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Abstract: Nowadays, investors' main concerns are choosing the best portfolio 
so that the highest possible investment return can be achieved by accepting 
the least risk. In this regard, the classical Markowitz model is one of the most 
widely used models which helps investors get closer to their goals. Data 
envelopment analysis (DEA) is also a practical technique that can analyze the 
efficiency of firms. Few models can address companies' internal performance 
simultaneously in addition to considering the goals of Markowitz models. Also, 
we study the return and price fluctuations of assets in the market with the 
intuitionistic fuzzy numbers for the first time. Therefore, in this paper, we 
combine all these tools with returns of intuitionistic fuzzy numbers, proposing 
a new combined Markowitz and the cross DEA models. Furthermore, to get the 
best portfolio of assets, this model obtains the efficiency of all companies and, 
simultaneously, fully covers all constraints of the Markowitz model. To show 
the model's practicality, we studied a case study based on information from 50 
active enterprises on Tehran Stock Exchange. We solved the proposed model 
using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The 
obtained results and the comparisons made with the existing approaches show 
the effectiveness of the proposed model.  
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1. Introduction 

An increment in wealth is always the most imperative goal for every investment. 
Increasing wealth in any investment is entwined with the two concepts of risk and 
returns. Risk and returns have a direct correlation; the higher the returns 
expectations, the risk of investment will also be accompanied by a more elevated risk. 
Investors have always sought to utilize varied available models to select investments 
with maximum returns and the lowest risk. Several types of research have been 
performed so far in this respect to seek the optimum combination of assets by using 
mathematical models. In a multi-objective optimization model, Markowitz (1952) was 
capable of simultaneously selecting the highest returns and lowest risk in the 
mathematical approach, through which the maximum stock investment portfolio came 
into effect. In this model, the investor chooses from amidst the responses present on 
the efficient frontier, where there are responses in the most desirable conditions 
possible, from the viewpoint of risk and returns, thus, selecting the answer under 
consideration. The Markowitz model, which has been introduced, takes the historical 
data relative to the corporate returns and investigates the variance and their mean 
(averages) as a basis of calculation. After presenting the Markowitz model, numerous 
supplementary researches were performed on it. Konno and Yamazaki (1991) 
employed the risk criterion of absolute deviation from the mean instead of risk. 
Kellerer et al. (2000) developed it by incrementing new constraints: fixed cost and the 
minimum amount of transactions to this model. Chang et al. (2000) added the 
maximum number of constraints to the shares present in the portfolio (cardinality). 
By adding the boundary constraints and cardinality Fernandez and Gomez (2007) 
used the neural network algorithm and solved the model. Soleimani et al. (2009) 
presented a selection of the Markowitz stock portfolio model, with constraints 
consisting of the minimum number of transactions, minimizing cardinality. 

Similarly, in another study, Chang et al. (2009) applied diverse risk conditions, such 
as the semi-variance, absolute deviation variance, and variance with skewness, 
imposed in the model and solved them using the genetic algorithm. In a paper in 2014, 
Aouni and Colapinto rendered appropriate management approaches for the stock 
portfolio by utilizing the concepts of goal programming (GP). Algarvio et al. (2017) 
dealt with and managed the portfolio in relevance with risk and the optimization of 
retailers operating in the electrical market and presented a model for optimizing 
portfolios created by the final consumers using the Markowitz hypothesis. Zhao 
(2018) utilized the Markowitz model to select options for the stock market. Hunjra et 
al. (2020) compared the performance of risk models (mean-variance, semi-variance, 
mean absolute deviation, and conditional value-at-risk) in different economic 
scenarios, namely crisis, recovery, and growth. They implemented their investigations 
on the stock exchange of Pakistan, Bombay, and Dhaka. The results indicated that 
conditional value-at-risk presented better results for each scenario in each country 
and portfolio performance was inconsistent in different methods.  

Alongside these issues, DEA was also introduced by Charnes and Cooper (1978) 
and was used for optimization and attaining the optimum combination for the 
portfolio concerning assets (Edirisinghe and Zhang 2015a). Huang (2015) offered an 
integrated method for optimizing the stock portfolio, which comprises decision-
making in relevance to the screening of stocks, stock selection, and the allocation of 
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investment. Edirsinghe and Zhang (2015b) discussed using fiscal ratios to survey the 
efficiencies of companies. They investigated the datum of budgetary statements and 
employed DEA techniques to determine RFS. This index indicates the competitive 
acceptance of a company in comparison with other companies. By compiling DEA and 
the multi-criteria decision-making (MCDM) method, Goodarzi et al. (2017) dealt with 
optimizing the stock portfolio. In the initial step, they utilized ratios as inputs and 
outputs in DEA; then, they computed the cross-efficiency for each unit by using the 
optimal weights. Hoe et al. (2017) employed DEA and financial ratios to evaluate and 
compare technology companies listed in Malaysia. Subsequently, the inefficient 
companies attained alleviation or improvement criteria by taking advantage of the 
efficient companies. Puri et al. (2017) presented a multi-component data envelopment 
analysis (MC-DEA) model with inaccurate data. They proposed a new standard 
weights approach by applying interval arithmetic and unified production frontier to 
find unique weights for measuring these interval efficiencies. Jin et al. (2020) 
proposed a decision-making model based on DEA and the concept of probabilistic 
hesitant fuzzy numbers to construct a decision-making approach with probabilistic 
hesitant fuzzy preference relations (PHFPRs) to determine optimal selection among 
alternatives. Chang et al. (2021) used the envelopment analysis of nested dynamic 
network data to evaluate the portfolio. The effect of the alternative optimized 
solutions on the DEA cross-efficiency for portfolio selection was studied by Amin and 
Hajjami (2021). They revealed that these optimal solutions produce cross-efficiency 
matrices and portfolios of low risk with a higher expected return than the 
conventional cross-efficiency matrix for the portfolios. 

