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Original scientific paper 

Abstract: The paper presents an approach for simultaneous optimization of 
Distributed Generation (DG) penetration level and network performance 
index to obtain the optimal numbers, sites, and sizes of DG units. Two 
objective functions are formulated. These are: (II) DG penetration level, (II) 
network performance index. The minimization of the first objective reduces 
the capital investment cost of a distribution network owner (DNO) to 
integrate DG. The minimization of the second objective helps in reduction of 
network losses and improvement in node voltage profile and line loading. 
The solution approach provides a set of non-dominated solutions with 
different values of DG penetration level and network performance index. 
Thus, it offers more flexibility to a DNO to choose a final solution from the set 
of solutions according to its strategic decisions, regulatory directives, and 
budget restrictions. The solution approach used is multi-objective particle 
swarm optimization. The approach is validated on a 38-node distribution 
system. The results are compared with some existing approaches. 

Keywords: Distributed generation, multi-objective optimization, Pareto-
dominance, particle swarm optimization. 

Nomenclature 

DGS - Total DG penetration level; 

PI  - Network performance index; 

iy  - Binary decision variable (=1 if there is a DG unit in ith node, otherwise=0); 

is  - Size of the DG unit; 

ILP ( ILQ ) - Real (reactive) power loss index; 

ILO ( IVD ) - Line loading (voltage deviation) index; 
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i  - Weights for ith objective function; 

ijLO  ( ijCL ) -  Line loading (capacity) at line i-j; 

( )lN n  - Total number of lines (nodes); 

iV  - Voltage at node i; 

iter  - Iteration number; 
iter

iPV  ( iter

iX  ) - Velocity value (position value) for the  -th dimension of the i-th 

particle in iteration iter ; 

1 2( )   - Learning coefficients/factors of PSO; 

1 2( )r r  - Random number lies within [0,1]; 

iter

ipbest   - The best position value for the  -th dimension of i-th particle; 

iter

iguide  - The position of the guide particle for  -th dimension of the i-th particle; 

id ( d ) - Distance (mean) between two neighboring solutions of Pareto 

approximation fronts in   objective space. 

1.  Introduction 

The presence of distributed generation (DG) changes the conventional passive 
power distribution systems to active systems. The DG has a significant impact on the 
quality of the power supply provided by distribution systems. It can reduce active 
and reactive power losses, improve node voltage profile, reduce line loading etc 
(Pecas Lopes et al., 2007; Chiradeja & Ramakumar, 2004). Also, DG may lessen the 
impact of future load growth and it can utilize the non-conventional local resources. 
This becomes a driving force to many power system researchers to investigate its 
impact on distribution systems (Ochoa et al., 2006; Singh et al., 2007). 
Simultaneously, a lot of research is going on around the globe to determine a suitable 
optimization approach for the best allocation of DG units on distribution systems. A 
suitable optimization approach relies on a realistic problem formulation and an 
appropriate solution strategy.        

The existing approaches are basically focused on the determination of optimal 
site(s) and size(s) of DG unit(s). This is usually done by formulating suitable 
objective function(s) aiming at the optimization of several features to improve 
performance of a distribution network, for example real and reactive power losses 
(Singh et al., 2009), voltage profile (Singh et al., 2009; Mantway & Al-Muhaini, 2008), 
line loading (Singh et al., 2009; Mantway & Al-Muhaini, 2008), and short circuit 
capacity (El-Zonkoly, 2011) etc. The objective functions formulated in different 
approaches are minimization of DG installation and operational cost (De-Souza & De-
Albuquerque, 2006; Celli et al., 2005), the cost of energy purchase from the grid (Celli 
et al., 2005), and the cost of energy loss (Celli et al., 2005; Carpinelli et al., 2005) etc. 
In general, there can be multiple objective functions to be optimized in the optimal 
DG allocation problem. In some approaches (Singh et al., 2009; El-Zonkoly, 2011; 
Celli et al., 2005), the multiple objective functions are aggregated with different 
weights to form a single objective function so as to optimize them. However, if the 
objective functions conflict with each other there exist a set of trade-off solutions of 
different objectives, known as non-dominated solutions (Deb, 2004). The set of non-
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dominated solutions is also known as Pareto-approximation set. The set of solutions 
can be determined using different approaches, for example weighted aggregation of 
objectives with varying weights (Mantway & Al-Muhaini, 2008), ε-constrained 
method (Celli et al., 2005; Carpinelli et al., 2005), Pareto-dominance method (Deb, 
2004) etc. The most of the approaches are based on the constant load model, except 
in (Singh et al., 2007; Singh et al., 2009), in which it is shown that voltage dependent 
load model has significant impact on the solutions.    

