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Original scientific paper 
Abstract: Determining the weights of assets in a portfolio is one of the 
fundamental problems of finance. MCDM techniques are employed for asset 
allocation purposes. However, criterion weights have to be determined before 
the steps of the techniques are implemented. In this study, the weights of the 
criteria are determined by four different MCDM weight techniques (CILOS, 
CRITIC, MEREC, and SECA), and the effect of these weights on the performance 
of portfolios created with 17 MCDM techniques (ARAS, CoCoSo, CODAS, 
COPRAS, EDAS, GRA, MABAC, MAIRCA, MARCOS, MOORA, MOOSRA, OCRA, 
SAW, TODIM, TOPSIS, VIKOR, WASPAS) is examined. 297 criteria (including 
sectional and cumulative) were calculated using the mean, standard 
deviation, and correlation, based on historical returns. The returns of the S&P 
500 stocks between January 2020 and December 2021 are used as the dataset. 
Returns for the first 250 trading days are used to determine the weights of the 
criteria and the stocks in the portfolio. Returns from the following 250 trading 
days are used for performance evaluation purposes. The experiment was 
repeated for two more periods. It is found that cumulative criteria have 
significantly higher weights than sectional criteria. Differences in returns by 
industry were also examined. The results show that when the MCDM 
techniques are used to set criterion weights, a higher return is possible. 

Key words: asset allocation, portfolio optimization, multi-criteria decision 
making, criteria weights. 

1. Introduction 

Portfolio selection and determining the weights of assets in the portfolio problem 
is one of the most fundamental problems in computational finance (Li & Teo, 2021) 
and will remain a problem for practitioners, academicians, and society (Alali & Tolga, 
2019). The foundations of the problem were proposed by Markowitz (1952) with the 
classical mean-variance (MV) model. Since the model, which is based on mathematical 
programming, was introduced to the literature, studies have been carried out to 
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develop powerful alternatives to determine the weights of assets in the portfolio to 
increase the returns or decrease the risks. In stock markets, the prices of assets cannot 
be predicted with certainty. This uncertainty forms the basis of optimal portfolio 
creation efforts. If the return on the assets were known with certainty, investors would 
invest in the alternative that would yield the highest return.  

Multi-Criteria Decision Making (MCDM) is a branch of operations research (Sarkar, 
2011). MCDM provides a foundation for selecting, sorting, and prioritizing alternatives 
and helps in the overall assessment (Jahan et al., 2016). A decision matrix where rows 
indicate the alternatives and columns indicate the criteria is used as an input in a 
typical MCDM problem. Different alternatives are evaluated against a set of criteria to 
formulate a comparison of alternatives (Karunathilake et al., 2020).  The results can 
be improved further by assigning weights to different criteria, as the importance can 
vary extremely from one criterion to another (Karunathilake et al., 2020). MCDM 
techniques are one of the techniques used in determining the weights of assets in the 
portfolio. As it is detailed in the literature review section, portfolios have been created 
with ELECTRE (Vezmelai et al., 2015; Bouri et al., 2002; Xidonas et al., 2010), TODIM 
(Alali & Tolga, 2019), VIKOR (Fazli & Jafari, 2012; Jerry Ho et al., 2011), COPRAS 
(Poklepović & Babić, 2014), MAUT (Ehrgott et al., 2004), DEA (Lim et al., 2014), 
MACBETH (Bana E Costa & Soares, 2004), PROMETHEE (Albadvi et al., 2006; Bouri et 
al., 2002), TOPSIS (Nguyen & Gordon-Brown, 2012; Unvan, 2019; Kochetov, 2021) and 
MABAC (Biswas et al., 2019) techniques. Aouni et al. (2018) review the papers that 
apply multi-criteria decision making (MCDM) tools to portfolio selection. Studies using 
MCDM in portfolio selection are classified according to their subject, publication years, 
and journals. The benefits and drawbacks of MCDM techniques are discussed in detail 
in Kraujaliene (2019) and can be summarized as follows (Alali & Tolga, 2019): (1) It is 
more appealing to practitioners because no single criterion is considered; (2) it is 
easier to implement technique calculation steps; and (3) it is relatively easy to observe 
the change in the system when new criteria are added and the weight set is changed. 
However, the results of the techniques can be sensitive to the weight set used as input 
(Kraujaliene, 2019). 
  When using MCDM techniques, the weights of the criteria should be carefully 
determined since the weights of the criteria will affect the scores of the alternatives. 
There are studies in the literature in which criteria weights are determined by 
techniques such as MACBETH (Bana E Costa & Soares, 2004), BWM (Emamat et al., 
2022; Rezaei, 2015), FUCOM (Pamučar et al., 2018), AHP (Saaty, 1977), DEMATEL 
(Fazli & Jafari, 2012; Jerry Ho et al., 2011). These techniques all need the opinions of 
an expert to figure out how much weight to give each of the criteria. However, expert 
assessment may be expensive, biased, take a long time to reach, or access to expert 
assessment may not be possible. In the literature, methods have also been developed 
to determine criterion weights objectively such as CILOS (Zavadskas & Podvezko, 
2016), CRITIC (Diakoulaki et al., 1995), MEREC (Keshavarz-Ghorabaee et al., 2021) 
and SECA (Keshavarz-Ghorabaee et al., 2018). These methods do not require expert 
evaluation and calculate the weights of the criteria by considering the decision matrix. 
Therefore, in this study the criteria weights are calculated by using the objective 
weight determination techniques.  

In this study, the effect of criterion weights on the portfolio return was researched 
in detail. The weights of the criteria are determined by four different MCDM weight 
techniques (namely CILOS, CRITIC, MEREC, and SECA), and the effect of these weights 
on the performance of portfolios created with 17 MCDM techniques (namely ARAS, 
CoCoSo, CODAS, COPRAS, EDAS, GRA, MABAC, MAIRCA, MARCOS, MOORA, MOOSRA, 
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OCRA, SAW, TODIM, TOPSIS, VIKOR, WASPAS) is examined. As many techniques as 
possible were collected to perform a comprehensive performance comparison. The 
reason for choosing these 17 techniques is that they have similar computational steps 
and contain few parameters. Apart from these, there are also different MCDM 
techniques. For example, the preference function type must be determined for the 
PROMETHEE (Brans & Vincke, 1985) technique.  

Alali and Tolga (2019) is employed TODIM technique with 9 inputs for asset 
allocation purposes. The inputs include short-, mid- and long-term mean, standard 
deviation, and correlation of the returns. However, the use of shorter-term variables 
can increase the performance of the portfolio. The motivation behind this study is to 
increase the inputs by considering sectional and cumulative inputs which are 
calculated daily. Also, four objective weight determination techniques are utilized to 
determine the weights of the criteria. This work will reveal which criteria have higher 
importance weight in portfolio optimization. 

The contribution and originality of this study can be summarized as follow: 
- The decision matrix is enriched to include daily return as well as sectional 

and cumulative data.  

- Four weight determination techniques and 17 alternative evaluation 

techniques are utilized in a single study to compare the performance of the 

methods.  

- The theoretical best return concept is utilized to benchmark the performance 

of the models. 

This study tries to find answers to the following research questions: 
RQ 1: Do the weights of the different types of inputs (cumulative or sectional) differ 
from each other? 
RQ 2: Do the weights of the different groups of inputs (mean, standard deviation, or 
correlation) differ from each other? 
RQ 3: Does the returns of the MCDM portfolio greater than or equal to equally 
weighted portfolio? 
RQ 4: Does the returns of the MCDM portfolio greater than or equal to the Mean-
Variance portfolio? 
RQ 5: Does the returns of the MCDM portfolio greater than or equal to the theoretical 
best return portfolio? 
RQ 6: What are the correlation coefficients of the returns of the portfolios created with 
MCDM techniques? 
RQ 7: Which stocks has the highest average weight? 
RQ 8: What is the weight distribution of industries in the best portfolio (or any 
portfolio)? 

This paper is organized as follows: In Section 2, studies with MCDM techniques are 
summarized. In Section 3, the calculation steps of the four techniques that determine 
the criterion weights are discussed in detail. In section 4, the data set is introduced, 
and the analysis results are given. Section 5 is devoted to conclusions. 

2. Literature Review 

Studies published on asset allocation with MCDM techniques can be summarized 
in chronological order as follow. Dominiak (1997) applied the BIPOLAR technique to 
select the most attractive stocks. The proposed system is applied to the stocks on the 
Warsaw Stock Exchange. There are 39 stocks and 7 criteria in the dataset. Both 
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financial ratios and technical indicators are used as criteria. The ranking and ordering 
of stocks are reported in the study.  

Tamiz et al. (1997) compared regression analysis and goal programming. Stocks in 
the British FTSE 100 index are used in the analysis. Goal programming is used to select 
a portfolio based on the decision maker's scenarios and preferences. Interest rates and 
foreign stock market data are used as inputs in the analysis. The model results are 
compared with the results of the regression analysis model.  

Zopounidis et al. (1998) applied the ADELAIS multi-objective linear programming 
system to portfolio selection. They applied the proposed system to a dataset from the 
Athens Stock Exchange for the two years of 1989-1990. There were 52 alternatives 
and 6 criteria in the dataset.  

Hurson and Ricci-Xella (2002) employed ELECTRE-TRI and MINORA techniques to 
create a portfolio evaluation system. Their sample consists of returns from Paris Stock 
Exchange firms from 1983 to 1991. There were 28 alternatives and 11 criteria in the 
dataset. In their study, ELECTRE-TRI is used to create a synthesis criterion for 
common risk. The MINORA technique is used to rank the alternatives. Artificial criteria 
weights and portfolio ranks are reported.  

Bouri et al. (2002) developed an integrated stock evaluation system consisting of 
ELECTRE, PROMETHEE, and AHP. They employed their proposed system on a dataset 
from the Tunisian stock market. There were 37 stocks and 5 criteria in the dataset. 
Optimal proportions for selected stocks are reported.  

Bana et al. (2004) employed MACBETH to construct a portfolio. They determined 
7 criteria and 50 stocks. MACBETH weights are normalized by dividing them by their 
sum. Stock weights are reported, and performance is compared with benchmark 
models.  

Ehrgott et al. (2004) extended the Markowitz mean-variance model by integrating 
the MCDM method, namely the MAUT technique. They employed Standard & Poor's 
database of stocks and a simulated dataset.  

Albadvi et al. (2007) applied PROMETHEE to select the best stocks for investment. 
They proposed two stages to select the stocks. In the first stage, the industries are 
ranked, and in the second stage, the companies in those industries are ranked. There 
were 13 criteria for determining the ranks of industries and 28 criteria for 
determining the weights of stocks trading on the Tehran Stock Exchange. With the help 
of expert opinions, the weights of the criteria are determined.  

Unvan (2019) employed the dataset of stocks listed in BIST30 (in Turkey) for June 
2018. The dataset includes 30 alternatives (stocks) and 6 variables (criteria). The 
weights of the criteria are determined by path analysis, and these weights are used in 
TOPSIS analysis. As a result, the weights of 30 stocks after TOPSIS analysis were 
reported.  

Xidonas et al. (2010) employed the ELECTRE-TRI method to select three stocks for 
an efficient portfolio. They applied their proposed method to a dataset of 66 stocks 
operating on the Athens Stock Exchange. There were 6 criteria in the decision matrix. 
The performance of the selected stocks under different scenarios are reported in the 
study.  

Fazli and Jafari (2012) developed a hybrid MCDM-model to select the best 
securities for investment in the stock market. They combined VIKOR, DEMATEL, and 
ANP techniques. They used Iran's stock exchange market data from 2006–to 2010. 
Their model succeeded in selecting the best 2 out of 50 stocks. Financial ratios are 
used in the decision matrix. Weights of criteria is discussed. 
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Nguyen and Gordon-Brown (2012) applied SAW and TOPSIS as portfolio allocation 
processes. They applied trapezoidal fuzzy numbers and a centroid-based 
defuzzification process. The dataset used in their model is a previously introduced 
dataset in the literature that consists of nine stocks between the years 1937 and 1954. 
They used higher-degree moments as inputs to the decision matrix. They report that 
their proposed methods outperformed the mean-variance portfolio optimization 
model.  

