorithm, Combinatorial Optimization. 

1. Introduction 

Supply of goods from source to destination is a challenging operational process in 
the logistic distribution system. The products can be delivered either directly from 
the production center or from the stock points located nearby the production site or 
via distribution warehouses. Such kind of problems can be mathematically modeled 
as a particular type of VRP which belongs to the set of NP-hard problems. It consists 
of a single depot or warehouse to service the demands of different cities, but most of 
the cases the different company has more than one warehouse to serve the demands. 
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In such a scenario the problem can be formulated using more than one depot that is 
called Multi-Depot Vehicle Routing Problem, in short MDVRP. MDVRP deals with the 
delivery of items to all the customers with minimum cost or distance. VRP can be 
used to manage such kind of scenario efficiently.  

The main task of the basic form of vehicle routing problem is to search the 
collection of paths to serve customers with some similar vehicles. In the classic form 
of VRP, a set of customer node is present, the demands of each node and other 
primary information such as the distance between all pair of nodes, the distance 
between nodes and depots, number of vehicles and vehicle capacity are known a 
priory. The VRP can be closed or open. In closed VRP (Laporte et al. 1987) vehicles 
move from a central point called depot, serves each customer and back to the central 
position such that the total demand served by one conveyance is less than the vehicle 
capacity. Whereas in the case of open VRP (Li et al. 2007) after serving the customer 
the vehicle does not return to the depot. 

There are many variants of VRP found in the literature; some of them are 
capacitated VRP (CVRP), VRP with time window (VRPTW), VRP that includes pickup 
and delivery, multi-depot VRP, stochastic VRP, etc. In this paper, we have focused on 
Multi-depot VRP (MDVRP). The pictorial representation of MDVRP is presented in 
figure 1. In MDVRP, there will be more than one depot.  

For solving MDVRP, the following two steps can be used: 
I Clustering: Allocation of cities to a depot. 
II Routing: Finding the optimum routes for each depot. This sub-problem is 

similar to VRP. 
 

 

Figure1. Pictorial representation of MDVRP 

MDVRP can be solved in two ways considering the two sub-problems, one is route 
first cluster second, and another is cluster first route second. Here we have 
discretized the Ant lion optimization (ALO) algorithm to solve the MDVRP. For local 
searching of routes, the 3-opt algorithm is used. The main contribution of this article 
is as follows: (1) An improved discrete ALO has been proposed to fit the MDVRP; (2) 
A new encoding scheme to form a solution (ant or antlion) and (3) A hybridization of 
ALO and 2 opt algorithm. 
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The paper is arranged as per the below sections. The literature review presents in 

section 2. The motivation behind this work is explained in section 3. Section 4 
describes the mathematical model for the MDVRP. Section 5 deals with the proposed 
Discrete ALO. The result and discussion are presented in section 6. The conclusion is 
in section 7. 

2. Literature Review  

Some of the solving techniques for single depot VRP are exact algorithms like 
brunch and bound, branch and cut proposed by Fisher et al., (1994) and Lada et al. in 
2001. Many heuristic algorithms like cluster first route second (Taillard, 1993), 
savings algorithm (Clarke & Wright, 1964) also found in the literature. Meta-
heuristic like GA (Berger & Barkaoui, 2003), PSO (Chen et al., 2006), ACO (Reimann 
et al., 2004) are also used by many researchers to solve single depot VRP. 