A few researchers also utilized uncertain parameters for the problem. Huang 
(2008) described and rendered a new description of risk for selecting a stock portfolio 
in the fuzzy environment; On the basis of this, a new model was proposed, and a 
combined intelligent (smart) algorithm was proposed to solve it. The genetic 
algorithm solved an optimized portfolio model with cardinality constraints and 
uncertain data by Sadjadi et al. (2012). Guo (2012) used the fuzzy set theory to solve 
the mean-variance Markowitz model and expand it to a fuzzy portfolio selection 
model. Carlsson (2017) suggested an approved and mixed fuzzy programming by 
considering the future cash flows, in the form of a single trapezoidal fuzzy number, to 
select the prime research and development profile. In an attempt to choose a stock 
portfolio, Zhou et al. (2018) took advantage of the qualitative data presented by 
experts and investors, which are contemplated as uncertain elements for stock 
selection. They chose two groups of investors, namely, the public and those prone to 
risk acceptance. Two models were selected for portfolios, and scores were proposed 
based on maximum ranking and the deviation norm. In 2018, Chen et al. evaluated and 
dealt with the efficiency of a stock portfolio in a fuzzy environment with several risk 
criteria (probable variance, probable semi-variance, and a probable absolute semi-
deviation). They demonstrated that, in fuzzy conditions, the portfolio efficiency is 
more precise and offers better responses. 

Lamb et al. (2012) unveiled the uncertainty in estimating the efficiency of DEA. 
They employed bootstrap to develop random DEA models for funds, the extraction of 
confidence intervals, and the development of techniques for comparing and ranking 
funds and indicating ratings. In research, Lim et al. (2014) utilized the perception of 
DEA cross-efficiency to select a stock portfolio. In addition to using the mean cross-
efficiency scores, they also took advantage of the modifications in the (variance) cross-
efficiency scores. The achieved model was implemented on stock from the stock 
market of Korea, illustrating that the proposed model can be an optimistic tool for 
stock portfolio selection. In another research (2016), in developing the previous 
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model, they accounted for the returns of assets in the form of a single trapezoidal fuzzy 
number, thence proceeded to solve the model with the NSGA II algorithm and 
viewpoint and compared the responses. Omrani and Mashayekhi (2017) introduced a 
hybrid model based on the Markowitz mean-variance model to select the stock 
portfolio. In addition to the risk and returns, the portfolio's efficiency is also taken into 
account by them simultaneously. Their model was a four-objective model, which 
synchronously maximizes the mean stock returns and efficiency; it simultaneously 
minimizes the risk of the stock portfolio. To appraise the efficiency, they employed the 
DEA cross-efficiency approach. Next, the model was applied to the multi-objective 
genetic algorithm with a non-dominating sorting (NSGA II). They implemented this 
model on 52 companies on the Tehran Stock Exchange and compared the responses 
with those of the Markowitz model. Chen et al. (2020) rendered a multi-objective 
model in a fuzzy environment by combining the semi-variance, variance, and cross-
efficiency DEA models. In their model, the cross-efficiency was on the basis and 
debated upon the 'Sharp Ratio.' They solved the proposed model with the Firefly 
algorithm. Likewise, in another paper, Chen (2021) implicated and selected the 
optimal portfolio; with a hybrid of models, such as the semi-variance, variance, and 
the cross-efficiency DEA model, with non-dominating fuzzy inputs and outputs .For 
more details regarding the portfolio optimization with DEA, see Rasoulzade and Fallah 
(2020).  

Although there are numerous investigations in the field of portfolio optimization 
using fuzzy data envelopment analysis, however, there are only a few studies on this 
topic using the fuzzy set extensions, such as intuitionistic fuzzy sets, neutrosophic sets, 
etc; (Yang et al. 2020, Mao et al. 2020, Edalatpanah 2018 and Edalatpanah 2020). 

In recent years, data with uncertainty have been considered in numerous 
researches with varied formats. One of these types of uncertain data is the 
intuitionistic fuzzy, which is employed in various DEA studies; and has been 
contemplated upon by researchers for portfolio selection. Hajiagha et al. (2013) have 
presented a DEA model with intuitionistic fuzzy inputs and outputs. It was for the first 
time that Puri et al. (2015) analyzed the efficiencies of the optimistic and pessimistic 
inputs and outputs data from the intuitionistic fuzzy outlook. Edalatpanah (2019) 
rendered a developed DEA model in a triangular intuitionistic fuzzy environment. In 
this study, he proposed a new ranking function that considers the interaction between 
the membership and non-membership function in the diverse intuitionistic fuzzy sets. 
Javaherian et al. (2021) proposed a new DEA model to evaluate the efficiency of 
decision-making units by using two structures and triangular intuitionistic fuzzy data. 
Yu et al. (2021) developed a unified intuitionistic fuzzy multi-objective linear 
programming (IFMOLP) model for such portfolio selection problems. The non-
membership functions were made by the pessimistic, optimistic, and mixed 
approaches to perfect the traditional intuitionistic fuzzy (IF) inequalities and IF 
theory. 

In the current paper, we seek to attain a model by combining the Markowitz model 
with returns of the trapezoidal intuitionistic fuzzy type, including the cross-efficiency 
DEA model, to achieve a model where the optimum portfolio of assets comes to hand. 
By being attentive to the nonlinear structure of the model attained, the NSGA II 
algorithm will be utilized to solve it, and the responses shall be compared with the 
fuzzy and classical models.  