Poklepović and Babić (2014) employed five MCDM methods: OPRAS, linear 
assignment, PROMETHEE, SAW, and TOPSIS. The weights of the criteria are 
determined by AHP. The dataset includes the stocks trading on the Croatian capital 
market between March 2012 and March 2014. The decision matrix has nineteen stocks 
(alternatives) and nine indicators (criteria). As a result, the weights of the stocks in 
two different scenarios are presented in the study.  

Lim et al. (2014) used actual financial data from 2001 to 2009 to construct a 
portfolio. The dataset used in their study involves 490-557 firms listed on the Korean 
exchange. They employed financial indicators as inputs and outputs of DEA. At the end 
of the study, it was reported that their proposed portfolio selection method was 
accomplished to yield higher risk-adjusted returns than the benchmark methods.  

Vezmelai et al. (2015) employed ELECTRE-III to construct a portfolio. There were 
6 criteria (including ratios calculated from firms' financial statements) and 50 
alternatives (stocks trading on the Tehran Stock Exchange). The significance of criteria 
is interpreted. Selected stocks are reported.  

Alali and Tolga (2019) adopted the TODIM technique for portfolio allocation. 
Alternatives are stocks listed in the S&P 500 index. Researchers calculated short-term, 
mid-term, and long-term returns, standard deviations, and correlation coefficients as 
input variables. Return is the benefit criteria, while standard deviations and 
correlation coefficients are assumed to be cost criteria. Several configurations are 
applied to fine-tune the parameters of the TODIM technique. As a result, it is reported 
that TODIM can provide a suitable weighting mechanism for the portfolio optimization 
process.  

Biswas et al. (2019) employed a two-staged filtering process to construct a 
portfolio. Data belonging to 48 funds between September 2015 to June 2018 is used in 
the study. In the first stage, the performance of each fund is determined with DEA, and 
in the second stage, the MABAC technique with entropy weights is applied.  

Emamat et al. (2022) employed ELECTRE-TRI, Best-Worst Method, and FlowSort 
methods to select stocks for a portfolio. There were 8 criteria and 50 alternatives 
(stocks on the Tehran Stock Exchange) in the decision matrix. Criteria include both 
returns and ratios obtained from the financial statements of firms. Selected stocks are 
presented under different scenarios.  

This article reviews studies in which MCDM techniques are used for stock selection 
or asset allocation in a portfolio. The review showed that MCDM techniques were 
successfully used in portfolio allocation on datasets in stock markets of different 
countries. Numerous MCDM techniques are available, and new techniques continue to 
be developed. This study aimed to comprehensively compare the performance of 
techniques on the same dataset. The weights of criteria were determined with 
objective techniques, and it was investigated to which types of criteria these 
techniques assigned higher weights. 
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3. Methodology 

The calculation steps of four MCDM methods that are employed to determine the 
criteria weights objectively are summarized in this section.  

3.1. MCDM Techniques for determining the Criteria Weights 

3.1.1.  CILOS Method 

CILOS (Criterion Impact Loss) method was developed by Zavadskas and Podvezko 
in 2016. It provides an objective method to determine the criteria weights in multi-
criteria decision-making problems.  

Suppose that there are 𝑚 alternatives and 𝑛 criteria. The decision matrix will be 
defined with Equation 1 as follow:  

𝑋 = [

𝑥11 𝑥12 … 𝑥1𝑛
𝑥21 𝑥22 … 𝑥2𝑛
… … … …
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑛

] (1) 

where 𝑥𝑖𝑗  represents the value of 𝑖th alternative ( 𝑖 ∈ {1,2, … ,𝑚}) on 𝑗th criterion 

(𝑗 ∈ {1,2, … , 𝑛}). 
In this method, the elements in the cost-criteria set are transformed into the benefit 

ones by using the following Equation 2. 

𝑥𝑖𝑗
𝑁 =

min
𝑖
𝑥𝑖𝑗

𝑥𝑖𝑗
 (2) 

The new matrix will be 𝑿 =  [𝑥𝑖𝑗
𝑁]. The values 𝑥𝑖𝑗

𝑁 corresponding to the maximum 

values of 𝑖th criteria are taken from matrix 𝑿 with 𝑘𝑖  rows to form a square matrix 𝑨 =

 [𝑎𝑖𝑗], 𝑎𝑖𝑗 = 𝑥𝑖 , 𝑎𝑖𝑗 = 𝑥𝑘𝑖𝑗  (𝑖, 𝑗 = 1,2, … , 𝑛), which implies that the highest values of all 

criteria will be located in the principal diagonal of the matrix. The 𝑖th row of matrix 𝑨 
contains the elements of the row 𝑘𝑖  of matrix 𝑿. The matrix of the relative loss 𝑷 =

[𝑝𝑖𝑗] is formed by following Equation 3. 

𝑝𝑖𝑗 =
𝑥𝑗 − 𝑎𝑖𝑗

𝑥𝑗
=
𝑎𝑖𝑖 − 𝑎𝑖𝑗

𝑎𝑖𝑖
, (𝑝𝑖𝑖 = 0; 𝑖, 𝑗 = 1,2,… , 𝑛) (3) 

The elements 𝑝𝑖𝑗  in the CILOS matrix 𝑷 show the relative loss of the 𝑗th criterion, if the 

𝑖th criterion is selected to be the best.  
The main diagonal of the 𝑷 matrix is replaced with the sum of the rows of 𝑷 matrix 

to obtain the 𝑭 matrix (Equation 4).  
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𝐹 =

[
 
 
 
 
 
 
 
 
 − ∑ 𝑝𝑖1

𝑛

(𝑖=1)

𝑝12 … 𝑝1𝑛

𝑝21 − ∑ 𝑝𝑖2

𝑛

(𝑖=1)

… 𝑝2𝑛

… … … …

𝑝𝑚1 𝑝𝑚2 … − ∑ 𝑝𝑖𝑛

𝑛

(𝑖=1) ]
 
 
 
 
 
 
 
 
 

 (4) 

 
The 𝑭 matrix is used in the following systems of equation: 

𝑭𝒘 = 0 (5) 

Since a homogenous system of 𝑚 equations and 𝑚 unknowns have an infinite number 
of solutions, the following line is added to the equation system of equation: 

𝑤1 +𝑤2 +⋯+𝑤𝑛 = 1 (6) 

3.1.2.  CRITIC Method 

CRITIC (Criteria Importance Through Intercriteria Correlation) method was 
developed by Diakoulaki and colleagues in 1995. Let the decision matrix be as in 
Equation 1. The matrix will be normalized by using the following Equation 7. 

𝑥𝑖𝑗
𝑁 = 

{
 
 

 
 

𝑥𝑖𝑗 −min
𝑘
𝑥𝑘𝑗

max
𝑘
𝑥𝑘𝑗 −min

𝑘
𝑥𝑘𝑗

, 𝑖𝑓 𝑗 ∈ 𝐵𝐶

max
𝑘
𝑥𝑘𝑗 − 𝑥𝑖𝑗

max
𝑘
𝑥𝑘𝑗 −min

𝑘
𝑥𝑘𝑗

, 𝑖𝑓 𝑗 ∈ 𝐶𝐶

 (7) 

where 𝐵𝐶 and 𝐶𝐶 represents benefit and cost criteria respectively. Let 𝑉𝑗 =

[𝑥𝑖𝑗
𝑁]
𝑚×1

denotes the vector of 𝑗th (𝑗 ∈ {1,2, … ,𝑚}) criterion. Let 𝜌𝑗𝑘  denotes the 

correlation between 𝑗th and 𝑘th vectors (𝑗 and 𝑘 ∈ {1,2, … ,𝑚}). The correlation 
coefficient is calculated using the following Equation 8: 

𝜌𝑗𝑘 =
∑ (𝑥𝑖𝑗

𝑁 − 𝑥𝑗
𝑁̅̅ ̅̅ )(𝑥𝑖𝑘

𝑁 − 𝑥𝑘
𝑁̅̅ ̅̅ )𝑚

𝑖=1

√∑ (𝑥𝑖𝑗
𝑁 − 𝑥𝑗

𝑁̅̅ ̅̅ )
2

𝑚
𝑖=1 ∑ (𝑥𝑖𝑘

𝑁 − 𝑥𝑘
𝑁̅̅ ̅̅ )

2
𝑚
𝑖=1

 (8) 

All of the possible correlation coefficients are represented in a matrix as following 

𝜌𝑖𝑗 = [

𝜌11 𝜌12 … 𝜌1𝑚
𝜌21 𝜌22 … 𝜌2𝑚
… … … …
𝜌𝑚1 𝜌𝑚2 … 𝜌𝑚𝑚

] (9) 

𝜌11, 𝜌22, … , 𝜌𝑚𝑚 will be equal to 1.  
The standard deviation of the elements of each vector (𝜎𝑗) is calculated with the 

following Equation 10: 
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𝜎𝑗 =
√∑ (𝑥𝑖𝑗

𝑁 − 𝑥𝑗
𝑁̅̅ ̅̅ )

2
𝑚
𝑖=1

𝑚 − 1
  

𝜎𝑗 = [𝜎1 𝜎2 … 𝜎𝑛] 

(10) 

Criteria scores are calculated by using the following Equation 11: 

𝑐𝑗 = 𝜎𝑗∑(1− 𝑟𝑘𝑗)

𝑚

𝑘=1

 (11) 

Finally, all of the criteria scores are normalized by using the following equation to 
obtain the criteria of the weights in the interval [0,1] which satisfies ∑𝑤 = 1. 

𝑤𝑗 =
𝑐𝑗

∑ 𝑐𝑘
𝑛
𝑘=1

 (12) 

3.1.3.  MEREC Method 

MEREC (Method based on the Removal Effects of Criteria) was developed by 
Keshavarz-Ghorabaee and colleagues (2021). This method also aims to determine the 
criteria weights objectively.  

Suppose there are 𝑚 alternatives and 𝑛 criteria. The decision matrix will be as in 
Equation 1. Normalization of the matrix will be ensured by applying the following 
equation. 

𝑥𝑖𝑗
𝑁 = 

{
 
 

 
 
min
𝑘
𝑥𝑘𝑗  

𝑥𝑖𝑗
, 𝑖𝑓 𝑗 ∈ 𝐵𝐶

𝑥𝑖𝑗

max
𝑘
𝑥𝑘𝑗

, 𝑖𝑓 𝑗 ∈ 𝐶𝐶
 (13) 

 
Where 𝐵𝐶 and 𝐶𝐶 represents benefit and cost criteria set respectively. By applying 

following Equation 14, a score is assigned to all alternatives 

𝑆𝑖 = ln(1 + (
1

𝑛
 ∑|ln(𝑥𝑖𝑗

𝑁)|

𝑗

)) (14) 

Another performance score is calculated by removing each criterion with the 
following Equation 15: 

𝑆𝑖𝑗
′ = ln(1 + (

1

𝑛
 ∑ |ln(𝑥𝑖𝑗

𝑁)|

𝑘,𝑘≠𝑗

)) (15) 

Let 𝐸𝑗  denote the effect of removing 𝑗th criterion. 𝐸𝑗  can be calculated by using the 

following Equation 16: 
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𝐸𝑗 =∑|𝑆𝑖𝑗
′ − 𝑆𝑖|

𝑖

 (16) 

To obtain the final weights, removal effects (𝐸𝑗) is normalized by using the 

following Equation 17: 

𝑤𝑗 =
𝐸𝑗

∑ 𝐸𝑘𝑘
 (17) 

  3.1.4.  SECA Method 

SECA (Simultaneous Evaluation of Criteria and Alternatives) technique is 
developed by Keshavarz-Ghorabaee and colleagues in 2018. It aims to determine both 
the weights of the criteria and the scores of the alternatives in a single method.  

Suppose that there are 𝑚 alternatives and 𝑛 criteria. The decision matrix will be 
defined as in Equation 1. All of the elements of decision matrix must be greater than 
zero. The decision matrix must be normalized with the following Equation 18: 

𝑋𝑖𝑗
𝑁 =

{
 
 

 
 

𝑥𝑖𝑗

max
𝑘
𝑥𝑘𝑗

,   𝑖𝑓 𝑗 ∈ 𝐵𝐶

min
𝑘
𝑥𝑘𝑗

𝑥𝑖𝑗
,   𝑖𝑓 𝑗 ∈ 𝐶𝐶

 (18) 

where 𝐵𝐶 and 𝐶𝐶 represents benefit and cost criteria set respectively. Applying 
Equation 18 to the decision matrix ensures that the dataset will be dimensionless.  