Laporte et al., (1984, 1988) formulated the integer linear programs for MDVRP 
containing degree constraints, sub-tour elimination constraints, chain-barring 
constraints, and integrality constraints and presented an exact solution. Renaud et 
al., (1996) presents a Tabu search heuristic for MDVRP. Chao et al. solved the MDVRP 
using a multi-phase heuristic approach. Ombuki-Berman & Hanshar (2009) applied a 
genetic algorithm to MDVRP. Vianna et al., (1999) proposed an evolutionary 
algorithm coupled with local search heuristic to minimize the total cost. Matos and 
Oliveira (2004) have to use ant colony optimization (ACO) to solve MDVRP. 
Guimarães et al., (2019) have published a paper on the multi-depot inventory-
routing problem with the application on a two-echelon (2E) supply chain. It is also 
showing a stricter policy for inventory management. In 2017, a different version of 
MDVRP was developed that deals with hazardous materials by Yuan et al., (2017). It 
was solved using a two-stage heuristic method. In the same year, Rabbouch et al., 
(2017) have published a survey paper on MDVRP for heterogeneous vehicles. It also 
considered the time windows concept. Very recently Lalla-Ruiz & Vob (2019) have 
developed multi-depot cumulative capacitated VRP. It also designed a meta-heuristic 
approach (POPMUSIC) to solve it. In 2018, one more paper has also been published 
on MDVRP, and it has been solved using general variable neighborhood search meta-
heuristic (Bezerra et al., 2018). It uses a local search method named randomized 
variable neighborhood descent. Li et al., (2018) have presented a paper on MDVRP 
with fuel consumption to make the benefits analysis. It finds the factors that affect 
the benefit ratio. In the same year, one more paper on MDVRP has also been 
published that deals with multi-compartment vehicles. It uses the hybrid adaptive 
large neighborhood search (Alinaghian & Shokouhi, 2018) to solve the problem. One 
more new variety of MDVRP has been proposed by Zhou et al., (2018). They have 
developed two –Echelon MDVRP that introduces the last mile distribution in the city 
logistics problem. It has been solved using a hybrid multi-population genetic 
algorithm. Silva et al., (2018) have presented a paper on multi-depot online vehicle 
routing with a soft boundary. Recently Zhang et al., (2019) have published an article 
on MDVRP for routing alternate fuel vehicles. They have used the ant colony method. 
Very recently Dutta et al., (2019) have designed a modified version of Kruskal's 
algorithm over the GA to solve OVRP for a single depot problem. Mukherjee et al., 
(2019) have developed a special version of the TSP problem that can be mapped on 
several real-life scenarios. 
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3. Motivation 

There are several works that have already been published in the field of VRP 
using the exact method and meta-heuristics algorithms. But most of the real-life 
problems fit with the MDVRP. e.g., newspaper distribution, courier services, 
emergency services, taxi services, and refuse-collection management, etc. In 
literature, there are some works on MDVRP but in most of the cases they used meta-
heuristic algorithms, and in few cases, exact algorithms were used. Exact algorithms 
give better result but take longer computational time. Meta-heuristic algorithms take 
less computational time but will not provide the best solution always. So finding 
good meta-heuristic to address the real-life problem which will give better result in 
reasonable computational time is a tough job. So here we try to find a hybrid 
algorithm which will combine an exact algorithm and one meta-heuristic algorithm 
to address MDVRP. Two competitive firms produce two substitute products and sell 
their products separately in the market. 

4. Mathematical Model    

 The MDVRP can be represented using a graph G = (V, E) where V is the union of 
two subsets namely, Vc = {V1, . . . ,Vn} the set of city or customer and Vd = {Vn+1,..., 
Vn+m} the set of depots, and E is the edge set.  A cost or distance matrix C= {cij} is the 
cost of traveling from city i to city j. Each city vi has a demand qi. In this paper 
symmetric cost or distance matrix is considered and triangular inequality also 
satisfied in C. Here all depots have a finite set of homogeneous vehicles with capacity 
Q. The solution to an MDVRP consists of a set of vehicle routes each starts and ends 
at the same depot, and each customer node is visited exactly once by only one 
vehicle. The total demand of customers in each route must not exceed the vehicle 
capacity Q. Here the goal is to minimize the total routing cost. 

 In this problem, n nodes are grouped into m cluster where each cluster contain 
ni: i = 1,2,…,m  number of node and each ni clusters are again group by kj groups 
depending on the vehicle capacity. 

The mathematical model for MDVRP proposed by Lang is given below. 