The NSGA II algorithm was introduced by Deb (2002). These algorithms are based 
upon two cross efficiencies performed like the traditional and ordinary genetic 
algorithms. However, its arrangement and sorting of responses are not on the 
fundaments of a lower amount or more significant amount of the objective function. 
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In this algorithm, sorting is performed based on non-dominance; responses that do 
not dominate each other are grouped in the same class. In recent years, the utilization 
of the NSGA II algorithm to solve problems has been such that the utmost portfolio is 
sought after and has been used in numerous ways; this can be illustrated in (Kaucic et 
al. 2019, Pal et al. 2021, Karimi 2021, Eftekharian et al. 2017). 

The categorizing of information in the present paper is as given. In the next section, 
we shall concisely present some of the required concepts. Next, the developed model 
and the intuitionistic fuzzy returns shall be introduced. Then, a numerical example will 
be solved based on the available data for the companies actively operating on the 
Tehran Stock Exchange. Eventually, we shall render the results that have come to 
hand. 

2. Methodology 

2.1. The Markowitz mean-variance model 

The matter of selecting an efficient portfolio is one of the concepts that Markowitz 
discussed. An efficient portfolio signifies a portfolio's selection is from assets, of steady 
returns, the minimum of risk, or in a given risk, the maximum of returns (Kazemi 
2012). 

Model 1: 

Min    σp
2 = ∑ ∑ wiwjcov(Ri. Rj)

N
j=1

N
i=1                                                                                         (1) 

 

   s.t.  

   R̅p = E(Rp) = ∑ wiR̅i ≥ RN
i=1                                                                                           

(2) 

   ∑ wi = 1N
i=1                                                                                                                          (3) 

    wi ≥ 0                     i = 1.2.3. … . N                                                                                      (4) 

In the abovementioned model, we have the following definitions: 

͞R͞i   : Mean or average returns on the ith assets 

 cov(Ri .Rj) : The covariance of the ith and jth asset returns 

N: Number of assets having the capacity to be invested 

R: Minimum return expected by investors in the investment under consideration 

wi: The ith asset weight in the investment portfolio 

In the model mentioned above, constraint (2) imposes the minimum of returns 
cases expected by the investor as a constraint in the model. Similarly, constraint (3) 
sets the total of the portfolio weights to be equivalent to 1, where the relative 
constraint is a total budget constraint. This model can be in the form of a dual-objective 
form and the form of a simultaneous increase of returns and a decrease in the risk 
portfolio as well, and taken into consideration as given below: 

Model 2: 
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Max     ∑ wiR̅I
N
i=1                (5) 

Min     σp
2 = ∑ ∑ wiwjcov(Ri. Rj)

N
j=1

N
i=1             (6) 

s.t.  

∑ wi = 1

N

i=1

 
(7) 

wi ≥ 0                       i = 1.2.3. … . N              (8) 

2.2. Data Envelopment Analysis Model (DEA) with Cross-Efficiency 

To calculate the efficiency of each DMU, Charnes and Cooper (1978) rendered the 
following: 

Model 3: 

Max    
∑ uryro

s
r=1

∑ vixio
m
i=1

 (9) 

 s.t.  

 
∑ uryrj

s
r=1

∑ vixij
m
i=1

 ≤ 1               j = 1. … . n                                                                                    
                  (10) 

 ur. vi ≥ 0   ;                r = 1. … . s       i = 1. … . m                                                                              (11) 

In the abovementioned model xij and yrj are the inputs and outputs of the jth DMU 
respectively. ur and vi are the weights of the inputs and outputs respectively, which the 
model is seeking to bring to hand. Likewise, the objective function is to maximize the 
weighted sum of the outputs to the weighted sum of the inputs. 

The standard input-axis model of return-to-scale (CRS) Data Envelopment Analysis 
is as follows: 

Model 4: 

   Max    ∑ uryro
s
r=1                                                                                                               (12) 

 s.t.    

     ∑ uryrj
s
r=1 − ∑ vixij

m
i=1 ≤ 0           j = 1. … . n                                                      

(13) 

      ∑ vixio
m
i=1  ≤ 1                                                                                                       (14) 

      xi  ,yr ≥ ε                            ∀i. r                                                                                      (15) 

 
Where,  
 n: The number of decision-making units (DMUs), 
m and s: the number of inputs and outputs, respectively, 
xij and yrj: the amounts for the ith inputs and rth outputs, respectively, for the jth 

DMUs.  
vi and ur: the weights allocated to the ith inputs and rth outputs, respectively, which 

the model computes.  
The efficiency scores of each DMU are obtained by solving model (3) and bringing 

the optimum responses to hand. Let us assume that,  𝑢𝑟
∗  and 𝑣𝑖

∗ are the optimum 
responses, which have been achieved from the model (3) for the kth unit. Through 
equation (16), the cross-efficiency of the other DMUs, which are evaluated by the kth 
unit, can be calculated.  

ekl =
∑ ur

∗yrl
s
r=1

∑ vi
∗xil

m
i=1

 
(16) 
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Now, by computing the cross-efficiency for the entire units of DMUs; and then 
placing them in a n* n matrix, which is reputedly known (and brought to hand) as the 

(𝑒𝑖𝑗)𝑖. 𝑗 = 1. … . 𝑛, cross -efficiency matrix. In this matrix, each element of (𝑒𝑖𝑗) is the 

cross-efficiency of the jth unit, which has been evaluated by the ith unit. In other words, 
in column (l) of the abovementioned matrix, (𝑒.𝑙) is the cross-efficiency vector of unit 
l . Now, for every DMU like l, the mean is taken from every column (such as l), from 
which we can obtain and conclude the cross-efficiency ranking of that unit which is 
represented as 𝑒�̅�  (Lim et al., 2014):   