Let 𝑉𝑗 = [𝑥𝑖𝑗
𝑁]
𝑚×1

denotes the vector of 𝑗th (𝑗 ∈ {1,2, … ,𝑚}) criterion. To capture the 

within-criterion variation information, the standard deviation of the elements of each 
vector (𝜎𝑗) is calculated (Equation 10). Let 𝜌𝑗𝑘  denotes the correlation between 𝑗th and 

𝑘th vectors (𝑗 and 𝑘 ∈ {1,2, … ,𝑚}). It is possible to calculate the degree of conflict 
between the 𝑗th criterion and the other criteria by following Equation 19: 

𝜋𝑗 =∑(1 − 𝜌𝑗𝑘)

𝑚

𝑘=1

 (19) 

both 𝜎𝑗  and 𝜋𝑗  vectors must be normalized with the following equations: 

𝜎𝑗
𝑁 =

𝜎𝑗
∑ 𝜎𝑘
𝑛
𝑘=1

 (20) 

𝜋𝑗
𝑁 =

𝜋𝑗
∑ 𝜋𝑘
𝑛
𝑘=1

 (21) 

Developers of the model proposed a multi-objective non-linear programming 
model. And later transformed that model to a simpler one as follows: 

max𝑍 = 𝜆𝑎 − 𝛽(𝜆𝑏 + 𝜆𝑐) 

𝜆𝑏 =∑(𝑤𝑗 − 𝜎𝑗
𝑁)

2
𝑛

𝑘=1

 
(22) 
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𝜆𝑐 = ∑(𝑤𝑗 − 𝜋𝑗
𝑁)

2
𝑁

𝑘=1

 

Subject to  

𝜆𝑎 ≤ Si, ∀𝑖 ∈ {1,2,… ,𝑚} 

𝑆𝑖 =∑𝑤𝑗𝑥𝑖𝑗
𝑁

𝑛

𝑘=1

, ∀𝑖 ∈ {1,2,… ,𝑚} 

𝑤𝑗 ≤ 1, ∀𝑗 ∈ {1,2,… , 𝑛} 

𝑤𝑗 ≥ 𝜖, ∀𝑗 ∈ {1,2,… , 𝑛} 

∑𝑤𝑗

𝑛

𝑘=1

= 1 

 
𝜖 is the lower bound of the criteria weights. In other words, weights of the criteria 

will be in [𝜖, 1]. The 𝛽 coefficient will be greater than 0. In this study, 𝜖 is fixed at 0.001 
and the 𝛽 coefficient at 1. One of the major advantages of the SECA method is that it 
objectively determines the weights of the criteria. 

3.2. MCDM Techniques Employed for Stock Weight Determination  

In the study, 17 MCDM techniques were used to determine the weights of stocks in 
the portfolio. Studies that introduced these techniques to the literature are 
summarized in Table 1. 
 
Table 1. MCDM techniques. 

No Abbreviation Publication 
Year 

MCDM Name  Study introducing the 
technique to the 
literature 

1 ARAS 2010 Additive Ratio Assessment (Zavadskas et al., 2010) 
2 COCOSO 2019 Combined Compromise Solution (Yazdani et al., 2019) 
3 CODAS 2016 Combinative distance-based 

Assessment 
(Keshavarz Ghorabaee 
et al., 2016) 

4 COPRAS 1994 Complex Proportional Assessment (Zavadskas et al., 1994) 
5 EDAS 2015 Evaluation Based on Distance from 

Average Solution 
(Ghorabaee et al., 2015) 

6 GRA 1982 Grey Relational Analysis (Ju-Long, 1982) 
7 MABAC 2015 Multi-Attributive Border 

Approximation area Comparison 
(Pamučar & Ćirović, 
2015) 

8 MAIRCA 2014 Multi-Attribute Ideal-Real 
Comperative Analysis 

(Pamučar et al., 2014) 

9 MARCOS 2020 Measurement of Alternatives and 
Ranking According to Compromise 
Solution 

(Stević et al., 2020) 

10 MOORA 2006 Multi-Objective Optimization on basis 
of Ratio Analysis 

(Brauers & Zavadskas, 
2006) 

11 MOOSRA 2012 Multi-Objective Optimization on the 
Basis of Simple Ratio Analysis 

(Das et al., 2012) 

12 OCRA 1994 Operational Competitiveness Rating (Parkan, 1994) 
13 SAW  1954 Simple Additive Weighting (Churchman & Ackoff, 

1954) 
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No Abbreviation Publication 
Year 

MCDM Name  Study introducing the 
technique to the 
literature 

14 TODIM 1991 Tomada de Decision Inerative 
Multicritero (in Portuguese), 
Interactive 
and Multi-criteria decision making 

(Gomes & Lima, 1991) 

15 TOPSIS 1981 Technique for Order Preference by 
Similarity to Ideal Solution 

(Hwang & Yoon, 1981) 

16 VIKOR 1998 Vise Kriterijumska Optimizacija I 
Kompromisno Resenje 

(Opricovic, 1998) 

17 WASPAS 2012 Weighted Aggregated Sum Product 
Assessment 

(Zavadskas et al., 2012) 

4. Analysis 

In the context of this paper, a portfolio refers only to a combination of shares with 
different weights in the S&P500 stock list. The return of a portfolio for a future period 
can be calculated using the following Equation 23: 

𝑟𝑝𝑜𝑟𝑡 =∑𝑤𝑖𝑟𝑖

𝑛

𝑖=1

 (23) 

where 𝑟𝑝𝑜𝑟𝑡  is the return of the portfolio, 𝑤𝑖  is the weight of asset, 𝑟𝑖  is the return of 

the asset 𝑖 and 𝑛 is the number of asset. The aim is to assign to each stock a weight (𝑤𝑖) 
and observe the return of the portfolio in the future period.  

The outline of the study is summarized in Figure 1. The first step is to retrieve 
roughly two years' worth of historical stock price data. It is assumed that stocks are 
traded for 250 days each year. The data for the first 250 days is used for portfolio 
optimization (determining the weight of the securities in the portfolio), and the data 
for the following 250 days is used to examine the portfolio's performance. The data set 
reserved for portfolio optimization is used with five separate weight sets and 17 
MCDM techniques. The performance of the resulting 85 portfolios is examined both 
statistically and financially by comparing them with benchmark models. This process 
was repeated for two different periods. All of the calculations are performed on the 
MATLAB platform. For each MCDM technique, a function is created to perform the 
necessary calculation steps. 

 

 
Figure 1. Outline of the study 
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4.1. Dataset Description  

Historical closing price data for S&P 500 stocks between January 07, 2020, and 
December 31, 2020, is used for portfolio construction. There are 250 trading days 
within this period. Historical closing price data between January 04, 2021, and 
December 29, 2021 (250 trading days) is used for performance evaluation. Data is 
retrieved from finance.yahoo.com. 

The closing price of each stock is transformed to return with the following Equation 
24: 

𝑟𝑡 =
𝑝𝑡+1 − 𝑝𝑡

𝑝𝑡
 (24) 

 
where 𝑝𝑡  represents the closing price and 𝑟𝑡  represents the return value for day 𝑡. 

Descriptive statistics for the S&P500 index and some of the stocks are represented in 
Table 2. Values in the table cover the overall 500 trading days. Jarque-Berra tests run 
for the return series of each stock as well as the return series for the S&P 500 index, 
and significant evidence is found against the null hypothesis stating normal 
distribution.  
 
Table 2. Summary of descriptive statistics. 

Stock S&P500 MMM AOS ABT … ZBH ZION ZTS 
Industry  Industrials Industrials Health 

Care 
 

Health 
Care 

Financials Health 
Care 

Min -0.12 -0.09 -0.09 -0.10 … -0.11 -0.12 -0.15 
Max 0.09 0.13 0.10 0.11 … 0.16 0.24 0.12 
Mean 0.00 0.00 0.00 0.00 … 0.00 0.00 0.00 
Median 0.00 0.00 0.00 0.00 … -0.00 -0.00 0.00 
Std. Dev. 0.02 0.02 0.02 0.02 … 0.03 0.03 0.02 
Skewness -0.67 0.02 0.08 0.07 … 0.52 0.91 -0.40 
Kurtosis 16.54 10.93 5.57 9.45 … 10.07 10.54 15.11 
Jarque-
Berra (p-
value) 0 0 0 0 … 0 0 0 

 
S&P 500 price and return data is plotted in Figure 2 (a). In the figure, it is 

determined that there were fluctuations in the price and rate of return at the beginning 
of the period, after which the price series increased steadily, and the return series 
remained relatively stable. In the (b) part of the figure, there is a scatterplot with risk 
values (standard deviation in return) on the horizontal axis and return values on the 
vertical axis. The chart also shows the risk and return values for the S&P 500 index. As 
expected, the risk value of the S&P 500 index is lower than most stocks. 
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(a) (b) 

Figure 2. S&P500 price and return series (a) and scatter diagram of returns (b) 
 

The Global Industry Classification Standard (GICS) distribution is presented in 
Table 3. There are 11 sectors. The sector with the most significant number of firms (75 
firms) was information technology, while the sector with the least number of firms (21 
firms) was determined as energy. Jarque-Berra tests are run for the return series of 
each stock, and significant evidence is found against the null hypothesis stating normal 
distribution for the industries; consumer discretionary, health care, information 
technology, and materials. In other industries, the mean return is not distributed 
normally. 
 
Table 3. GICS sector distribution of firms and descriptive statistics of daily returns. 

 
n 

Freq 
(%) Min Max Mean Median Std Skew. Kurt. JB (p ) 

Communication 
Services 27 5.35 -0.001 0.002 0.001 0.001 0.001 0.09 2.21 0.50 
Consumer 
Discretionary 61 12.08 -0.000 0.010 0.001 0.001 0.002 2.81 11.85 0.00 
Consumer 
Staples 32 6.34 -0.001 0.002 0.000 0.001 0.001 -0.54 2.88 0.28 
Energy 21 4.16 -0.002 0.001 -0.000 -0.001 0.001 0.16 1.81 0.28 
Financials 67 13.27 -0.002 0.003 0.001 0.000 0.001 0.37 3.64 0.16 
Health Care 64 12.67 -0.001 0.009 0.001 0.001 0.001 3.58 21.94 0.00 
Industrials 73 14.46 -0.002 0.004 0.001 0.001 0.001 0.14 3.95 0.14 
Information 
Technology 75 14.85 -0.001 0.009 0.002 0.002 0.001 2.237 12.14 0.00 
Materials 28 5.55 -0.000 0.004 0.001 0.001 0.001 1.54 6.30 0.00 
Real Estate 29 5.74 -0.001 0.001 0.000 0.000 0.001 -0.19 2.18 0.46 
Utilities 28 5.55 -0.001 0.001 0.000 0.000 0.001 0.28 3.63 0.50 
Total 500 100.00         

4.2. Calculation of Inputs  

The input values used in this study were developed based on the input values used 
in the study of Alali and Tolga (2019). The authors employed 9 criteria in their study, 
namely short-term return, mid-term return, long-term return, short-term standard 
deviation, mid-term standard deviation, long-term standard deviation, short-term 
correlation, mid-term correlation, and long-term correlation. Calculating the average 
correlation for each equity in the investment universe is done with the following 
equation, 25 

𝛾𝑖 =
[(∑ 𝜌𝑖,𝑝

𝑚
𝑝=1 ) − 1]

𝑚 − 1
 (25) 
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where 𝛾𝑖  is the average correlation for each equity, 𝑚 is the number of equities in 
the investment universe, and 𝜌𝑖,𝑝 is the sample correlation between equity 𝑖 and 𝑝, 

calculated with Equation 8. 
In this study, the data set has been enriched in two aspects (Figure 3): 