𝑀𝑖𝑛 𝑍 = ∑ ∑ ∑∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑝𝑞

𝑛

𝑗=1

𝑛

𝑖=1

𝑘𝑝

𝑞=1

                                                                                           (1)

𝑚

𝑝=1

 

  Subject to  

∑ 𝑞𝑖𝑦𝑖𝑞𝑝

𝑛

𝑗=1

≤ 𝑄                                                                                                                            (2) 

0 ≤ 𝑛𝑗𝑞 ≤ 𝑛𝑗                                                                                                                                (3) 

∑ 𝑛𝑗𝑞 =  𝑛𝑗    ∀ 𝑗 = 1 𝑡𝑜𝑚

𝑘𝑝

𝑞=1

                                                                                                    (4) 

a∑ 𝑛𝑗 = n                                                                                                                                  𝑚
𝑗=1 (5) 
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∑ ∑ 𝑦𝑖𝑞𝑝 = 1

𝑘𝑝

𝑞=1

𝑚

𝑝=1

                                                                                                                       (6) 

𝑥𝑖𝑗𝑞𝑝 = {
1 if vehicle p in  depot q travels from customer i to customer j

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
              (7) 

𝑦𝑖𝑘𝑚 = {
1 if vehicle k of depot m serves customer i

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                    (8) 

The equation (1) is the objective function, minimizes the total traveling distance 
or cost. Equation (2) ensures the capacity constraint of a vehicle. Equation (3) 
guarantees that the vehicles serving the number of customers must not exceed the 
number of customers in a depot. Equation (4) shows that the total number of 
customers served by the entire route must be equal to the sum of customers served 
by depot m. Each customer must be served from a single depot is ensured in 
Equation (5). Equation (6) shows that each customer is serviced not more than once. 
Equation (7) and (8) represents that the decision variables are binary. 

5. Proposed Discrete ALO Algorithm  

In this paper, we have used the Ant Lion Optimization algorithm proposed by 
Mirjalili (2015). ALO is a bio-inspired algorithm that mimics the foraging behavior of 
antlion. The steps of ALO are given below: 

 Initialization of ant and antlions 
 Random walk of ants 
 Building traps by antlions 
 Entrapment of ants in traps prepared by the antlion 
 Catching preys by antlion 
 Re-building traps. 
 Elitism 
 Here 2-opt algorithm is used to optimize each route covered by one vehicle. 

5.1. Encoding Scheme 

An MDVRP contains n cities and m depots. We have used cluster first, route 
second approach. So to represent an ant or ant lion one integer array A of size n is 
considered, and the array elements will be ranging from 1 to m. An element A[i] 
represents that ith city will be served from depot A[i]. As an example consider n as 
10 and m as 3 then an ant or an antlion will be as in figure 2. 

 

Figure 2. Encoding of an ant 

From Figure 2 it is clear that depot 1 will serve city 2, city 3 and city 8, depot 2 
will serve city 1, city 6 and city 7 and depot 3 will serve city 4, city 5 and city 9. 
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5.2. Fitness Evaluation 

In this paper, the fitness function is considered as same as the objective function. 
Now to evaluate the value of fitness function we have to find the depot 
corresponding to each city and the vehicle which will serve the city. From the 
encoding scheme stated above, it is clear that which city will be served from which 
depot. Then we have to find the vehicle routes starting from each depot. Here we 
have applied a very well-known 2-opt algorithm to find the shortest path starts and 
end in the same depot after serving all the cities in the route.  

Therefore, Total fitness value = the total distances traveled by all the vehicles 
from all depots. Consider an ant A as follows. 
 

3 1 3 1 2 1 2 3 2 2 
 

Then Depot 1 will serve city 2, 4, 6; depot 2 will serve city 5, 7, 9, 10 and depot 3 
will serve city 1, 3, 8. Now according to the vehicle capacity routes are to be decided 
from each vehicle from the depot. Assume one vehicle is required for depot 1. Then 
the initial route will be as {0, 2, 4, 6, 0} for depot 1. Now, this is very similar to the 
traveling salesman problem. Here we have used a 2-opt algorithm for local search to 
optimize the route length. A similar approach is taken for all the routes from the 
different depot, and finally, all the route lengths are added to get the fitness value. 