(17) el̅ =
1

n
∑ ekl

n

k=1

  

For each DMU to achieve the highest efficiency score in DEA, it designates the 
highest weights to its points of strength; and the lowest weights to its points of 
weakness. In other words, each DMU in DEA does not require considering the selected 
set of weights for the other DMUs, and only utilizes its weights. Though, when DEA is 
used to assign an asset portfolio option within a multi-criteria decision-making 
(MCDM) framework, the weights to measure efficiency are determined externally and 
may modify over time. So this mechanism is no longer appropriate for use, although it 
proves valid for evaluating efficiency. To eliminate the aspect of risk due to weight 
changes, the utilization of DEA cross-efficiency is one of the modes to confront the 
problem.   

Based on evaluating cross-efficiency, all the DMUs are ranked at a desirable level, 
and their efficiency for all the indexes is relatively good. They are resilient to weight 
change, and the variance of their cross-efficiency is relatively small. However, units 
that have performed well in a series of criteria have a lower score, are exposed to 
modifications in weight, and have a high cross-efficiency performance. Due to the 
reasons mentioned, the cross-efficiency evaluation helps to select a stock portfolio in 
which the DMUs are stable (Lim et al. 2014). 

2.3. Mean and Variance Cross-Efficiency Models 

In selecting an asset portfolio, the risk of weight modifications consists of two 
parts: the sole and single risk of each DMU unit; and the risk between the units of 
DMUs. The risk of individual DMUs could be illustrated by the variance of the cross-
efficiency, of each distinctive unit of DMU, in the stock portfolio, and the risk between 
the units of DMUs, can be demonstrated by the covariance between each pair of units. 
An uncomplicated application of evaluating cross-efficiency successfully reduces risks 
for each of the units, though it is incapacitated in considering the risk between the 
DMUs (Lim et al. 2014). To conduct this matter, returns and risk for each DMU are 
regarded with a cross-efficiency and variance (performance) score, respectively. 
Similarly, for the stock portfolio 𝛺; whereas, with the unique DMUs, the returns and 
risk are described as 𝑉𝛺 = 𝑤𝑇∑𝑤  and 𝐸𝛺 = 𝑤𝑇�̅�, where, ∑ is the matrix of the cross-
efficiency variance; and (k,1) is the consistent element of the covariance between the 
cross-efficiency of the kth unit and the ith unit. Likewise, the w's are considered a weight 
vector, which is contemplated as a sum of 1. In this case, an optimum stock portfolio is 
achieved by solving the quadratic optimization model, given hereunder, that comes to 
hand (Schaerf 2002). 

Model 5: 

Min   VΩ        (18) 
s.t. (19) 
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EΩ ≥ (1 − γ)EΩ
b                       

eTw = 1                      (20) 
w≥ 0        (21) 
In which γ is the return risk swap-over parameter. 𝐸𝛺

𝑏 is the maximum of returns 
attainable of the stock portfolio and e is an appropriate return vector, the elements of 
which are similar. In models where the inputs and outputs can take adverse or 
negative values, the utilization of radial DEA/CRS models is inappropriate. Collective 
VRS models offer the scopes to accommodate negative data as inputs and outputs 
(Pastor 2007). Amidst the varied collective DEA models, we take advantage of the VRS 
collective model compared to other models, as there are numerous features, such as 
comprehensiveness and stability, in relevance with transfer and the change of interest 
rate. The DEA -VRS cumulative model with inefficient criteria is as below (Cooper et 
al. 1999): 

 
Model 6: 

Min     
1

(m+s)
(R−s− + R+s+)                  (22) 

s.t.    
Xλ + s− = xk    

(23) 

Yλ − s+ = yk    (24) 
eTλ = 1  (25) 
λ. s−. s+ ≥ 0                 (26) 

That, 𝑋 = 𝑥𝑖𝑗 ∈ 𝑅𝑛∗𝑚 and 𝑌 = 𝑦𝑟𝑗 ∈ 𝑅𝑛∗𝑠 demonstrates the inputs and outputs, 

data matrix respectively. Here, each column represents one of the units, and each row 
displays a level of one of the aspects of the factors of the relative DMU. 𝑅− and 𝑅+ is 
also described in the following form: 

R− = (
1

R1
− .

1

R2
− .

1

R3
− . … .

1

Rm
− )       

(27) 

R+ = (
1

R1
+ .

1

R2
+ .

1

R3
+ . … .

1

Rs
+)      

(28) 
Ri

− = max
j=1……n

{xij} − min
j=1….n

{xij}                 i = 1,...,m           
(29) 

Ri
+ = max

j=1…..n
{yij} − min

j=1….n
{xyij}               r= 1,…,s                                                          

(30) 
The dual model (6) is as given hereunder: 
                 
Model 7: 

Max    ek
d = pyk − qxk + ξ                     

s.t.                      
           (31) 

pY − qX + ξe < 0                                                                                              (32) 

p ≥
1

m+s
R+                                           (33) 

q ≥
1

m+s
R−                                          (34) 

In the abovementioned model, vectors p and q are weights of the inputs and 
outputs. In the case that, for the unit (1), the optimum response is illustrated by * the 
cross-efficiency for the lth  unit, which is appraised by the kth unit, signifies that,  𝑒𝑘𝑙

∗  is 
computed  as follows: 

ekl
∗ = pk

∗ yk − qk
∗ xk + ξk                                      (35) 
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2.4. A combined Markowitz and a cross-efficiency DEA model 

To evaluate the risk, returns, and efficiency of the model rendered below, Omrani and 

Mashayekhi (2017) proposed the said model. 