   - Sectional Inputs: The mean, standard deviation, and correlation values were 
calculated to cover a longer period. They were calculated in 5-day intervals for the past 
250 days. There are 50 (=250/5) 5-day intervals in the data set covering 250 trading 
days. Since the mean (Equation 26), standard deviation (Equation 27), and correlation 
coefficients (Equation 28) are calculated for each interval, there are 50x3 = 150 input 
values in this first step. These criteria are called "sectional type criteria." The 
equations used to calculate the sectional criteria are as follows: 

𝜇 =
1

5
∑ 𝑟𝑖

𝑘+5−1

𝑖=𝑘

, 𝑘 = 1, 6, 11, … , 236, 241, 246 (26) 

𝑠 =
√∑ (𝑟𝑖 −

1
5
∑ 𝑟𝑗
𝑘+5−1
𝑗=𝑘  )

2
𝑘+5−1
𝑖=𝑘

5 − 1
, 𝑘 = 1, 6, 11, … , 236, 241, 246 

(27) 

𝜌𝑎𝑏 =
∑ (𝑎𝑡 −

1
5
∑ 𝑎𝑡𝑖
𝑘+5−1
𝑖=𝑘 )

𝑝
𝑡=1 (𝑏𝑡 −

1
5
∑ 𝑏𝑡𝑖
𝑘+5−1
𝑖=𝑘 )

√∑ (𝑎𝑡 −
1
5
∑ 𝑎𝑡𝑖
𝑘+5−1
𝑖=𝑘 )

𝑝
𝑡=1

2
√∑ (𝑏𝑡 −

1
5
∑ 𝑏𝑡𝑖
𝑘+5−1
𝑖=𝑘 )

2
𝑝
𝑡=1

,

𝑘 = 1, 6, 11,… , 236, 241, 246 

(28) 

 
where, 𝑟𝑖  stands for the asset return in day 𝑖, calculated with the equation. 𝑝 

represent the number of days in the period. 𝜌𝑎𝑏  represents the correlation coefficient 
calculated between stocks 𝑎 and 𝑏. 𝑎𝑡𝑖  and 𝑏𝑡𝑖  represents the return of stock 𝑎 and 𝑏, 
respectively. 

- Cumulative Inputs: The mean (Equation 29), standard deviation (Equation 30), 
and correlation coefficient (Equation 31) values were calculated using the data set for 
the past 10 days (the most recent 10 days), the past 15 days,…., the past 245 days, and 
the past 250 days. These types of criteria are called "cumulative criteria." The 250-day 
dataset is divided into 5-day cumulative intervals. However, the calculations for the 
most recent five days were already performed in the previous step. Therefore, there 
are 49 (=(250/5)-1) cumulative intervals. Since three criteria are calculated for each 
cumulative interval, 49x3 = 147 input variables are added to the decision matrix from 
this aspect. The equations used in calculating the cumulative type criteria are as 
follows: 

𝜇𝑡 =
1

250 − 𝑘 + 1
∑𝑟𝑖

250

𝑖=𝑘

 , 𝑘 = 241, 236, 231, … , 11, 6, 1 (29) 

𝑠𝑡 =
√∑ (𝑟𝑖 − 

1
250 − 𝑘 + 1

∑ 𝑟𝑖
250
𝑖=𝑘 )

2
250
𝑖=𝑘

250 − 𝑘 + 1 − 1
, 𝑘 = 241, 236, 231, … , 11, 6, 1 

(30) 
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𝜌𝑎𝑏

=
∑ (𝑎𝑡 −

1
250 − 𝑘 + 1

∑ 𝑎𝑡𝑖
250
𝑖=𝑘 )

𝑝
𝑡=1 (𝑏𝑡 −

1
250 − 𝑘 + 1

∑ 𝑏𝑡𝑖
250
𝑖=𝑘 )

√∑ (𝑎𝑡 −
1

250 − 𝑘 + 1
∑ 𝑎𝑡𝑖
250
𝑖=𝑘 )

𝑝
𝑡=1

2
√∑ (𝑏𝑡 −

1
250 − 𝑘 + 1

∑ 𝑏𝑡𝑖
250
𝑖=𝑘 )

2
𝑝
𝑡=1

,

𝑘 = 241, 236, 231, … , 11, 6, 1 

(31) 

 
where 𝑝 represents the number of trading days in a period. 𝑟𝑖  represents the return 

for day 𝑖, calculated with the equation. 𝑎𝑡𝑖  and 𝑏𝑡𝑖  represents the return of stock 𝑎 and 
𝑏, respectively.  

 
Figure 3. Portfolio optimization and performance evaluation periods 

 
Thus, input values calculated at sectional intervals (150 criteria) and cumulative 

intervals (147 criteria) were collected together, and a decision matrix with 500 
alternatives and 297 criteria was constructed. The decision matrix is summarized in 
Table 4. A Jarque-Berra test is performed for each criterion, and significant evidence 
is found against the null hypothesis stating normal distribution.  

 
Table 4. Summary of the decision matrix. 

Cr SD ED IT F CT Min Max  Mean Med Std Skew. Kurt. 
1 08/01 14/01/20 S M B -0.02 0.05 0.00 0.00 0.01 1.34 14.04 
2 08/01 14/01/20 S S C 0.00 0.12 0.01 0.01 0.01 7.49 98.92 
3 08/01 14/01/20 S C C -0.39 0.43 0.19 0.24 0.19 -0.83 2.89 
4 15/01 22/01/20 S M B -0.02 0.02 0.00 0.00 0.01 -0.36 5.04 
5 15/01 22/01/20 S S C 0.00 0.04 0.01 0.01 0.01 1.46 5.57 
6 15/01 22/01/20 S C C -0.38 0.39 0.15 0.19 0.17 -0.83 3.06 
… … … … … … … … … … … … … 
145 18/12 24/12/20 S M B -0.02 0.03 0.00 -0.00 0.01 0.40 4.47 
146 18/12 24/12/20 S S C 0.00 0.06 0.02 0.01 0.01 1.81 7.96 
147 18/12 24/12/20 S C C -0.38 0.41 0.17 0.21 0.16 -0.89 3.24 
148 28/12 04/01/21 S M B -0.04 0.02 0.00 0.00 0.01 -1.35 16.22 
149 28/12 04/01/21 S S C 0.00 0.06 0.01 0.01 0.01 2.50 14.63 
150 28/12 04/01/21 S C C -0.45 0.48 0.24 0.27 0.18 -0.90 3.42 
151 18/12 04/01/21 C M B -0.03 0.02 0.00 0.00 0.01 -0.75 9.52 
152 18/12 04/01/21 C S C 0.00 0.05 0.01 0.01 0.01 2.09 9.73 
153 18/12 04/01/21 C C C -0.20 0.39 0.18 0.20 0.12 -0.73 3.25 
154 11/12 04/01/21 C M B -0.03 0.02 0.00 0.00 0.00 -0.13 11.30 
155 11/12 04/01/21 C S C 0.01 0.05 0.01 0.01 0.07 2.04 8.93 
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156 11/12 04/01/21 C C C -0.19 0.42 0.21 0.22 0.12 -0.69 3.09 
… … … C … … … … … … … … … 
292 15/01 04/01/21 C M B -0.00 0.01 0.00 0.00 0.00 2.52 16.20 
293 15/01 04/01/21 C S C 0.02 0.08 0.03 0.03 0.01 1.70 6.85 
294 15/01 04/01/21 C C C -0.01 0.67 0.53 0.55 0.09 -1.69 7.49 
295 08/01 04/01/21 C M B -0.00 0.01 0.00 0.00 0.00 2.54 16.41 
296 08/01 04/01/21 C S C 0.02 0.08 0.03 0.03 0.01 1.71 6.89 
297 08/01 04/01/21 C C C -0.01 0.67 0.53 0.54 0.09 -1.68 7.43 
SD : Starting Date (DD/MM). All of the dates are in 2020 
ED : Ending Date (DD/MM/YY) 
IT: Input Type (S = Sectional , C = Cumulative) 
F : Features ( M = Mean, S = Standard Deviation, C = Correlation) 
CT : Criteria Type  ( B = Benefit, C = Cost) 

After the decision matrix is created, it is necessary to determine whether each 
criterion is a benefit or a cost type. It is essential to determine the type of the criteria 
because different normalization equations must be used according to the criteria type 
(Equations 2, 7, 13, and 18). Following the study of Alali and Tolga (2019), the average 
return values are considered to be of benefit characteristic, and the standard deviation 
and correlation values to be of cost characteristic. For benefit (cost) criteria, the higher 
(lower) the score is, the better for the portfolio.  

4.3. Performance Evaluation Set  

Carrying out portfolio optimization and performance evaluation on the same data 
set will result in misleadingly high performance. That is why the weights of the criteria 
and the determination of the scores of the stocks have been carried out in the data set 
covering 250 trading days, called the portfolio optimization period. The performance 
of portfolios was examined over the following 250 trading days. The portfolios created 
with the weights determined by MCDM techniques are held for one day, two days, 
three days, ... 250 days following the last day of the portfolio optimization process.  

The performance of the MCDM portfolios has been compared with three different 
benchmark models. These models are; 

- Benchmark Model 1. In this model, the rate of return of the S&P500 index is used. 
The benchmark series is retrieved from finance.yahoo.com. 

- Benchmark Model 2. In this model, the portfolio optimization model (Mean-
Variance (MV) Model) developed by Markowitz in 1952  is used. The objective function 
in the model is to maximize the historical return with the following mathematical 
model. 

max 𝑟𝑝  = ∑𝑟𝑖𝑤𝑖

𝑚

𝑖=1

 

𝑠. 𝑡.∑𝑤𝑖 = 1

𝑚

𝑖=1

 

∀𝑤𝑗 ≤ 1 

∀𝑤𝑗 ≥ 0 

(32) 

In this Mean-Variance model (MVM), the portfolio's mean return is maximized, 
regardless of the variance (risk). The return rates of the past 250 days were used, and 
the model was run. The weights of the stocks are given in Figure 4 (a). 
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(a) (b) 

Figure 4. MV weight set (a) performance of benchmark models (b) 
 

- Benchmark Model 3. This benchmark model optimizes the maximum return that 
can be reached theoretically during a specific period. In MCDM (and Benchmark Model 
2), the weights of the securities in the portfolio are determined by using historical data, 
and the return of the portfolio created with these weights over a future period is 
examined. However, this model (Benchmark Model 3) differs from the MV model 
(Benchmark Model 2) in terms of the time of the data set used. In the MV model, the 
weights that maximize the return in the past period are optimized by using historical 
rates of return. In the theoretical best model, the weight set that provides the highest 
return during the evaluation period of the portfolio is optimized. 

The start and end dates of the portfolios and the return rates of the benchmark 
models are listed in Table 5. The risk and return plots are presented in Figure 4 (b).  

 
Table 5. Performance evaluation set and benchmark returns. 

 
Starting Date Ending Date 

S&P500 
Return (%) 

MV Return 
(%) 

Theoretical Best 
Return (%) 

Portfolio 1 04/01/21 05/01/21 -0.383610 -0.292110 -0.289680 
Portfolio 2 04/01/21 06/01/21 -0.065410 0.575573 0.578624 
Portfolio 3 04/01/21 07/01/21 0.322125 0.684094 0.686360 

… … … … … … 
Portfolio 248 04/01/21 28/12/21 0.100825 0.106433 0.106442 
Portfolio 249 04/01/21 29/12/21 0.100982 0.107136 0.107145 
Portfolio 250 04/01/21 30/12/21 0.099389 0.106008 0.106017 

  Minimum -0.383610 -0.292110 -0.289680 
  Maximum 0.367538 0.684094 0.686360 
  Mean 0.107338 0.157036 0.157143 
  Median 0.107645 0.135839 0.135854 
  Std. Dev. 0.048799 0.083602 0.083778 
  Skewness -341.843000 212.854100 216.003700 
  Kurtosis 4777.915000 1802.081000 1804.621000 

4.4. Criteria Weights  

Four MCDM techniques, which were developed to determine the weights of the 
criteria to be used in MCDM techniques, were run with the decision matrix. As a result 
of this process, weights were assigned to 297 criteria. The values of the weights are 
presented in Figure 5. 
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Figure 5. Weights of criteria with four different models 

The 5 criteria with the highest and lowest CILOS weights are listed in Table 6. 
Descriptive statistics of the weights are also presented in the table. According to the 
CILOS technique, the first five criteria assigned the highest weight are all cumulative 
criteria. Moreover, all of them are standard deviation values. The three criteria with 
the lowest weight are correlation coefficients also cumulative. 
 