Practically, the DG penetration level and network performance index conflict with 
each other up to a certain value of DG penetration level (Bollen & Hassan, 2011). The 
network performance in terms of losses, node voltage level etc., improves with 
increasing DG penetration level. But, it may deteriorate beyond a certain value of DG 
penetration level. For example, network real and reactive power losses reduce with 
increasing DG penetration level. However, they may increase after a certain value of 
DG penetration level. The node voltage and line loading can also be improved with 
increasing DG penetration level. Thus, there is a requirement to have an investigative 
study so as to determine the optimal value of DG penetration level as well as the 
optimal network performance index. In this work, the Pareto-dominance-based 
approach is used to simultaneously minimize these two objectives.   

In general, there are two ways of integrating DG in distribution systems: (I) the 
distribution network owner (DNO) is directly given license to own its generation, 
and (II) a distributed generation owner (DGO) is only given license to set up DG units 
and the DNO has to purchase energy from the DGO. In the first case, one of the 
objectives of the DNO would be minimization of the capital investment cost for DG 
installation and the operational cost of DG as well. In the second case, one of the 
objectives of the DNO would be minimization of the quantity of the energy purchased 
from the DGO, since the energy provided by DG is comparatively expensive than the 
energy provided by large central generators (De-Souza & De-Albuquerque, 2006). In 
this work, it is assumed that a DNO needs to integrate DG into distribution networks. 
Thus, one of the objectives of a DNO would be minimization of the DG penetration 
level into the network. On the other hand, another objective of the DNO would 
definitely be improvement of the performance of its network for the sake of 
customer satisfaction, which is a key issue in the current competitive power market. 
Thus, the two objective functions formulated in this work are: (i) DG penetration 
level, (ii) network performance index. The minimization of the first objective reduces 
the capital investment cost of the DNO to integrate DG. The minimization of the 
second objective helps in minimization of network losses and improvement in node 
voltage profile and line loading. Hence, lower value of the index implies to better 
performance of a network. The formulation of the second objective function is 
similar to Singh et al. (2009). However, in Singh et al. (2009) only this objective is 
optimized to determine the site and size of single DG unit. On the contrary, in this 
work, both the objective functions are simultaneously minimized using the Pareto-
dominance principle so as to obtain the sites and sizes of multiple DG units. This 
approach yields a set of non-dominated solutions representing different values of DG 
penetration level and network performance index. The voltage-dependent load 
model as reported in (Singh et al., 2009) is also used in this work.  

 The solution strategy used in this work is multi-objective particle swarm 
optimization (MOPSO). Particle swarm optimization (PSO) (Mantway & Al-Muhaini, 
2008; El-Zonkoly, 2011) is a population-based meta-heuristic algorithm, such as 
genetic algorithm (GA) (Singh et al., 2009; Celli et al., 2005; Carpinelli et al., 2005), 
evolutionary programming (De-Souza & De-Albuquerque, 2006) etc. MOPSO is the 
multi-objective version of PSO. These types of population-based meta-heuristic 
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algorithms can provide a set of non-dominated solutions in a single run. They do not 
suffer from the curse-of-dimensionality. In this work, the MOPSO variant, named as 
heuristics based selection of guides for MOPSO (HSG-MOPSO), proposed by the 
author in Sahoo et al. (2011), is used as the solution strategy and its performance is 
compared with another two MOPSO variants (Li, 2003; Zitzler et al., 2001), i.e., non-
dominated sorting MOPSO (NS-MOPSO) (Li, 2003) and strength Pareto evolutionary 
algorithm-II based MOPSO (SPEA2-MOPSO) (Ganguly et al., 2011). These two MOPSO 
variants are based on the philosophies of two well known multi-objective 
optimization algorithms of this kind, i.e., NSGA-II and SPEA2, respectively (Deb, 
2004). The proposed approach is validated on the 38-node distribution system 
reported in Singh et al. (2009).  