Model 8: 
 

 𝑀𝑎𝑥    ∑ wi
N
i=1 R̅i    (36) 

 Min     ∑ ∑ wiwj
N
j=1 Cov(Ri. Rj)

N
i=1   (37) 

Max      ∑ wi
N
i=1 e̅i                                 (38) 

 Min     ∑ ∑ wiwj
N
j=1 Cov(ei. ej)

N
i=1   (39) 

 s.t.   

∑ zi ≤ h      n
i=1    

(40) 

lizi ≤ wi ≤ uizi                               i=1,…,N       (41) 

∑ wi = 1N
i=1   (42) 

wi ≥ 0                                                i = 1. … . N (43) 

In the abovementioned model, 𝑧𝑖  is a binary variable; when the ith asset takes place 
in the stock portfolio, it sums it as (1); if this is not the case, it is (0). Variables li and ui 
are respectively in relevance with the minimum and maximum percentage of 
investments of the total budget, which pertains to the ith variable in the stock portfolio. 
In contrast, h is the maximum number of stocks selected in the stock portfolio. 
In model (8), the objective functions (36 and 37) are the same ones present in the 

Markowitz model. The mentioned is employed to maximize returns and minimize risk 

returns. The objective functions (38 and 39) optimize portfolio efficiency and reduce 

portfolio risk. Constraint (40) restricts the number of stocks present in the portfolio. 

Constraint (41) demonstrates the maximum and minimum of the total budget deficit, 

which is liable for allotment to each share. The values h, 𝑙𝑖  and 𝑢𝑖  can vary and be 

following the investor's opinion.  

3. A combined Markowitz model with intuitionistic fuzzy returns 
and a cross-efficiency model 

As a development of the model rendered in the prior section (Model 8), we seek to 

contemplate the absence of certainty in the form of trapezoidal intuitionistic fuzzy numbers 

for returns. The new model combines the Markowitz and cross-efficiency DEA models with 

intuitionistic fuzzy numbers. 
In this relevance, permit us to initially present and denote the definitions we will 
require in this section. 

�̃�𝐼 Which is a fuzzy intuitionistic trapezoidal number, can be contemplated upon as 
𝐴 = (𝑎1. 𝑎2. 𝑎3. 𝑎4. 𝑏1. 𝑏2. 𝑏3. 𝑏4), where the membership and non-membership 
functions 𝜇𝐴𝐼  and 𝜈𝐴𝐼 , respectively, are denoted as given below (Puri and Yadav 2015) 

 

μÃI = {

fA(x)         a1 ≤ x <  a2

1                a2 ≤ x ≤  a3   

gA(x)         a3 < x ≤  a4

0                      otherwise

                                                                 (44) 
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νÃI = {

hA(x)         b1 ≤ x <  b2

0                b2 ≤ x ≤  b3   

kA(x)         b3 < x ≤  b4

1                      otherwise

                                                                                     (45) 

 

Such that, 0 ≤ μÃI(x) + νÃI(x) ≤ 1 and 𝑎1. 𝑎2. 𝑎3. 𝑎4. 𝑏1. 𝑏2. 𝑏3. 𝑏4 ϵ R in a way 
that 𝑏1 ≤ 𝑎1 ≤ 𝑏2 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑏3 ≤ 𝑎4 ≤ 𝑏4. 

Functions 𝑓𝐴 and 𝑘𝐴 are continuous piecewise, Non-descending functions, respectively, 
in the intervals of [𝑎1. 𝑎2) and (𝑏3. 𝑏4] and functions gA and hA are continuous 
piecewise non-descending functions, respectively, in the intervals of (𝑎3. 𝑎4] 
and [𝑏1. 𝑏2).  

The expected distance of a fuzzy intuitionistic number �̃�𝐼 , in the above form, is a 

precise 𝐸𝐼(�̃�𝐼) interval, which has been shown as 𝐸𝐼(�̃�𝐼) = [𝐸𝐿(�̃�𝐼). 𝐸𝑅(�̃�𝐼)] and can 

be computed as given hereunder (Grzegorzewski 2003). 

EL(ÃI) =
b1+a2

2
+

1

2
∫ hA(x)dx

b2

b1
−

1

2
∫ fA(x)dx

a2

a1
  (46) 

ER(ÃI) =
a3+b4

2
+

1

2
∫ gA(x)dx

a4

a3
−

1

2
∫ kA(x)dx

b4

b3
  (47) 

On the fundaments of which, the expected value is calculated as follows: 

EV(ÃI) =
EL(ÃI)+ER(ÃI)

2
                                                                                                                 

(48) 

Assuming: 

fA(x) =
x−a1

a2−a1
                                                                                                                           (49) 

gA(x) =
x−a4

a3−a4
                                                                                                                         (50) 

hA(x) =
x−b2

b1−b2
                                                                                                                       (51) 

kA(x) =
x−b3

 b4−b3
                                                                                                                       (52) 

In this case, we have: 

EV(A) =
1

8
(∑ ai +4

i=1 ∑ bi) 4
i=1                                                                                              (53) 

For calculating the variance, we have: 
VAR(x) = E(x2) − (E(x))2                                                                                                  (54) 

EL(x2) =
b1+a2

2
+

1

2
∫ hA(x2)dx

b2

b1
−

1

2
∫ fA(x2)dx 

a2

a1
   (55) 