Table 6. Top 5 and bottom 5 criteria and descriptive statistics of CILOS weights. 

Rank 
Sectional/Cumulative 

Starting Date 
(DD/MM/YY) 

Ending Date 
(DD/MM/YY) Group Weight 

1 Cumulative 04/12/20 04/01/21 Std Dev 0.0051596 
2 Cumulative 21/02/20 04/01/21 Std Dev 0.0051270 
3 Cumulative 28/02/20 04/01/21 Std Dev 0.0051214 
4 Cumulative 06/02/20 04/01/21 Std Dev 0.0050858 
5 Cumulative 13/02/20 04/01/21 Std Dev 0.0050744 
… … … … … … 

293 Sectional 13/04/20 17/04/20 Correlation 0.0022920 
294 Sectional 26/05/20 01/06/20 Correlation 0.0022647 
295 Cumulative 06/03/20 04/01/21 Correlation 0.0020765 
296 Cumulative 13/02/20 04/01/21 Correlation 0.0019551 
297 Cumulative 21/02/20 04/01/21 Correlation 0.0019454 

       Minimum 0.0019454 
       Maximum 0.0051596 
       Mean 0.0033670 
       Median 0.0031907 
       Std. Dev. 0.0006892 
       Skewness 0.8165600 
       Kurtosis 2.9089000 

 

The 5 criteria with the highest and lowest CRITIC weights are listed in Table 7. 
Descriptive statistics of the weights are also presented in the table. The first five 
criteria with the highest weight are the correlation coefficient, all of which are 
sectional. The five most minor weighted criteria are of sectional type. 
 
Table 7. Top 5 and bottom 5 criteria and descriptive statistics of CRITIC weights. 

Rank Sectional/Cumulative 
Starting Date 
(DD/MM/YY) 

Ending Date 
(DD/MM/YY) Group Weight 

1 Sectional 13/02/20 20/02/20 Correlation 0.006202 
2 Sectional 26/05/20 01/01/20 Correlation 0.006189 



 Ozcalici/Decis. Mak. Appl. Manag. Eng. 5 (2) (2021) 78-119 

96 

Rank Sectional/Cumulative 
Starting Date 
(DD/MM/YY) 

Ending Date 
(DD/MM/YY) Group Weight 

3 Sectional 12/08/20 18/08/20 Correlation 0.006096 
4 Sectional 22/07/20 28/07/20 Correlation 0.005994 
5 Sectional 08/01/20 14/01/20 Correlation 0.005927 
… … … … … … 

293 Sectional 13/02/20 20/02/20 Mean 0.001718 
294 Sectional 21/02/20 27/02/20 Mean 0.00171 
295 Sectional 16/06/20 22/06/20 Std Dev 0.001684 
296 Sectional 30/01/20 05/02/20 Mean 0.001582 
297 Sectional 21/02/20 27/02/20 Std Dev 0.001575 

       Minimum 0.001575 
       Maximum 0.006202 
       Mean 0.003367 
       Median 0.00329 
       Std. Dev. 0.000929 
       Skewness 0.67515 
       Kurtosis 3.5591 

 

The 5 criteria with the highest and lowest MEREC-weights are listed in Table 8. 
Descriptive statistics of the weights are also presented in the table. The MEREC 
technique assigned the top five weights to the averages of the sectional type. All of the 
criteria that have the least weight are given to the sectional type correlation 
coefficients. 

 
Table 8. Top 5 and bottom 5 criteria and descriptive statistics of MEREC weights. 

Rank Sectional/Cumulative 
Starting Date 
(DD/MM/YY) 

Ending Date 
(DD/MM/YY) Group Weight 

1 Sectional 30/01/20 05/02/20 Mean 0.008065 
2 Sectional 08/07/20 14/07/20 Mean 0.007517 
3 Sectional 06/02/20 12/02/20 Mean 0.007114 
4 Sectional 05/11/20 11/11/20 Mean 0.006969 
5 Sectional 15/07/20 21/07/20 Mean 0.006955 
… … … … … … 

293 Cumulative 21/02/20 04/01/21 Correlation 0.000500 
294 Sectional 13/03/20 19/03/20 Correlation 0.000422 
295 Sectional 28/02/20 05/03/20 Correlation 0.000325 
296 Sectional 09/01/20 15/06/20 Correlation 0.000316 
297 Sectional 06/03/20 12/03/20 Correlation 0.000190 

       Minimum 0.000190 
       Maximum 0.008065 
       Mean 0.003367 
       Median 0.002687 
       Std. Dev. 0.002129 
       Skewness 0.395160 
       Kurtosis 1.6703 

 

The 5 criteria with the highest and lowest SECA weights are listed in Table 9. 
Descriptive statistics of the weights are also presented in the table. The SECA 
technique assigned the top three weights to the cumulative correlation coefficient. It 
assigned the bottom four weights to the sectional correlation coefficients. 
 

Table 9. Top 5 and bottom 5 criteria and descriptive statistics of SECA weights. 
Rank Sectional/Cumulative Starting Date Ending Date Group Weight 

1 Cumulative 27-Nov-2020 04-Jan-2021 Correlation 0.004844 
2 Cumulative 05-Nov-2020 04-Jan-2021 Correlation 0.004461 
3 Cumulative 18-Dec-2020 04-Jan-2021 Correlation 0.003824 
4 Sectional 01-Oct-2020 07-Oct-2020 Correlation 0.003767 
5 Sectional 05-Nov-2020 11-Nov-2020 Correlation 0.003763 
… … … … … … 
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Rank Sectional/Cumulative Starting Date Ending Date Group Weight 
293 Cumulative 04-Dec-2020 04-Jan-2021 Correlation 0.001751 
294 Sectional 13-Feb-2020 20-Feb-2020 Correlation 0.00164 
295 Sectional 26-Aug-2020 01-Sep-2020 Correlation 0.000985 
296 Sectional 13-Mar-2020 19-Mar-2020 Correlation 0.000785 
297 Sectional 19-Aug-2020 25-Aug-2020 Correlation 0.000392 

      Minimum 0.000392 
       Maximum 0.004844 
       Mean 0.003367 
       Median 0.003435 
       Std. Dev. 0.000382 
       Skewness -4.43572 
       Kurtosis 30.4779 

 
Box charts of criteria weights grouped according to the sectional or cumulative 

type of the criteria are shown in Figure 6. The tailed Wilcoxon rank-sum test was 
performed to determine whether the median values of the weights assigned to the 
sectional and cumulative criteria were different (RQ 1: Do the weights of the different 
types of inputs (cumulative or sectional) differ from each other?). The null hypothesis of 
the tests and the test results are presented in Table 10. According to the data in the 
table, the CILOS, CRITIC, and SECA techniques assigned higher weight values to the 
cumulative type criteria. However, the MEREC technique assigned higher weight 
values to the sectional type criteria. These differences are statistically significant.  
 
Table 10. Hypothesis test results of cumulative and sectional comparison. 

Null Hypothesis Weight Method Zval Rank sum p 
The median of sectional weights is ≥ 
the median of cumulative weights 

CILOS 
-5.4022 18352 3.2923e-08 

The median of sectional weight is ≥ 
the median of cumulative weights 

CRITIC 
-1.7750 21036 0.0379 

The median of sectional weight is ≤ 
median of cumulative weights 

MEREC 
3.2345 24744 6.0921e-04 

The median of sectional weight is ≥ 
the median of cumulative weights 

SECA 
-4.1400 19286 1.7368e-05 
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Figure 6. Criteria weight boxplot grouping sectional/cumulative characteristic 

 
Box charts of criteria weights grouped according to the characteristics of the 

criteria are presented in Figure 7. The mean rank values of the criterion weights for 
each of the three groups are presented in Table 11. The non-parametric Kruskal-Wallis 
test was used to determine whether the weights assigned by the techniques differed 
according to the characteristics of the criteria (RQ 2: Do the weights of the different 
groups of inputs (mean, standard deviation, or correlation?) differ from each other?). A 
Tukey's test was used to determine whether the weights assigned by the techniques 
differed according to the characteristics of the criteria. multiple-comparison test was 
also performed for each method. Test results are presented in Table 12. According to 
the data in the table, the median value of the weights assigned to the criteria according 
to their characteristics differs in at least one group.  

In the CILOS technique, the highest weights were assigned to the standard 
deviation, mean, and correlation groups, respectively. In the CRITIC technique, the 
group with the highest weight values is the correlation group. The median of the 
weights assigned to this group is higher than the median value of the weights assigned 
to the other two groups (mean and standard deviation). The MEREC technique 
assigned the highest weight values to the mean, standard deviation, and correlation 
groups, respectively. The SECA method assigned the most weight to the standard 
deviation, mean, and correlation groups, respectively. 



Asset allocation with multi-criteria decision making tools 

99 

 

 
Figure 7. Box plot of weights grouping criteria characteristics 

 
Table 11. Mean ranks of weights across groups. 

 Weights 
Mean Ranks CILOS CRITIC MEREC SECA 

Group – 1 (Mean)      161.24 113.14 246.04 135.56 
Group – 2 (Standard Deviation) 221.45 113.81 141.07 213.20 

Group – 3 (Correlation Coefficient)  64.30 220.05 59.89 98.23 

 

Table 12. Kruskal-Wallis test and multiple comparison results. 
CILOS Method 

Kruskal-Wallis Results 
 𝐻0: mean ranks of the groups are the same (𝐻0: �̅�𝑚𝑒𝑎𝑛 = �̅�𝑠𝑡𝑑 𝑑𝑒𝑣 = �̅�𝑐𝑜𝑟𝑟) 

𝐻1: At least one of the mean rank of the group differs  
 SS 𝑑𝑓 MSE 𝜒2 𝑝 
Columns  1244738 2 622369.2 168.7666 2.25E-37 
Error 938409.6 294 3191.87   
Total 2183148 296    

Multiple Comparison Results 
   %95 Confidence Interval  

Group -1  Group – 2 �̂�1 − �̂�2 Lower Upper 𝑝 
1 2 -88.8206 -60.2121 -31.6036 2.42E-06 
1 3 68.33088 96.93939 125.5479 9.56E-10 
2 3 128.543 157.1515 185.76 9.56E-10 

      
CRITIC Method 

Kruskal-Wallis Results 
𝐻0: mean ranks of the groups are the same (𝐻0: �̅�𝑚𝑒𝑎𝑛 = �̅�𝑠𝑡𝑑 𝑑𝑒𝑣 = �̅�𝑐𝑜𝑟𝑟) 

𝐻1: At least one of the mean rank of the group differs 
 SS 𝑑𝑓 MSE 𝜒2 𝑝 
Columns  749675.9 2 374837.9 101.6441 8.48E-23 
Error 1433472 294 4875.756   
Total 2183148 296    

Multiple Comparison Results 
   %95 Confidence Interval  

Group -1  Group - 2 �̂�1 − �̂�2 Lower Upper 𝑝 
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1 2 -29.2752 -0.66667 27.94184 0.998 
1 3 -135.518 -106.909 -78.3006 9.56E-10 
2 3 -134.851 -106.242 -77.6339 9.56E-10 

      
MEREC 

Kruskal-Wallis Results 
𝐻0: mean ranks of the groups are the same (𝐻0: �̅�𝑚𝑒𝑎𝑛 = �̅�𝑠𝑡𝑑 𝑑𝑒𝑣 = �̅�𝑐𝑜𝑟𝑟) 

𝐻1: At least one of the mean rank of the group differs 
 SS 𝑑𝑓 MSE 𝜒2 𝑝 
Columns  1724630 2 862314.9 233.8323 1.67E-51 
Error 458518.1 294 1559.585   
Total 2183148 296    

Multiple Comparison Results 
   %95 Confidence Interval  

Group -1  Group - 2 �̂�1 − �̂�2 Lower Upper 𝑝 
1 2 76.36119 104.9697 133.5782 9.56E-10 
1 3 157.543 186.1515 214.76 9.56E-10 
2 3 52.57331 81.18182 109.7903 1.04E-09 

      
SECA Method 

Kruskal-Wallis Results 
𝐻0: mean ranks of the groups are the same (𝐻0: �̅�𝑚𝑒𝑎𝑛 = �̅�𝑠𝑡𝑑 𝑑𝑒𝑣 = �̅�𝑐𝑜𝑟𝑟) 

𝐻1: At least one of the mean rank of the group differs 
 SS 𝑑𝑓 MSE 𝜒2 𝑝 
Columns  681094.1 2 340547 92.34548 8.86E-21 
Error 1502054 294 5109.027   
Total 2183148 296    

Multiple Comparison Results 
   %95 Confidence Interval  

Group -1  Group - 2 �̂�1 − �̂�2 Lower Upper 𝑝 
1 2 -106.245 -77.6364 -49.0279 1.55E-09 
1 3 8.724822 37.33333 65.94184 0.0063 
2 3 86.36119 114.9697 143.5782 9.56E-10 

4.5. Hypothesis Tests Results  

The one-sided Wilcoxon rank-sum test was used to test whether weights on the 
criteria increase the rate of return. Three different hypothesis tests were run. First, it 
is tested whether there is a difference between portfolios to which equal weights are 
assigned. Then, a comparison was made with the MV model, and lastly, a comparison 
was made with the theoretical best model. 