5.3. Operators of ALO  

The Antlion Optimizer does a mimic of the relationship of antlions and ants. The 
ants will move on the search space, and the antlions are building traps to hunt ants. 
After capturing an ant, the position of the Antlion is updated if it becomes fitter. The 
movement of ant for searching food is stochastic therefore a random walk is as 
follows 
𝑥(𝑡) = [0, 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡1) − 1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡2) − 1), … , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡𝑛) − 1)]    (9) 
Where cumsum represents the cumulative sum where n represents the maximum 
iteration number and t, gives the step of random walk and r(t) is a random  function 
given by:  

𝑟(𝑡) = {
1 𝑖𝑓𝑟𝑎𝑛𝑑 > 0.5
0 𝑖𝑓𝑟𝑎𝑛𝑑 ≤ 0.5

                                                                                                            (10) 

The position of ant and antlions are stored in the following matrix respectively 

𝑀𝐴𝑛𝑡 = [

𝐴1,1 ⋯ 𝐴1,𝑑

⋮ ⋱ ⋮
𝐴𝑛,1 ⋯ 𝐴𝑛,𝑑

]                                                                                                             (11) 

𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 = [

𝐴𝑙1,1 ⋯ 𝐴𝑙1,𝑑

⋮ ⋱ ⋮
𝐴𝑙𝑛,1 ⋯ 𝐴𝑙𝑛,𝑑

]                                                                                                    (12) 

A fitness function is used to identify the quality of ant and antlion during the 
optimization process. Two different matrices MOA and MOAL are used to store the 
fitness of all ant and antlion respectively. The matrices are as follows.  
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𝑀𝑂𝐴 =

[
 
 
 
 
𝑓([𝐴1,1, 𝐴1,2 , …… , 𝐴1,d])

𝑓([𝐴2,1, 𝐴2,2 , …… , 𝐴2,d])

⋮
⋮

𝑓([𝐴n,1, 𝐴n,2 , … … , 𝐴n,d])]
 
 
 
 

                                                                                           (13) 

𝑀𝑂𝐴𝐿 =

[
 
 
 
 
𝑓([𝐴𝑙1,1, 𝐴𝑙1,2 , … … , 𝐴𝑙1,d])

𝑓([𝐴𝑙2,1, 𝐴2,2 , … … , 𝐴𝑙2,d])

⋮
⋮

𝑓([𝐴𝑙n,1, 𝐴𝑙n,2 , …… , 𝐴𝑙n,d])]
 
 
 
 

                                                                                     (14) 

Where f is the objective function. Ai,j gives the value of the jth dimension of ith 
ant, n represents the total number of ants and is similar for antlions. 

The ALO (Mirjalili, 2015) was designed to solve continuous problems. In this 
paper, we are focused on solving MDVRP which is one combinatorial optimization 
problem. So the operators used in original ALO may not work as desired hence we 
have customized the operators according to our requirement. 

Initialization 
In this step, two populations of size N for ant and antlion are formed randomly. 

Let us assume n number of customers and m number of depots is present. Assume 
(Al1, Al2,……, AlN) and (A1, A2,……, AN) are the populations of antlion and ant 
respectively. Then each Alj and Aj represents the jth antlion and ant respectively. 
Both Alj and Aj are a one-dimensional array of size n, and the array elements will 
range from 1 to m.  

Random walks of ants 
In case of discrete problem random walk of an ant is implemented by inverting 

the entities of a randomly selected part of the string. The operation is demonstrated 
in Figure 3. 

 

Figure 3. Random Walk of an Ant 

Building traps by Antlion  
In ALO, each antlion builds a trap to catch one ant. To implement this mechanism, 

we have used the Roulette-wheel selection mechanism to select Antlion. Roulette 
wheel selection chooses the fitter Antlions for catching ants with higher probability. 

Entrapment of ants in traps  
Ants are moving randomly in search of food while antlions build traps. The higher 

the fitness, the bigger the trap is. When an ant falls in the trap antlion shoot sand on 
it; as a result, the ant slides down towards the trap. To realize this scenario crossover 
operator of GA is used. In this step crossover between one selected antlion and one 
ant is performed. The operation is pictorially represented in figure 4. One sub-string 
of an ant is selected randomly, and that substring is copied into the corresponding 
antlion. 
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 Figure 4. Representation of crossover operation 

Catching of prey, re-construction of pit  
The final step of ALO reaches after an antlion catches the prey. To mimic the step, 

it is considered that catching of ant happens when prey is going to be fitter than the 
corresponding antlion. Then the antlion will change the location to the 
corresponding ant to increase the chance of catching a new pre. The above scenario 
is mathematically represented by the equation (15). 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡𝑖𝑓𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡)                                                                    (15)  

where t shows the current iteration, Antlion jt   shows the position of selected jth 
antlion at tth iteration, and Anttj indicates the position of ith ant at tth iteration. 