Eu(x2) =
a3+b4

2
+

1

2
∫ gA(x2)dx

a4

a3
−

1

2
∫ kA(x2)dx

b4

b3
   (56) 

EL(x2) = −
1

3
(a1

2 + a2
2 + b1

2 + b2
2 + a1a2 + b1b2) + a1 + a2 + b1 +

b2              
(57) 

Eu(x2) = −
1

3
(a3

2 + a4
2 + b3

2 + b4
2 + a3a4 + b3b4) + a3 + a4 + b3 + b4                 (58) 

E(x2) =
EL(x2)+EU(x2)

2
                                                                                        (59) 

By inserting the variance formula and a simplification, we shall have: 

VAR(AĨ) =
1

4
(∑ ai + ∑ bi) −

1

12
(a1a2

4

i=1

+ a3a4 + b1b2 + b3b4

4

I=1

+ ∑ ai
2 + ∑ bi

2

4

i=1

) −
1

64
(∑ ai

4

i=1

+ ∑ bi

4

i=1

)2

4

i=1

 

(60) 
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By inserting computations in the model, we shall gain access to the model rendered 
below: 
Model 9: 

Max E (∑ R̃i
Iwi

N

i=1

) =
1

8
(∑(ai1 + ai2 + ai3 + ai4 + bi1 + bi2 + bi3 + bi4)wi

N

i=1

) (61) 

Min σ2(∑ R̃i
Iwi

N
i=1 ) =

1

4
∑ ((∑ aij + ∑ bij) −

1

12
(ai1ai2

4
j=1 + ai3ai4 + bi1bi2 +4

j=1
N
i=1

bi3bi4 + ∑ aij
2 + ∑ bij

24
j=1 ) −

1

64
(∑ aij

4
j=1 + ∑ bij

4
j=1 )

2
wi

4
j=1 ) 

(62) 

Max       ∑ wie̅i

N

i=1

 (63) 

Min      ∑ ∑ wiwjcov(ei. ej)

N

j=1

N

i=1

 (64) 

s.t.  

∑ zi ≤ h

N

i=1

 (65) 

 lizi ≤ wi ≤ uizi                  i = 1. … . N (66) 

∑ wi = 1

N

 i=1

 (67) 

wi ≥ 0                                    i = 1. … . N (68) 

In the abovementioned model,(𝑎1𝑗 . 𝑎2𝑗 . 𝑎3𝑗 . 𝑎4𝑗 . 𝑏1𝑗 . 𝑏2𝑗 . 𝑏3𝑗. 𝑏4𝑗) illustrates the jth 

asset returns, which has been considered a trapezoidal fuzzy number and the other 
parameters equate to the parameters defined in the fuzzy form.  
With due attention to the fact that in the abovementioned model, such as the upper 
and lower limits of investments per share; and likewise, the number of maximum 
shares present; and have come to hand in the portfolio, is determined by the investor. 
We shall eliminate the maximum constraints of the number of shares in this model; it 
will be abolished. Thereby, we shall deal with solving the following model in this paper 
as follows: 
 
Model 10: 
 

Max        E (∑ R̃i
Iwi

N

i=1

) =
1

8
(∑(ai1 + ai2 + ai3 + ai4 + bi1 + bi2 + bi3 + bi4)wi

N

i=1

) (69) 

Min       σ2(∑ R̃i
Iwi

N
i=1 ) =

1

4
∑ ((∑ aij + ∑ bij) −

1

12
(ai1ai2

4
j=1 + ai3ai4 + bi1bi2 +4

j=1
N
i=1

bi3bi4 + ∑ aij
2 + ∑ bij

24
j=1 ) −

1

64
(∑ aij

4
j=1 + ∑ bij

4
j=1 )

2
wi

4
j=1 ) 

(70) 

Max       ∑ wie̅i

N

i=1

 (71) 

Min      ∑ ∑ wiwjcov(ei. ej)

N

j=1

N

i=1

 (72) 

s.t. 

   lizi ≤ wi ≤ uizi                          i = 1. … . N 
(73) 
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    ∑ wi = 1

N

i=1

 (74) 

   wi ≥ 0                                         i = 1. … . N (75) 

4. Solving a numerical example 

So to solve a numerical example and compare the responses that have come to 
hand, we have utilized data and information relative to the companies of the Tehran 
Stock Exchange. For this objective, we have selected 50 companies from those present 
in the Tehran Stock Exchange from 2018 to 2021 in the tableau of the Tehran Stock 
Exchange. By paying heed to the fact that banks, insurance enterprises, and investment 
companies have a diverse fiscal structure from that of other companies, these 
categories of companies are not incorporated in the list of companies. Similarly, the 
information published in the fiscal statements protracting to 19/03/2021 has been 
used to survey companies' efficiency.  

4.1.  Value Returns 

The returns are considered a trapezoidal intuitionistic fuzzy number by 
considering the company's efficiency for three years (2016 to 2019). These returns, 
which are being considered, are for 50 companies; and have been rendered in Table 
(1). 