The paper is organized as: The multi-objective DG penetration planning 
formulation and the proposed planning algorithm using HSG-MOPSO are discussed in 
Sections 2 and 3, respectively. In Section 4, the results obtained with the simulation 
study are presented. Section 5 concludes the paper.  

2.  Multi-Objective DG Penetration Planning Problem 

The multi-objective planning problem formulated in this work is aimed at 
facilitation the decision making of a DNO in integrating DG units in distribution 
networks. Thus, the simultaneous optimization of DG penetration level and network 
performance index is the main focus of the proposed planning approach. The DG 
penetration level of a network is sum of size of all DG units. Network performance 
index formulation is similar to that of (Singh et al., 2009). It is to be noted that these 
two objectives conflict with each other up to a certain value of DG penetration level. 
The aim of this planning approach is to determine this value of DG penetration level 
and to obtain the Pareto-approximation set below to this DG penetration level. Since 
each solution in the Pareto-approximation set is equally good (Deb, 2004), this 
planning offers more flexibility to the DNO to chose a final solution for 
implementation according to its requirement. The mathematical expressions of these 
two planning objectives are: 

        
1

n

DG i i

i

S y s


                                                                                                                           (1) 

     
1 2 3 4PI ILP ILQ ILO IVD                                                                                   (2) 

The first objective function is a discrete function with discrete decision variable (

iy ) to be determined to obtain the sites of DG units and continuous variable 
is  to be 

determined to obtain the sizes of DG units. The second objective function is a 
performance index which is a sum of weighted objective functions comprising of 
network real power loss, reactive power loss, line loading, and voltage deviation. The 
real power loss index is the ratio of total real power loss with DG (

DGPL ) to the 

network real power loss without DG (PL). This index shows the improvement in real 
power loss due to DG penetration. Thus, the lower value of this index indicates better 
performance. Its mathematical expression is:  

    DGPL
ILP

PL
                                                                                                                                  (3)                                                 
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The reactive power loss index is the ratio of total reactive power loss with DG (

DGQL ) to the network reactive power loss without DG (QL). This index shows the 

improvement in reactive power loss due to DG integration. The lower value of this 
index also refers to better performance. It is mathematically expressed as:  

DGQL
ILQ

QL
                                                                                                                         (4)                                                                                                                                           

The network line loading index is the maximum value of the ratio of line loading 
to the capacity of each line. This index should be less than one to satisfy thermal limit 
of each line. The lower value of this index indicates more line capacity available in 
the network. It can be expressed as:     

      
1max l ijN

ij

ij

LO
ILO

CL


  
  

  

                                                                                                            (5)                                                     

The voltage deviation index is the maximum ratio of the voltage deviation of each 
node to the substation voltage. The node 1 is considered to be the substation node. 
The numerator represents the voltage deviation of each node with respect to the 
substation node. The lower value of this index means less voltage deviation, which is 
desirable. Its mathematical expression is:    

       1

2

1

max
in

i

V V
IVD

V


 
   

 
                                                                                                     (6)                                                                                                           

All these indices are added with suitable weights to obtain the network 
performance index, which is the second objective function in this planning problem, 
as shown in equation (2). All indices are to be ranked according to the preference of 
the DNO to set their respective weights. The highest weight is to be given to the most 
preferable index, which the DNO wants to optimize.  

This optimization is subjected to the following constraints: 
Power balance constraint: The demand and supply balance needs to be met in 

each node. 
Line capacity constraint: The loading should be less than the respective capacity 

in each line, i.e., 

          ij ijLO CL                                                                                                                               (7)                                                                                                                                     

Voltage deviation constraint: The voltage deviation in each node should be less 
than an allowable limit. 

           
1 limjV V V                                                                                                                       (8)                                                          

The proposed planning approach is done with different voltage dependent load 
models as described in (Singh et al., 2009). The Pareto-dominance principle used in 
simultaneous optimization of these two objective functions is briefly described 
below.                                          

2.1. Pareto-dominance Principle  

In an optimization problem (say, minimization) with M objective functions, a 
solution x  is said to dominate a solution y  if the following criteria are satisfied.  

    i ( ) ( )i if x f y ,and j uchthat ( ) ( )j jf x f y , [ 1,...,i M ]                                 (9)                        
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The aim is to determine a set of non-dominated solutions, in which no solution is 
inferior to others. The set of optimal non-dominated solutions is called the Pareto-
optimal set.   