Portfolios were created with each technique, and each weight and its returns were 
recorded. In addition, portfolios in which each stock is assigned an equal weight 
(1/500 = 0.002) are also created. The null hypothesis states that the median value of 
the returns of the equally weighted portfolios is greater than or equal to the median 
value of the portfolios created with the weights was tested with the non-parametric 
Wilcoxon-rank sum test (RQ 3: Does the returns of the MCDM portfolio greater than or 
equal to equally weighted portfolio?). The results are presented in Table 13.  

In the ARAS technique, the weights assigned with the CRITIC technique were able 
to achieve statistically higher returns than in the case where the equal weight was 
assigned. Weights assigned with MEREC, on the other hand, were able to achieve 
statistically higher returns in MARCOS, MOORA, OCRA, SAW, and WASPAS techniques 
compared to the situation where equal weights were assigned. 
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Table 13. Hypothesis test results: Comparison with the equal weighted model. 
  CILOS CRITIC MEREC SECA 
ARAS Rank Sum 61742 66305 58735 61427 
 Z Values -0.54694 2.277826 -2.40845 -0.74194 
 𝑝 0.707789 0.011368* 0.99199 0.770939 
COCOSO Rank Sum 62354 62692 63381 62730 
 Z Values -0.16807 0.041167 0.467699 0.064692 
 𝑝 0.566738 0.483581 0.32 0.47421 
CODAS Rank Sum 61966 63003 65008 55083 
 Z Values -0.40827 0.233695 1.474907 -4.66925 
 𝑝 0.658462 0.407611 0.070119 0.999998 
COPRAS Rank Sum 62203 62112 64146 62822 
 Z Values -0.26155 -0.31789 0.941279 0.121645 
 𝑝 0.603167 0.624715 0.173281 0.45159 
EDAS Rank Sum 62510 62681 62817 62747 
 Z Values -0.0715 0.034358 0.11855 0.075216 
 𝑝 0.528501 0.486296 0.452816 0.470022 
GRA  Rank Sum 62255 62773 63568 62494 
 Z Values -0.22936 0.091311 0.583463 -0.08141 
 𝑝 0.590706 0.463623 0.279791 0.532441 
MABAC Rank Sum 62389 62708 63291 62691 
 Z Values -0.14641 0.051072 0.411983 0.040548 
 𝑝 0.5582 0.479634 0.340176 0.483828 
MAIRCA Rank Sum 63177 62335 61076 62764 
 Z Values 0.341411 -0.17984 -0.95923 0.08574 
 𝑝 0.366397 0.57136 0.831279 0.465837 
MARCOS Rank Sum 61729 63005 65994 55939 
 Z Values -0.55499 0.234933 2.085299 -4.13934 
 𝑝 0.710548 0.40713 0.018521* 0.999983 
MOORA Rank Sum 63356 63100 75896 62440 
 Z Values 0.452222 0.293743 8.215217 -0.11484 
 𝑝 0.325554 0.384477 1.06E-16* 0.545712 
MOOSRA Rank Sum 62373 64952 61479 62566 
 Z Values -0.15631 1.44024 -0.70975 -0.03683 
 𝑝 0.562107 0.0749 0.761071 0.514691 
OCRA Rank Sum 63104 61501 66666 62491 
 Z Values 0.29622 -0.69613 2.501306 -0.08326 
 𝑝 0.383531 0.756827 0.006187* 0.533179 
SAW Rank Sum 61729 63005 65994 55939 
 Z Values -0.55499 0.234933 2.085299 -4.13934 
 𝑝 0.710548 0.40713 0.018521* 0.999983 
TODIM Rank Sum 62978 62179 62887 63145 
 Z Values 0.218218 -0.27641 0.161884 0.321601 
 𝑝 0.41363 0.608883 0.435699 0.373878 
TOPSIS Rank Sum 62389 63087 63527 62763 
 Z Values -0.14641 0.285696 0.558081 0.085121 
 𝑝 0.5582 0.387556 0.288394 0.466083 
VIKOR Rank Sum 63757 63351 60073 63166 
 Z Values 0.700465 0.449127 -1.58015 0.334601 
 𝑝 0.241819 0.32667 0.942963 0.368963 
WASPAS Rank Sum 61857 62706 68089 57076 
 Z Values -0.47575 0.049834 3.382227 -3.43547 
 𝑝 0.682873 0.480127 0.00036* 0.999704 

𝐻0:𝑚𝑒𝑞 ≥ 𝑚𝑤−𝑚𝑐𝑑𝑚  

𝐻𝑎:𝑚𝑒𝑞 < 𝑚𝑤−𝑚𝑐𝑑𝑚 

𝑚𝑒𝑞 represents the median of the equally weighted portfolios 

𝑚𝑤−𝑚𝑐𝑑𝑚 represents the median of the weighted MCDM portfolios 
(𝑤 is one of the weight methods = CILOS, CRITIC, MEREC, SECA) 
(𝑚𝑐𝑑𝑚 is one of the 17 MCDM techniques) 

Another benchmarking model is the MV model. Portfolios were created with the 
weights determined by the MV model, and the return values were recorded. A 
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comparison was made with the return rates of the portfolios created with the weights 
determined by MCDM techniques (RQ 4: Does the returns of the MCDM portfolio greater 
than or equal to the Mean-Variance portfolio?). Hypothesis test results are presented 
in Table 14. The null hypothesis is that the median value of the returns of the portfolios 
formed with the MV weights is greater or equal to the median value of the returns of 
the portfolios formed with the MCDM criterion weights. According to the results in the 
table, the median value of the returns of the portfolios created with the CILOS weights 
is higher than the median value of the portfolios created with the MV weights in the 
MOOSRA and VIKOR techniques. The median value of the returns of the portfolios 
created with the CRITIC weights is higher than the median value of the returns of the 
portfolios created with the MV weights in the ARAS, MOOSRA, and VIKOR techniques. 
The median value of the returns of the portfolios created with the MEREC weights is 
higher than the median value of the returns of the portfolios created with the MV 
weights in MOORA and MOOSRA techniques. The median value of the returns of the 
portfolios created with the SECA weights is higher than the median value of the returns 
of the portfolios created with the MV weights in MOOSRA and VIKOR techniques. In 
other comparisons, the differences found are not statistically significant. 
 

Table 14. Hypothesis test results: Comparison with the Mean-Variance model. 
  CILOS CRITIC MEREC SECA 
ARAS Rank Sum 64467 68920 61610 64135 
 Z Values 1.139996 3.896664 -0.62865 0.934469 
 𝑝 0.127144 4.88E-05 0.735212 0.175031 
COCOSO Rank Sum 61566 61715 62377 61702 
 Z Values -0.65589 -0.56365 -0.15384 -0.5717 
 𝑝 0.744053 0.713505 0.56113 0.716238 
CODAS Rank Sum 60356 61120 62068 54326 
 Z Values -1.40495 -0.93199 -0.34513 -5.13788 
 𝑝 0.919982 0.82433 0.635 1.0000 
COPRAS Rank Sum 55629 55389 57072 55979 
 Z Values -4.33124 -4.47982 -3.43794 -4.11457 
 𝑝 0.999993 0.999996 0.999707 0.999981 
EDAS Rank Sum 60345 60404 60458 60374 
 Z Values -1.41176 -1.37524 -1.34181 -1.39381 
 𝑝 0.92099 0.915471 0.910171 0.918313 
GRA  Rank Sum 60748 61056 61791 60986 
 Z Values -1.16228 -0.97161 -0.5166 -1.01495 
 𝑝 0.87744 0.834378 0.697284 0.844934 
MABAC Rank Sum 61712 61854 62413 61831 
 Z Values -0.56551 -0.4776 -0.13155 -0.49184 
 𝑝 0.714137 0.683534 0.55233 0.688584 
MAIRCA Rank Sum 64873 64335 63105 64495 
 Z Values 1.391334 1.058281 0.296839 1.15733 
 𝑝 0.082062 0.144964 0.383295 0.123569 
MARCOS Rank Sum 59430 60177 62213 55122 
 Z Values -1.9782 -1.51576 -0.25536 -4.64511 
 𝑝 0.976047 0.935211 0.600778 0.999998 
MOORA Rank Sum 54029 53393 71972 52030 
 Z Values -5.32174 -5.71546 5.786031 -6.55924 
 𝑝 1.0000 1.0000 3.60E-09 1.0000 
MOOSRA Rank Sum 67604 69833 66824 67770 
 Z Values 3.081983 4.461865 2.599117 3.184747 
 𝑝 0.001028 4.06E-06 0.004673 0.000724 
OCRA Rank Sum 54235 53191 57029 53931 
 Z Values -5.19421 -5.84051 -3.46456 -5.3824 
 𝑝 1.0000 1.0000 0.999734 1.0000 
SAW Rank Sum 59430 60177 62213 55122 
 Z Values -1.9782 -1.51576 -0.25536 -4.64511 
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  CILOS CRITIC MEREC SECA 
 𝑝 0.976047 0.935211 0.600778 0.999998 
TODIM Rank Sum 62289 61722 62215 62506 
 Z Values -0.20831 -0.55932 -0.25412 -0.07398 
 𝑝 0.582508 0.712028 0.6003 0.529486 
TOPSIS Rank Sum 62235 62738 63214 62373 
 Z Values -0.24174 0.069644 0.364316 -0.15631 
 𝑝 0.59551 0.472238 0.357811 0.562107 
VIKOR Rank Sum 66492 66126 63301 65936 
 Z Values 2.39359 2.167015 0.418174 2.049393 
 𝑝 0.008342 0.015117 0.33791 0.020212 
WASPAS Rank Sum 60544 60865 63959 57728 
 Z Values -1.28857 -1.08985 0.825515 -3.03184 
 𝑝 0.901226 0.862111 0.20454 0.998785 

𝐻0:𝑚𝑚𝑣 ≥ 𝑚𝑤−𝑚𝑐𝑑𝑚 
𝐻𝑎:𝑚𝑚𝑣 < 𝑚𝑤−𝑚𝑐𝑑𝑚 

𝑚𝑚𝑣 represents the median of the Mean-Variance portfolios 
𝑚𝑤−𝑚𝑐𝑑𝑚 represents the median of the weighted MCDM portfolios 
(𝑤 is one of the weight methods = CILOS, CRITIC, MEREC, SECA) 
(𝑚𝑐𝑑𝑚 is one of the 17 MCDM techniques) 

Another benchmarking model is the theoretical best return model. Portfolios were 
created with the weights determined by the theoretical best model, and the return 
values were recorded. A comparison was made with the return rates of the portfolios 
created with the weights determined by MCDM techniques (RQ 5: Does the returns of 
the MCDM portfolio greater than or equal to the theoretical best return portfolio?). 
Hypothesis test results are presented in Table 15. The null hypothesis states that the 
median value of the returns of the portfolios created with theoretical best return 
weights, is greater than or equal to the median value of the returns of the portfolios 
created with the MCDM criterion weights. According to the results in the table, the 
median value of the returns of the portfolios created with the CILOS weights is higher 
than the median value of the portfolios created with the MV weights in the MOOSRA 
and VIKOR techniques. The median value of the returns of the portfolios created with 
CRITIC weights is higher than the median value of the returns of the portfolios created 
with the theoretical best weights in ARAS, MOOSRA, and VIKOR techniques. The 
median value of the returns of the portfolios created with the MEREC weights is higher 
than the median value of the returns of the portfolios created with the theoretical best 
weights in MOORA and MOOSRA techniques. The median value of the returns of the 
portfolios created with the SECA weights is higher than the median value of the returns 
of the portfolios created with the theoretical best weights in the MOOSRA technique. 
In other comparisons, the differences found are not statistically significant. 
 