Elitism is one of the most important properties of evolutionary algorithms. 
Elitism allows preservation of one or more good solution(s) in one generation for the 
next generation. In continuous ALO it is assumed that the elite solution will influence 
random walk of every ant. In this paper, we have chosen 5% solutions from the 
population of Antlion as elite, and they replace the worst antlions after the selection 
for the next generation. 

5.4. Pseudo codes the 2-opt algorithm 

Croes et al., (1958) have developed the 2-opt technique to solve the TSP. It is a 
local search algorithm. The pseudo code for the 2-opt is given below. 

Input: cost matrix C, number of city Nc 
do { 
minchange = 0; 
 for (i = 0; i< Nc-2; i++)  
 { 
 for (j = i+2; j <Nc; j++)  
  { 
  change= C(i,j)+C(i+1,j+1)-C(i,i+1)-C(j,j+1); 
  if (minchange> change) 
    { 
   minchange = change; 
   mini = i; minj = j; 
   } 
   }  
 } 
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} while (minchange< 0); 

5.5. Pseudo codes the Discrete ALO algorithm 

Input: Number of city n, Number of depot m, Cost matrix C, Number of vehicles 
available in each depot, Vehicle capacity Q. 

 Perform a random Initialization of ant’s population and antlions’ 
population.  

 Find the ant’s fitness and the antlions’ fitness 
 Search the best antlion to make it elite 
 while the termination condition is not satisfied 
 for every ant in the population  
 Select an antlion using Roulette wheel selection 
 perform a random walk 
 Update the position of the ant 
 end for 
 Calculate the fitness of all ants 
 Replace an antlion with its corresponding ant if it becomes fitter using 

equation 15. 
 Update elite if an antlion becomes fitter than the elite 
 end while 
 Return elite 

6.  Result and Discussion 

The discrete ALO is implemented in C language on Intel Core i5 CPU (2.30 GHz), 
4GB RAM. The performance of the MDVRP is evaluated using some of the benchmark 
problems proposed by Creviera et al., (2007) taken from 
http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/ online 
resource of University of Malaga, Spain. The specifica-tion of some of the benchmark 
problems is given in Table 1. 

Table 1. Specification of benchmark instances 

Instance P01 P02 P03 P04 P06 
Total Number of customer 50 50 75 100 100 
Total Number of depots 4 4 5 2 3 
Number of the vehicle in each depot 8 5 7 12 10 
Vehicle capacity 80 100 140 100 100 

The parameters for the proposed Discrete ALO are given in Table 2. 

Table 2. Parameters of Discrete ALO 

Parameter Value 
Population Size 70 if total customer<50 else 100  
Iteration 2500 to 4000  
Selection Roulette wheel 
Elitism 5% of total population size, i.e., 5 

The solutions of instance p1 are given in table 3. 
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Table 3. The solution of Instance P01 

Depot Routes 

1 
Vehicle 1: 0 25 18 4 0 

Vehicle 2: 0 44 45 33 15 37 17 0 
Vehicle 3: 0 42 19 40 41 13 0 

2 

Vehicle 1: 0 48 8 26 31 28 22 0 
Vehicle 2: 0 6 27 1 32 11 46 0 

Vehicle 3: 0 12 47 0 
Vehicle 4: 0 23 7 43 24 14 0 

3 
Vehicle 1: 0 49 5 38 0 

Vehicle 2: 0 9 34 30 39 10 0 

4 
Vehicle 1: 0 21 50 16 2 29 0 

Vehicle 2: 0 35 36 3 20 0 

The results of MDVRP instances using discrete ALO guided with 2-opt are 
compared with the exact solution, solution using Discrete ALO, GA and ACO are 
presented in Table 4. 