3. The Multi-Objective Planning Algorithm Using HSG-MOPSO 

The multi-objective planning approach using HSG-MOPSO is described in this 
section. The particle decoding/ encoding scheme, a support subroutine used in this 
planning algorithm, is also provided.  

3.1. Multi-Objective Particle Swarm Optimization (MOPSO): An Overview 

In MOPSO, each particle representing the sites and sizes of DG units in this 
optimization problem is encoded by a continuous position vector (X) which consists 
of multi-dimensional information. The position vector is randomly chosen in initial 
iteration. Then, it is iteratively updated with particle’s velocity. The choice of initial 
velocity for a particle is also random. The velocity vector (PV) for a particle is also 
iteratively updated with the help of the respective previous best position (pbest) and 
the position of a guide. The choice of guides depends upon the MOPSO variants to be 
used. The particle velocity and position updating equations are given below. The 
updating equations for the θth-dimension of the ith-particle are taken from Sahoo et 
al. (2011).  

    1

1 1 2 2( ) ( )iter iter iter iter iter iter

i i i i i iPV PV r pbest X r guide X                                             (10)                                                        

    1 1iter iter iter

i i iX X PV  

                                                                                                      (11)                            

The guide selection is the most important task for such kind of multi-objective 
evolutionary algorithms (Sahoo et al., 2011). The heuristics-based guide selection 
technique, HSG-MOPSO, is followed in this work. In HSG-MOPSO, a set of potential 
guides is selected from an iteration and then, the set is iteratively updated using the 
set of non-dominated solutions and some dominated solutions from some specific 
regions of the feasible objective space. The dominated solutions are heuristically 
chosen from such region in the objective space where no non-dominated solutions 
are obtained. Each member of the population either follow the nearest non-
dominated guide or the nearest dominated guide. The objective is to balance 
between the exploration and exploitation.   

3.2. Particle Encoding/Decoding Scheme 

The position vector of a particle is directly encoded with the information on the 
decision on DG location at each node and the size of DG units. Thus, a particle in the 
proposed encoding scheme consists of two segments as shown in Fig. 1. In the first 
segment, the binary decision on integrating DG units in each node of a network is 
encoded. The other segment contains the sizes of DG units. All nodes of a network, 
except the substation node (i.e., Node 1), is considered to be the potential locations 
for integrating DG units. Since a particle is encoded with direct information, its 
decoding is straight-forward. In the decoding process, if yi at node i is found to be 1 a 
DG unit with size si is to be integrated in the network. Some infeasible solutions are 
to be heuristically filtered out. For example, if yi is zero and si at node i is found to be 
non-zero it is forcefully made zero. The size of a DG unit is kept between specified 
minimum and maximum values. 
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3.3. Constraint Handling Technique  

The constraints of this planning problem are handled as given below.  
The demand and supply balance constraint is met using the forward-backward 

sweep power flow subroutine which in embedded into the HSH-MOPSO.  
If line capacity constraint is violated the solution is to be penalized by adding a 

suitable penalty factor to the both objective functions. The value of the penalty factor 
is computed as the product of the maximum ratio of line loading to capacity and a 
very high integer number.  

If the voltage limit constraint is seen to be violated in any node, the solution is to 
be penalized with a suitable penalty factor in a similar way mentioned in Sahoo et al. 
(2015). 

3.4. Complete Planning Algorithm 

The pseudo codes of the complete planning algorithm are given in Fig. 2. The non-
dominated solutions are preserved in an elite archive with a fixed archive size (ηA). 
The decision on DG location is updated using the concept of binary PSO (BPSO) 
(Mantway & Al-Muhaini, 2008). The velocity updating equation in BPSO is same as 
that of continuous version of MOPSO given in equation (10). The position updating 
equation follows a sigmoid transformation to restrict the value of position to binary 
value as shown below.                         