Table 15. Hypothesis test results: Comparison with the theoretical best return model. 

  CILOS CRITIC MEREC SECA 
ARAS Rank Sum 64452 68908 61595 64121 
 Z Values 1.130711 3.889236 -0.63794 0.925802 
 𝑝 0.129088 5.03E-05 0.738244 0.177274 
COCOSO Rank Sum 61552 61706 62358 61686 
 Z Values -0.66456 -0.56922 -0.1656 -0.58161 
 𝑝 0.746834 0.715398 0.565763 0.719584 
CODAS Rank Sum 60344 61114 62058 54318 
 Z Values -1.41238 -0.93571 -0.35132 -5.14283 
 𝑝 0.921081 0.825288 0.637324 1 
COPRAS Rank Sum 55616 55380 57062 55966 
 Z Values -4.33929 -4.48539 -3.44413 -4.12262 
 𝑝 0.999993 0.999996 0.999714 0.999981 
EDAS Rank Sum 60332 60388 60438 60364 
 Z Values -1.41981 -1.38514 -1.35419 -1.4 
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  CILOS CRITIC MEREC SECA 
 𝑝 0.922169 0.916996 0.912162 0.919243 
GRA  Rank Sum 60733 61044 61772 60973 
 Z Values -1.17157 -0.97904 -0.52837 -1.02299 
 𝑝 0.879315 0.83622 0.701378 0.846845 
MABAC Rank Sum 61696 61837 62394 61816 
 Z Values -0.57541 -0.48813 -0.14331 -0.50113 
 𝑝 0.717495 0.68727 0.556978 0.691859 
MAIRCA Rank Sum 64863 64318 63084 64479 
 Z Values 1.385144 1.047757 0.283838 1.147425 
 𝑝 0.083004 0.147375 0.388267 0.125603 
MARCOS Rank Sum 59416 60167 62206 55110 
 Z Values -1.98687 -1.52196 -0.2597 -4.65253 
 𝑝 0.976532 0.93599 0.602451 0.999998 
MOORA Rank Sum 54021 53391 71959 52026 
 Z Values -5.32669 -5.7167 5.777983 -6.56171 
 𝑝 1.000 1.000 3.78E-09 1.0000 
MOOSRA Rank Sum 67581 69820 66812 67750 
 Z Values 3.067745 4.453817 2.591689 3.172366 
 𝑝 0.001078 4.22E-06 0.004775 0.000756 
OCRA Rank Sum 54228 53180 57020 53921 
 Z Values -5.19854 -5.84732 -3.47013 -5.3886 
 𝑝 1.0000 1.0000 0.99974 1.0000 
SAW Rank Sum 59416 60167 62206 55110 
 Z Values -1.98687 -1.52196 -0.2597 -4.65253 
 𝑝 0.976532 0.93599 0.602451 0.999998 
TODIM Rank Sum 62269 61703 62189 62482 
 Z Values -0.22069 -0.57108 -0.27022 -0.08883 
 𝑝 0.587335 0.716028 0.606504 0.535393 
TOPSIS Rank Sum 62217 62722 63191 62355 
 Z Values -0.25289 0.059739 0.350078 -0.16746 
 𝑝 0.599822 0.476182 0.36314 0.566494 
VIKOR Rank Sum 66477 66117 63284 65923 
 Z Values 2.384304 2.161443 0.40765 2.041346 
 𝑝 0.008556 0.015331 0.341765 0.020608 
WASPAS Rank Sum 60534 60845 63948 57714 
 Z Values -1.29476 -1.10223 0.818705 -3.04051 
 𝑝 0.902299 0.86482 0.206477 0.998819 

𝐻0:𝑚𝑡𝑏𝑟 ≥ 𝑚𝑤−𝑚𝑐𝑑𝑚 
𝐻𝑎:𝑚𝑡𝑏𝑟 < 𝑚𝑤−𝑚𝑐𝑑𝑚 

𝑚𝑡𝑏𝑟 represents the median of the theoretical best-return portfolios 
𝑚𝑤−𝑚𝑐𝑑𝑚 represents the median of the weighted MCDM portfolios 
(𝑤 is one of the weight methods = CILOS, CRITIC, MEREC, SECA) 
(𝑚𝑐𝑑𝑚 is one of the 17 MCDM techniques) 

4.6. Correlation among Techniques  

Correlation coefficients among the returns of techniques are presented as a 
heatmap in Figure 8 (RQ 6: What are the correlation coefficients of the returns of the 
portfolios created with MCDM techniques?) There are 5 rows and columns for each 
technique indicating returns with equal weights, CILOS, CRITIC, MEREC, and SECA 
weights, respectively. CODAS and MOORA techniques have small correlation 
coefficients with other techniques. The top and bottom 10 technique combinations 
and their average correlation calculated with the help of the equation are presented in 
Table 16. The MOOSRA technique was able to produce higher correlation coefficients. 
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Table 16. Average correlation coefficients of returns. 
MCDM Technique Weight Technique Average Correlation 
MOOSRA MEREC 0.92976 
MOOSRA CILOS 0.92606 
MOOSRA SECA 0.92509 
MOOSRA EQ 0.92480 
ARAS MEREC 0.92411 
MOOSRA CRITIC 0.92152 
COPRAS CRITIC 0.92087 
EDAS CRITIC 0.91791 
EDAS MEREC 0.91764 
COPRAS CILOS 0.91757 
… … … 
SAW CRITIC 0.83605 
MOORA MEREC 0.82695 
CODAS CILOS 0.81229 
CODAS CRITIC 0.81187 
CODAS EQ 0.80900 
CODAS MEREC 0.79679 
MOORA SECA 0.72448 
MOORA EQ 0.72258 
MOORA CRITIC 0.71290 
MOORA CILOS 0.70743 

 

 
Figure 8. Correlation coefficients among techniques 

 

4.7. Performance Measurement  

The return of the techniques was compared with the theoretical best return. 
Performance measurement was carried out with MAPE, MSPE, and RMSPE values. The 
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performance metrics of the 15 models with the lowest MAPE values (best performing) 
and the SP500 and MV models are listed in Table 17.  
According to Table 17, the MCDM technique that produced the closest results to the 
theoretical best was MOORA, where CILOS determined the criterion weights. 
However, no MCDM model has been able to outperform the MV model. 
 
Table 17. Performance measurement results. 

Method Weight MAPE* MSPE RMSPE 
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MOORA CILOS 0.534909 0.031644 0.177888 
MOORA CRITIC 0.534909 0.031644 0.177888 
MABAC MEREC 2.706524 0.607484 0.779413 

COCOSO MEREC 3.153058 0.802829 0.896007 
MABAC EQ 5.331937 3.068918 1.751833 
MABAC SECA 5.359261 3.132539 1.769898 

GRA MEREC 5.539326 2.807246 1.675484 
MABAC CRITIC 5.729293 3.659542 1.912993 
TODIM SECA 5.768634 3.005054 1.733509 

COCOSO SECA 6.121478 4.494593 2.120046 
COCOSO EQ 6.12351 4.452624 2.110124 
MABAC CILOS 6.230026 4.944004 2.223512 
TOPSIS CRITIC 6.52587 3.717531 1.92809 

COCOSO CRITIC 7.042785 5.996119 2.448697 
COCOSO CILOS 7.110823 6.920949 2.63077 

 MV Model 0.498091 0.026368 0.162381 
 S&P 500 101.0263 2539.648 50.39492 

𝑒𝑘 = 𝑝𝑘 − 𝑡𝑘; 
 𝑝𝑘 : Return of MCDM model, 
 𝑡𝑘 : Return of the theoretical best model, 
𝑧 : number of the portfolio. 

4.8. Financial Performance Results  

The financial performance of the portfolios created with the models was also 
examined. At the start of the test set, $1000 is invested in the stocks at the rate of 
determining weights. The amount of the portfolio at the end of the test set was 
calculated. When $1000 was invested equally in S&P 500 stocks on January 5, 2021, 
the portfolio value on December 30, 2021 was $1,301.6. The model that showed the 
best financial performance was the model in which the MEREC technique determined 
the weights of the criteria and the CODAS technique determined the weights of the 
stocks. At the end of the period, the portfolio value was $1,501.6.  

The model with the lowest financial performance is where equal weights are 
assigned to the criteria and the COPRAS technique determines the scores of the stocks. 
The portfolio value created by the model at the end of the period was $1,289.7. The 
changes in the value of the portfolio are presented in Figure 9.  

Five weight sets (including equal weights) and 17 MCDM techniques were used in 
the study. The average return of portfolios created with the 17x5 = 85 model was 
$1,339, higher than the SP500's return at the end of the period. 
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Figure 9. Financial performance of selected models 

4.9. Stocks with Highest Scores  

In 85 models, the weights of the stocks are combined, and each stock's average 
weight value is calculated. These values are listed in order from largest to smallest, 
and the stocks with the highest average weight are listed in Table 18 (RQ 7: Which 
stocks has the highest average weight?). Returns on portfolio optimization and 
performance evaluation periods are reported in the last two columns, respectively. 
Stocks with the highest average weight have positive returns, except for SE and TYL in 
the portfolio optimization period and SHW in the performance evaluation period. It is 
a preferred situation for the investor if the average returns of the stocks with the 
highest weight are positive. 
 
Table 18. Top 10 Stocks with the Highest Average Weights. 

Average 
Weight Ticker Security GICS Sector POSP POEP PESP PEEP rPO rPE 

0.141 
JNPR Juniper 

Networks 
Information 
Technology 100.78 132.09 131.18 206.8 30.16 57.65 

0.049 STE Steris Health Care 83.56 74.26 72.31 78 -13.46 7.87 

0.045 
TGT Target Consumer 

Discretionary 93.812 705.67 729.77 1070.34 677.91 46.67 

0.010 
EW Edwards 

Lifesciences 
Health Care 

29.99 175.47 172.24 186.41 474.32 8.23 

0.009 
TYL Tyler 

Technologies 
Information 
Technology 20.7 17.17 17.35 21.04 -16.18 21.27 

0.007 PLD Prologis Real Estate 39.57 43.12 42.21 56.65 6.67 34.21 

0.004 
DVN Devon 

Energy 
Energy 

117.69 139.51 135.29 176.09 14.95 30.16 

0.004 
BF.B Brown–

Forman 
Consumer 
Staples 71.07 136.43 135.76 188.25 91.02 38.66 

0.003 
HBAN Huntington 

Bancshares 
Financials 

266.12 499.87 491.77 661.32 84.79 34.48 
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Average 
Weight Ticker Security GICS Sector POSP POEP PESP PEEP rPO rPE 

0.003 
SHW Sherwin-

Williams 
Materials 

101.79 319.12 311.35 282.35 205.87 -9.31 
POSP : Portfolio Optimization Starting Price ($) 
POEP : Portfolio Optimization Ending Price ($) 
PESP : Performance Evaluation Starting Price ($) 
PEEP : Performance Evaluation Ending Price ($) 
rPO : Return on Portfolio Optimization Period (%) 
rPE : Return on Performance Evaluation Period (%) 

 

The correlation coefficients between the return and price values of the ten stocks 
with the highest average weight, both in the portfolio optimization process and the 
portfolio performance evaluation process, are shown as a heatmap in Figure 10. In the 
performance evaluation dataset, the price correlations turned out to be slightly higher 
than in the portfolio optimization dataset. Similarly, return correlation values in the 
performance evaluation dataset are slightly higher than in the portfolio optimization 
dataset. 

 
Figure 10. Price and return correlations of top 10 stocks. 