Table 4. Comparison of solutions of MDVRP using discrete ALO with GA, ACO 

and exact solution 

Instance 
Exact 

Solution 
Discrete ALO 

guided with 2-opt 
Discrete 

ALO 
GA ACO 

p01 576.87 576.87 591.45 598.45 576.87 
p02 473.53 473.53 483.15 473.53 473.53 
p03 641.15 641.15 694.49 641.18 645.15 
p04 1001.04 1003.86 1011.36 1006.66 1001.04 
p05 750.03 750.03 750.72 752.39 750.11 
p06 876.5 876.5 882.48 877.84 876.5 
p07 885.8 885.8 907.55 893.36 888.41 
p08 4437.68 4449.65 4450.37 4474.23 4437.68 
p09 3895.7 3895.7 4085.51 3900.22 3904.92 
p10 3663.02 3663.02 3825.73 3680.02 3666.35 
p11 3554.18 3554.18 3732.36 3593.37 3569.68 
p12 1318.95 1318.95 1318.95 1318.95 1318.95 
p13 1318.95 1318.95 1318.95 1318.95 1318.95 
p14 1360.12 1360.12 1365.69 1365.69 1360.12 
p15 2505.42 2505.42 2554.12 2549.65 2526.06 
p16 2572.23 2572.23 2606.22 2606.22 2572.23 
p17 2709.09 2709.09 2733.8 2733.8 2709.09 
p18 3702.85 3702.85 3871.01 3781.66 3771.35 
p19 3827.06 3827.06 3884.81 3884.81 3827.06 
p20 4058.07 4058.07 4058.07 4094.86 4058.07 
p21 5474.84 5474.84 5824.58 5668.97 5608.26 
p22 5702.16 5702.16 5873.41 5873.41 5708.78 
p23 6095.46 6095.46 6129.99 6159.9 6124.67 

The percentage of the gap in the result found in the proposed method with the 
other method in the literature is given in table 5. The gap is calculated using the 
following formula. 
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𝐺𝑎𝑝 =
(𝑍𝑙 − 𝑍𝑝)

𝑍𝑝

∗ 100                                                                                                                (26) 

Where 𝑍𝑝 represents the objective value obtained by the proposed method, and 

𝑍𝑙  is the objective value of the problem by the others method. Therefore, the posi tive 
gap represents the better performance of the proposed algorithm compared to 
others. Whereas negative gap represents the opposite fact. 

Table 5. The percentage of Gap in the result in comparison with other methods 

Instance 
Exact 

Solution 
Discrete 

ALO 
GA ACO 

p01 0 2.527433 3.740877 0 
p02 0 2.03155 0 0 
p03 0 8.319426 0.004679 0.623879 
p04 -0.28092 0.747116 0.278923 -0.28092 
p05 0 0.091996 0.314654 0.010666 
p06 0 0.682259 0.152881 0 
p07 0 2.455408 0.853466 0.294649 
p08 -0.26901 0.016181 0.552403 -0.26901 
p09 0 4.872295 0.116025 0.236671 
p10 0 4.441963 0.464098 0.090909 
p11 0 5.013252 1.102645 0.436106 
p12 0 0 0 0 
p13 0 0 0 0 
p14 0 0.409523 0.409523 0 
p15 0 1.943786 1.765373 0.823814 
p16 0 1.321421 1.321421 0 
p17 0 0.912114 0.912114 0 
p18 0 4.541367 2.128361 1.849926 
p19 0 1.508991 1.508991 0 
p20 0 0 0.906589 0 
p21 0 6.388132 3.545857 2.436966 
p22 0 3.003248 3.003248 0.116096 
p23 0 0.566487 1.05718 0.479209 

Average 
Gap % 

-0.02391 2.251911 1.049535 0.297781 

From the above table, we observe that 2-opt guided discrete ALO gives a better 
result than discrete ALO, GA, and ACO in most of the case. It is also found that the 
proposed algorithm fails to yield the exact solution always. The ACO gives a better 
result than Discrete ALO guided with the 2-opt technique in case of instance p04, 
p08. 

7. Conclusion 

In distribution logistics, two main decision problems are routing and scheduling. 
The cost of delivering an item from source to the destination is optimized only by 
efficient routing. Single depot VRP often fails to solve real-life scenario because there 
exists more than one depot.   As an NP-hard problem, MDVRP is very difficult to solve 
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and to find exact solutions by exact methods. In this paper, we proposed a 2-opt local 
exchange guided discrete antlion optimization algorithm to solve MDVRP. This 
amalgamation of heuristics with local search gives good result in case of MDVRP. 
Moreover, the algorithm can be applied to solve similar kind of problem like multi-
depot location routing problem, waste collection problem, etc. 
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