1

1

1
( )

1 exp( )

iter

i iter

i

sig PV
PV










 
  (12) 

1

1 1,  rand(0,1)< ( )

0,     otherwise               

iter

iter i

i

sig PV
X 








 


 (13) 

 

Decisions on the 
locations of DG units 

Sizes of DG units 

y2 y3 - - - yn s2 s3 - - - sn 

 

Figure 1. Particle encoding scheme 
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4. Simulation Results 

The proposed multi-objective distribution system planning approach is evaluated 
via computer simulation studies on a 38-node distribution system. The system data 
are available in Singh et al. (2009). The MOPSO parameters are optimized 
sequentially as done in Sahoo et al. (2011). These are shown in Table 1. The plot of 
Pareto-approximation solutions in objective space is called Pareto-approximation 
front. One sample Pareto-approximation front obtained with the HSG-MOPSO for 
mixed load model is shown in Fig. 3. The comparison of the Pareto-approximation 
fronts obtained with HSG-MOPSO, SPEA2-MOPSO, and NS-MOPSO is shown in Fig. 4. 
The HSG-MOPSO is a MOPSO variant proposed in Sahoo et al. (2011). The SPEA2 is a 
GA-based multi-objective optimization approach which is originally proposed in 
Zitzler et al. (2001). The idea is borrowed to devise SPEA2-MOPSO in Ganguly et al. 
(2011). The NS-MOPSO is reported in Li (2003). The results show that the 
performances of HSG-MOPSO and NS-MOPSO are competitive and better than SPEA2-
MOPSO. A comparison of the Pareto-approximation fronts obtained with different 
load models as shown in Fig. 5. This illustrates that there is distinct difference in 
performance between the practical load models and constant load models. The best 
solutions in view of the network performance index obtained with the different load 
models with those given in Singh et al. (2009) are compared in Table 2. The results 
show that much better solutions in terms of network performance index are 

Begin 
      // ηpop = Population size of HSG-MOPSO  
      // max_iter = Number of maximum iterations   
      Randomly generate the set of initial population of position and velocity  
     vectors  for HSG-MOPSO using the particle encoding scheme; 
      Decode the particles and calculate the fitness functions; 
      Find the set of non-dominated solutions and store them in an elite   
      archive; 
      Determine the set of particles to be chosen as guides; 
      itern=1; 
     While itern<= max_iter 
          For i=1,...,ηpop  

                       Find a guide for the ith particle from the set of guides; 
                Update the particle’s velocity and position vectors; 
                Decode the particle to obtain the sites and sizes of DG units; 
                Perform the forward-backward sweep load flow; 
                Calculate the fitness functions using equations (1-2); 
          Endfor 
               Determine the set of non-dominated solutions  
               Update the set of guides; 
               itern=itern+1; 
     Endwhile 
       The Elite archive consists of the optimal solutions with different  
       number, sizes and sites of DG units; 
End 

Figure 2. Pseudo codes of the complete planning algorithm using HSG-MOPSO 
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obtained in the proposed approach. However, the DG penetration level for those 
solutions is higher than those obtained in Singh et al. (2009). In fact, the maximum 
DG penetration level which is set to 0.63 p.u. in Singh et al. (2009), results into sub-
optimal solutions. Thus, all reported optimal solutions in Singh et al. (2009) have DG 
penetration level of 0.62-0.63 p.u. The overall investigation shows that there are 
certain ranges of DG penetration level and network performance index in which 
these two objectives conflict with each other. For this 38-node system, these are 
found to be 0-3.5 p.u. and 0.4-0.8, respectively. These may vary in different systems. 
The investigation also shows that the planning algorithm should determine these 
ranges so as to provide many equally good alternative solutions to a DNO.  

Table 1. The parameters of different MOPSO variants studied here 

Parameters HSG-MOPSO SPEA2-MOPSO NS-MOPSO 
Population size 50 50 50 

Maximum iteration 200 200 200 
Learning factors ϕ1=2, ϕ2=1.5 ϕ1=2, ϕ2=1.5 ϕ1=2, ϕ2=1.5 

Size of Elite Archive 40 40 40 

Table 2. Comparison among the best solutions in view of the network 

performance index obtained with the different load models in proposed 

approach and the GA-based approach reported in Singh et al. (2009) 