Table 1. Trapezoidal intuistic-fuzzy returns 

Asset 
ID 

Intuitionistic Fuzzy Returns 
Asset 

ID 
Intuitionistic Fuzzy Returns 

1 (0.04,0.09,0.14,0.19,-0.13,0.08,0.15,0.61) 26 (0.05,0.1,0.16,0.21,-0.21,0.09,0.17,0.71) 
2 (0.03,0.1,0.16,0.23,-0.21,0.08,0.18,0.63) 27 (0.05,0.08,0.11,0.13,-0.14,0.07,0.11,0.4) 
3 (0.05,0.09,0.12,0.15,-0.17,0.08,0.13,0.52) 28 (0.04,0.07,0.09,0.12,-0.16,0.06,0.1,0.38) 
4 (0.01,0.05,0.08,0.12,-0.21,0.04,0.09,0.44) 29 (0.09,0.11,0.14,0.16,-0.11,0.11,0.14,0.43) 
5 (0.07,0.1,0.12,0.15,-0.13,0.09,0.13,0.56) 30 (0.03,0.08,0.13,0.18,-0.28,0.07,0.14,0.58) 
6 (0.04,0.06,0.09,0.11,-0.18,0.06,0.09,0.35) 31 (0.03,0.09,0.15,0.22,-0.22,0.08,0.17,0.71) 
7 (0.05,0.12,0.18,0.25,-0.23,0.1,0.2,0.74) 32 (0.08,0.13,0.17,0.22,-0.16,0.12,0.18,0.64) 
8 (0.04,0.09,0.14,0.19,-0.23,0.08,0.15,0.66) 33 (0.07,0.09,0.1,0.11,-0.04,0.08,0.1,0.4) 
9 (0.04,0.1,0.16,0.22,-0.22,0.09,0.17,0.64) 34 (0.02,0.05,0.08,0.11,-0.14,0.04,0.09,0.34) 

10 (0.07,0.1,0.13,0.16,-0.16,0.09,0.13,0.56) 35 (0.03,0.08,0.13,0.17,-0.24,0.07,0.14,0.54) 
11 (0.04,0.08,0.11,0.14,-0.18,0.07,0.12,0.51) 36 (-0.04,0.08,0.2,0.31,-0.2,0.05,0.22,0.72) 
12 (0.08,0.11,0.14,0.17,-0.13,0.11,0.15,0.46) 37 (0.03,0.1,0.18,0.26,-0.18,0.08,0.2,0.89) 
13 (0.04,0.07,0.11,0.14,-0.2,0.07,0.12,0.52) 38 (-0.01,0.09,0.18,0.27,-0.21,0.06,0.2,0.72) 
14 (0.08,0.11,0.14,0.16,-0.16,0.1,0.14,0.43) 39 (0.06,0.11,0.16,0.22,-0.18,0.1,0.18,0.67) 
15 (-0.01,0.03,0.07,0.11,-0.2,0.02,0.08,0.32) 40 (0.04,0.07,0.11,0.14,-0.18,0.07,0.12,0.54) 
16 (0.07,0.1,0.14,0.17,-0.13,0.09,0.15,0.53) 41 (0.07,0.1,0.12,0.14,-0.12,0.09,0.13,0.48) 
17 (0.05,0.1,0.14,0.19,-0.22,0.08,0.15,0.56) 42 (0.06,0.13,0.21,0.28,-0.12,0.12,0.22,0.84) 
18 (0.07,0.1,0.14,0.17,-0.22,0.09,0.14,0.55) 43 (0.05,0.07,0.09,0.11,-0.17,0.07,0.1,0.42) 
19 (0.04,0.08,0.12,0.16,-0.15,0.07,0.13,0.59) 44 (-0.02,0.08,0.17,0.26,-0.24,0.05,0.19,0.78) 
20 (0.06,0.11,0.17,0.22,-0.22,0.1,0.18,0.7) 45 (0.1,0.12,0.13,0.14,-0.03,0.11,0.13,0.37) 
21 (0.04,0.07,0.09,0.12,-0.12,0.06,0.1,0.33) 46 (0.06,0.09,0.12,0.15,-0.16,0.08,0.13,0.35) 
22 (0.05,0.12,0.19,0.26,-0.19,0.1,0.21,0.7) 47 (0.05,0.08,0.11,0.14,-0.14,0.07,0.12,0.57) 
23 (0.06,0.1,0.13,0.16,-0.17,0.09,0.14,0.44) 48 (0.03,0.08,0.12,0.17,-0.19,0.06,0.14,0.5) 
24 (0.04,0.09,0.15,0.2,-0.26,0.08,0.16,0.71) 49 (0.13,0.16,0.19,0.22,-0.13,0.15,0.2,0.52) 
25 (0,0.06,0.12,0.18,-0.45,0.04,0.13,0.47) 50 (0.04,0.08,0.11,0.15,-0.24,0.07,0.12,0.49) 
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We have finally solved the model attained by the NSGA II algorithm and the MATLAB 
2014 Software. 

4.2.  The Input and Output Values 

Seven criteria from the input and 7 criterions from the output have been used to 
survey the efficiency. The list of criteria has been given in Table (2). The information 
relative to each issue inserted in the audited financial statements, prolonging to 
19/03/2020, has been extracted and computed. 

Table 2. Inputs and outputs 

4.3.  Model Parameters 

To solve the model with the NSGA II algorithm is as follows: 
The population has been contemplated as(𝑁𝑝𝑜𝑝), 100, 𝑝𝑚 = 0.1, 𝑝𝑐 = 0.8; the 

maximum number of iterations is equivalent to 200, 𝜇 = 2; the model has been coded 
by the MATLAB 2014 (mechanism). Similarly, the minimum investment per the ( 𝑙𝑖) 
share by the investor is 10 percent, and the maximum investment for each )𝑢𝑖) share 
has been considered as and equates to 30 percent. 