 
5 sets of weights (equal weights, CILOS, CRITIC, MEREC, and SECA) were calculated 

to be used with 17 different MCDM techniques. When run with these weight sets, five 
different weights are calculated for the stocks in each MCDM. The average of these 
weights has been calculated. For example, in the MOORA technique, the average 
weight value of the stocks in the consumer discretionary industry was calculated as 
0.2959. The distribution of these averages according to the sectors is presented in the 
figure. The weights assigned to industries in the CODAS, MARCOS, MOORA, and SAW 
techniques differ markedly. The difference between industries is not as high as in the 
four techniques mentioned in other techniques. 
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Figure 11. Average stock weights across industries. 

 
The portfolio in best harmony with the theoretical best return values was the 

portfolio in which the weights of the criteria were determined with CILOS, and the 
weights of the stocks were determined with MOORA (Table 17). The weights of the 
sectors in the portfolio created according to this technique are shown in Figure 12 
with a pie chart (RQ 8: What is the weight distribution of industries in the best portfolio 
(or any portfolio)?). The industry with the highest weight in this portfolio was the 
Information Technology industry with 14%. The point to be considered here is that 
the sector distribution in Figure 12 and the sector weights in Figure 11 will be 
different. While the distribution of only one portfolio based on the sectors is given in 
Figure 12, the weights of five different portfolios are included in the Figure 11. 
 

 
Figure 12. The industrial weight distribution of the best portfolio (CILOS-MOORA) 
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4.10. Experiments with Different Periods  

The experiment was repeated with datasets covering different periods. 

4.10.1. Experiment 1 (January 11, 2019 – January 05, 2021) 

In this experiment, 250 days between January 11, 2019, and January 8, 2020, were 
used for portfolio optimization, and 250 days between January 9, 2020, and January 5, 
2021, were used to test the portfolios' performance. A performance comparison with 
the theoretical best set is presented in Table 19. As in the previous data set, the MV 
model has succeeded in producing the rate of return in best harmony with the 
theoretical best model. On January 9, 2020, it reaches $1,177.5, and on January 5, 2021, 
it reaches $1,177.5. The model with the best financial performance in this period was 
the one in which SECA determined the weights, and the MOORA technique determined 
the scores of the stocks. The $1,000 to be invested in this model reached $7,636.1 after 
250 days. The model with the worst financial performance in this period was the 
model in which SECA determined the weights of the criteria, and the CODAS technique 
determined the scores of the stocks. After 250 days, the $1,000 portfolio created with 
these weights is worth $1,030.7. The average value of 85 models at the end of the 
period was calculated as $1,240.1. 
 

Table 19. Performance Measurement Results (January 11, 2019 – January 05, 2021). 
Method Weight MAPE MSPE RMSPE 
MOORA EQ 0.509158 0.030874 0.175711 
MOORA CILOS 0.509158 0.030874 0.175711 
COCOSO CILOS 2.548074 2.018169 1.420623 
COCOSO MEREC 2.565769 0.833146 0.912769 
MABAC CILOS 2.782055 1.877622 1.370263 
COCOSO SECA 2.822000 1.934425 1.390836 
COCOSO EQ 2.866778 1.982592 1.408046 
MABAC MEREC 3.105209 1.069271 1.034056 
MABAC SECA 3.155448 1.901175 1.378831 
MABAC EQ 3.193452 1.939244 1.392568 
COCOSO CRITIC 3.507706 2.833204 1.683212 
MABAC CRITIC 3.629398 2.497097 1.580220 
GRA MEREC 4.537579 3.222231 1.795057 
GRA SECA 4.570835 6.691955 2.586881 
GRA EQ 4.595009 6.738409 2.595844 
 MV Performance 0.448359 0.025327 0.159144 
 S & P Performance 66.07595 426.0556 20.64111 

 

The heatmap of the correlation coefficients between the returns of the models is 
presented in Figure 13. Average correlation coefficients calculated with the help of the 
equation are presented in Table 20. Returns with the MOORA technique produced a 
lower correlation with other returns.  



Asset allocation with multi-criteria decision making tools 

111 

 

 
Figure 13. Correlation coefficients of returns 

 

Table 20. Average correlation coefficients of returns. 
MCDM Technique Weight Technique Average Correlation 
COPRAS CRITIC 0.97249 
ARAS CILOS 0.97245 
ARAS SECA 0.97241 
ARAS CRITIC 0.97241 
ARAS EQ 0.97239 
COPRAS CILOS 0.97224 
COPRAS EQ 0.97215 
COPRAS SECA 0.97213 
EDAS CRITIC 0.97188 
OCRA CRITIC 0.97187 
… … … 
MARCOS SECA 0.95632 
SAW SECA 0.95632 
CODAS CRITIC 0.95342 
CODAS MEREC 0.93758 
MOORA MEREC 0.92681 
CODAS CILOS 0.91684 
CODAS EQ 0.90375 
CODAS SECA 0.89787 
MOORA SECA 0.52938 
MOORA CRITIC -0.19156 

 

The weights of the industries according to 17 criteria are presented in Figure 14. It can 
be stated that the shares of industries in the portfolio are relatively stable compared 
to the previous period. The highest weights are assigned to the materials and 
consumer discretionary sectors in the MOORA technique. 
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Figure 14. Average stock weights across industries 

4.10.2.  Experiment 2 (July 13, 2018 – July 08, 2020) 

This experiment used 250 trading days between July 13, 2018, and July 11, 2019, 
to determine the portfolio weights. The following 250 trading days were used to test 
the portfolio performance between July 12, 2019 and July 08, 2020. Performance 
comparison with the theoretical best set is presented in Table 21. Tuesday, July 12, 
2019: On July 12, 2019, a $1,000 investment in equal weight S&P 500 securities grows  
$1054.6 after 250 trading days on July 8, 2020. 85 models created, the best financial 
performance was found in the model where the criteria were equally weighted and 
the MOORA technique determined the weights of the stocks. The value of this portfolio 
was $1,842.6 at the end of the period. CRITIC was used to figure out how much weight 
each criterion should have, and the OCRA method was used to figure out how well each 
stock did. The value of this portfolio was $1,0422.2 at the end of the period. The 
average value of portfolios made with 85 different models at the end of the time period 
was $1,108.5.  
 

Table 21. Performance measurement results (January 11, 2019 – January 05, 2021). 
Method Weight MAPE MSPE RMSPE 
MOORA CILOS 0.534909 0.031644 0.177888 
MOORA CRITIC 0.534909 0.031644 0.177888 
MABAC MEREC 2.706524 0.607484 0.779413 
COCOSO MEREC 3.153058 0.802829 0.896007 
MABAC SECA 5.328738 3.066025 1.751007 
MABAC EQ 5.331937 3.068918 1.751833 
GRA MEREC 5.539326 2.807246 1.675484 
MABAC CRITIC 5.729293 3.659542 1.912993 
COCOSO SECA 6.113243 4.442141 2.107639 
COCOSO EQ 6.123510 4.452624 2.110124 
MABAC CILOS 6.230026 4.944004 2.223512 
TOPSIS CRITIC 6.525870 3.717531 1.928090 
COCOSO CRITIC 7.042785 5.996119 2.448697 
COCOSO CILOS 7.110823 6.920949 2.630770 
VIKOR CRITIC 8.012394 4.387633 2.094668 
 MV Performance 0.498091 0.026368 0.162381 
 S & P Performance 101.0263 2539.648 50.39492 
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The heatmap of the correlation coefficients between the returns of the models is 
presented in Figure 15. Average correlation coefficients calculated with the help of the 
equation are presented in Table 22. Returns with the MOORA technique produced a 
lower correlation with other returns.  
 

 
Figure 15. Correlation coefficients of returns 

 

Table 22. Average correlation coefficients of returns. 
MCDM Technique Weight Technique Average Correlation 
EDAS CILOS 0.93501 
EDAS EQ 0.93492 
EDAS SECA 0.93491 
EDAS CRITIC 0.93480 
EDAS MEREC 0.93446 
TODIM CRITIC 0.93389 
COPRAS CILOS 0.93366 
COPRAS CRITIC 0.93356 
COPRAS EQ 0.93343 
COPRAS SECA 0.93341 
… … … 
SAW CRITIC 0.88582 
MOOSRA CRITIC 0.88533 
MOOSRA SECA 0.88108 
MOOSRA EQ 0.88058 
WASPAS SECA 0.88050 
SAW SECA 0.88050 
MARCOS SECA 0.88050 
MOORA MEREC 0.21272 
MOORA SECA -0.43926 
MOORA EQ -0.43930 
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The weights of the sectors according to 17 criteria are presented in Figure 16. It is 
clear from the figure that the different weights are assigned to the industries. In some 
techniques, there can't be a big difference in the weights given to different industries. 
In the MOORA technique, it can be seen that the information technology industry gets 
the most weight. 

 
Figure 16. Average stock weights across industries 

5. Result and Conclusion 

In this study, asset allocation is performed with MCDM techniques, and the effect 
of weights of criteria on performance has been examined. MCDM allows considering 
portfolio manager preferences and all relevant criteria for portfolio selection. As the 
weights of the criteria are determined objectively, the allocation of the asset is made 
without any normative restrictions. Return values were calculated by using the 
historical closing prices of S&P500 securities. 297 criteria, both sectional and 
cumulative types, are calculated based on the return values. The monetary amount 
and the statistical performance indicators are utilized as performance measures. Four 
different MCDM techniques determined the weights of the criteria, and it was proved 
with the help of hypothesis tests that these weights provide a performance increase. 
This paper also utilizes an index called theoretical-best return to measure the 
performance of any portfolio. The theoretical-best return is to optimize the weights of 
the assets in the portfolio so that the return will be maximized in the portfolio holding 
period. However, these weights may not be assigned by the investor at the beginning 
of the portfolio holding period since the weights are optimized by using the future 
return values.  

The cumulative criteria were determined to have higher weights in three of the 
four different MCDM techniques considering the input variables. Thus, it may be 
helpful to focus on cumulative criteria in further studies. Neither group of mean, 
standard deviation, or correlation coefficients differed evidently from the other. 
Although different techniques have assigned high weights to different groups, there is 
no consensus among the four techniques. Results indicate that for the first experiment, 
the MCDM technique that produced the closest results to the theoretical best return 
was MOORA, where CILOS determined the criterion weights. 14% of this portfolio 
consists of information technology firms. The performance of the portfolios was 
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compared with the theoretical best model and it was determined that no MCDM model 
produced better results than the MV model. The most compatible results with the 
theoretical best model belong to the MV model. The best financial performance 
belongs to the CODAS technique where the criteria weights are determined with the 
MEREC technique. It accomplished to produce a 50 % return in 2021. In other words, 
a single technique was not able to produce the best results on both statistical and 
financial performance metrics. The minimum correlation coefficient among the 
techniques for the first experiment is calculated as 0.7074. This finding indicates that 
the techniques have returns that are positively correlated with each other. 

The experiments were repeated using the data set of different periods. As a result, 
it can be stated that portfolios in which the criteria weights are determined with 
MCDM techniques and the assets are allocated with the help of MCDM techniques can 
provide higher returns than the market returns. 

It is an essential advantage that expert knowledge is not used in the study. When 
using techniques such as AHP, BWM, FUCOM, DEMATEL, and MACBETH, experts need 
to make a pairwise comparison between the criteria. However, in this study, 
techniques that do not require expert knowledge have been selected while 
determining the weights of the criteria. Future studies can predict with the help of 
artificial intelligence techniques which weight and method combination will perform 
best. In this study, it is accepted that only long positions can be taken in the market, 
and short positions are not allowed. Transaction costs and dividends are omitted from 
the calculations. The proposed system can be evaluated in different countries' market 
data in future studies. Some constraints may be considered. For example, the 
minimum weight of a stock in a portfolio can be considered a constraint. Commodity 
prices or exchange rates can also be added to the initial asset pool. In this study, the 
number of assets in the portfolio is fixed at 500 stocks. In further studies, it can be 
examined how the system's performance will change when fewer stocks are used. In 
this study, 297 criteria were used in the decision matrix. Studies can be carried out to 
reduce or transform the number of the criteria so that calculations can be repeated 
with a more compact decision matrix. 
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