Algorithms 
Constant 

load 
model 

Industri
al load 
model 

Residenti
al load 
model 

Commercia
l load 
model 

Mixed load 
model 

GA-based 
approach 

0.6539 0.7629 0.7631 0.7645 0.7647 

Proposed 
approach 

0.4363 0.4322 0.4662 0.4778 0.4594 

Figure 3. The Pareto-approximation front obtained with HSG-MOPSO for 

mixed load  
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Figure 4. Comparison among the Pareto-approximation fronts obtained 

with HSG-MOPSO, SPEA2-MOPSO, and NS-MOPSO 
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The performances of the SPEA2-MOPSO are assessed with statistical tests and 
compared with NS-MOPSO and SPEA2-MOPSO. For this purpose, 30 runs are taken 
separately for those MOPSO variants. Two performance assessment indicators, i.e., 
hypervolume and diversity indicators (Deb, 2004) are used for this comparison.  

I Hypervolume Indicator: This is an indicator used to determine the area/volume 
of objective space being dominated by the Pareto-approximation set of solutions. The 
higher value of hypervolume indicator implies to the larger area (for bi-objective 
problem) or volume (for a problem with more than 2 objective functions) being 
dominated by the approximation set of solutions. This indicates comparatively better 
solutions close to the Pareto-optimal set. In this work, the Pareto approximation 
solutions in objective space are normalized with respect to a reference point, i.e., 
(4,1). The reference point is judiciously chosen in view of the maximum values of the 
two objective functions obtained in multiple simulation run. The means and 
variances of the hypervolume indicator for different test systems are given in Table 
3. The higher hypervolume indicator is preferable because it signifies the solutions 
close to the Pareto-optimal set.  

II  Diversity Indicator: The mathematical expression for the diversity indicator () 
is shown in equation (14). It is used to measure the diversity among the solutions in 
a set of Pareto-approximation solutions.   

 
1

| | /
ndfN

i ndf

j

d d N d


 
    

 
   (14)                                                 

The ideal value for diversity indicator is to be zero or close to zero to show that 
there is good diversity among the Pareto solutions. Hence, the lower diversity 
indicator implies to better diversity among the solutions. The results illustrate that 
the better convergence is obtained with NS-MOPSO and HSG-MOPSO. However, the 
diversity among the solutions obtained with HSG-MOPSO is reasonably better than 
NS-MOPSO and SPEA2-MOPSO. The mean execution time of HSG-MOPSO is found to 
be reasonably higher as compared to NS-MOPSO and SPEA2-MOPSO. Since this is a 
type of investment planning to decide the DG integration capacity, it needs offline 
optimization. Hence, the execution time may not be a bottleneck to implement the 
HSG-MOPSO algorithm.   

Table 3. The results of statistical tests  

MOPSO 
variants 

Hypervolume indicator Diversity indicator 
Mean execution 

time (sec) 
Mean 
value 

Variance 
Mean 
value 

Variance 

HSG-MOPSO 0.4571 2.32×10-5 0.6215 0.0102 59.2348 
SPEA2-MOPSO 0.4431 4.56×10-5 0.7656 0.0134 17.5322 

NS-MOPSO 0.4583 5.93×10-5 0.8141 0.0155 16.2845 

5. Conclusion 

In the paper, an approach for the simultaneous optimization of DG penetration 
level and the network performance index has been provided to determine the 
optimal numbers, sites, and sizes of DG units. This planning yields a set of non-
dominated solutions with different values of DG penetration level and network 
performance index. The contributions of this approach are: 
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The proposed approach offers more flexibility to the DNO to choose a final 
solution from the set of solutions according to its strategic business decisions, 
regulatory directives regarding the electric service, and budget restrictions. For 
example, a DNO may prefer to reduce the DG penetration level instead of improving 
network performance or vice-versa.  

The proposed planning can determine the ranges of DG penetration level and 
network performance index on which they conflict with each other. The energy 
provided by DG is relatively expensive than that provided by large central 
generators. Hence, the allocation of the DG units would be worthy for a DNO if it 
leads to a significant reduction on power losses, improvement in voltage levels etc.  

 A comparison between the Pareto-approximation sets obtained with different 
types of load models is carried out so as to bring out the impact of load models on the 
multi-objective type of problem formulation. The performance comparison between 
the three MOPSO variants is also reported in this work.  
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