Type  Parameter  Description Perspective 

Input 

Turnover of accounts 
receivable 

Period income divided by 
accounts receivable 

Productivity 
Inventory of 

materials and goods 
Period income divided by 

inventories 

Asset turnover 
Period income divided by 

assets 

Current Ratio 
Current assets over current 

debts 

Liquidity Instantaneous Ratio 
Quick assets as to the current 

debts 
Ratio of debt to the 

shareholders' equity 
Total debt divided by 
shareholders' equity 

Debt Ratio Total debts over total assets 
Leverage 

Ratio 

Output 

Return on the 
shareholders' equity 

Net profit on the 
shareholders' equity 

 
Profitability 

Return on assets Net profit on assets 
Net profit margin Net profit on sales 

Earnings per share 
Net profit on the number of 

shares 

Income growth rate 
Current period income 
divided by the previous 

period income minus one 

Growth 
Net profit growth 

rate 

Net profit for the current 
period divided by the net 
profit for the prior period 

minus one 

Growth rate of 
earnings per share 

Current period EPS divided 
by previous period EPS 

minus one 
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4.4.  Results 

Two specifications, such as those given hereunder, are considered to select the 
stock portfolio. Concerning each of the two, we have computed the optimal portfolio, 
based on the information of the companies, including the returns, from the existing 
shares; eventually, we have compared the responses.  

Portfolio-1: A combination of the Markowitz and the cross-efficiency model with fuzzy 
returns (Mashayekhi and Omrani 2016). 

Portfolio-2: A combination of the Markowitz and the cross-efficiency model, with 
intuitionistic fuzzy returns (Model 11). 

The model results based on the weights assigned to each share are given in Table (3).   

The conceptions of the expected rate of returns, portfolio efficiency, and portfolio 
risk on the fundaments of the rate of returns, as well as the portfolio risk in terms of 
efficiency, are considered, respectively, following equations (76 to 79) (Mashayekhi 
and Omrani 2016). 
 

E(∑ R̃i
Iwi

N
i=1 )                                                                                                                 (76) 

∑ wie̅i
N
i=1                                                                                                                         (77) 

σ2(∑ R̃i
Iwi

N
i=1 )                                                                                                                (78) 

∑ ∑ wiwjcov(ei. ej)
N
j=1

N
i=1                                                                                                (79) 

In implementing the model, a set of optimum Pareto responses come to hand. The 
investor can select one of these Pareto responses, as an investment portfolio, based on 
criteria. Various criteria can be contemplated for choosing the desired portfolio. We 
have considered the highest returns, and in each model, the response with the highest 
returns is considered in this paper. The reactions achieved following these criteria are 
shown in Table (3) And Tabel (4). 

Table 3. Weights of the assets in the selected portfolio for the intuitionistic  

fuzzy returns model 

Asset ID 7 37 42 44 
weights of the assets 0.23 0.23 0.23 0.31 

Table 4. Weights of the assets in the selected portfolio for the fuzzy Returns 

model 

Asset ID 18 32 42 49 
weights of the assets 0.20 0.20 0.32 0.28 

Likewise, the responses in relevance to the objective function in each model have 
been rendered in Table (5).  

Table 5. Optimum values of the Objective Function 

Function 
Function 

Type 
Objective Fuzzy 

Intuitionistic 
Fuzzy 

z1 Maximum Expected rate of returns 0.16 0.18 

z2 Minimum 
Portfolio risk, based on the rate of 

returns 
0.003 0.24 

z3 Maximum Portfolio Efficiency 0.41 0.72 
z4 Minimum Portfolio risk, based on efficiency 0.16 0.07 
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As can be observed in the abovementioned Table, the intuitionistic fuzzy model has 
a higher expected rate of returns than the fuzzy model. The same also exhibits a better 
efficiency than the fuzzy model. Regardless of the direct correlation between risk and 
returns, based on the fundaments of the rate of returns, the risk portfolio and similarly, 
in accordance with efficiency, has also shown increment. Some other Pareto responses 
relevant to any model are presented in Table (6). 

Table 6. Some Pareto solutions obtained from the proposed model 

Type of 
Model 

Serial 
Number 

Expected 
rate of 
returns 

Portfolio risk, 
based on the 

rate of returns 

Portfolio 
Efficiency 

Portfolio 
risk, based 

on efficiency 

Intuitionistic 
fuzzy 

1 0.06 0.11 0.23 0.04 
2 0.12 0.18 0.57 0.02 
3 0.16 0.22 0.83 0.03 

Fuzzy 
1 0.08 0.0009 0.55 0.04 

2 0.11 0.0002 0.53 0.16 

3 0.14 0.005 0.80 0.05 

5. Conclusion 

This paper combined Markowitz's mean-variance model and a cross-efficiency 
model to introduce a four-objective model that increased efficiency and decreased the 
covariance of cross-efficiencies besides increasing returns and reducing the portfolio 
risk. Although many studies have addressed portfolio optimization using Markowitz's 
and cross-efficiency models independently, a few studies have combined these models 
and benefitted from the advantages of both models. Correspondingly, the returns are 
assumed as intuitionistic trapezoidal fuzzy numbers to represent return uncertainty. 
A non-dominated sorting genetic algorithm (NSGA-II) was also used to solve the new 
model. Moreover, the proposed model was implemented on 50 firms listed on the 
Tehran Stock Exchange. The results were compared in two cases intuitionistic 
trapezoidal fuzzy numbers and trapezoidal fuzzy numbers. The results indicated that, 
despite significant improvement in portfolio efficiency in the case of intuitionistic 
trapezoidal fuzzy returns, the portfolio risk was increased substantially in response to 
a slight increase in portfolio returns. Some extensions can be considered for future 
studies, such as adding constraints on transaction costs and the number of stocks 
within the portfolio. Also, other cases of return or efficiency uncertainty can be treated. 
Furthermore, it is suggested to find new models by developing efficiency 
measurement structures, such as cross-efficiency in network DEA. 
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