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with the properties of known benchmark energetic materials which are currently in use in propellant or 
explosive formulations. High energy materials research area received less attention from the energetic 
materials scientists in the past. This may be attributed to the risks and hazards associated with the research 
investigations. There has been progress in the synthesis and development of new energetic compounds in 
recent years. The other category of nitro compounds emerging as key ingredients for propellant and explosive 
formulations are tetrazoles, triazines, tetrazines, compounds of metallic salts of hydrazines, carbohydrazines 
and polymeric binders containing azo, nitro-, nitroxy- groups in the backbones. New requirements such as 
reduction of the vulnerability of combat platforms, stealth characteristics, and increased demand to achieve 
higher energetics in terms of specific impulse and performance coupled with environmental issues have forced 
the researchers to produce novel energetic materials. To develop a new energetic material, it is essential to 
consider the factors such as indigenous availability of starting materials, ease of its preparation, purity of 
energetic material and its cost effectiveness. One of the approaches used to synthesize insensitive explosives 
is basically in the maximum possible percentage of nitrogen in energy materials[1]. 
A brief overview of certain low-sensitivity energy substances is given. A small number of the presented 
compounds are already in commercial application, and most are in the research phase. Some of the most 
interesting new energetic materials are: TATB, FOX-7, FOX-12, TEX, NTO, RS-RDX, ANTA, DAAF. 

1.1. TATB 
TATB is a secondary high explosive, slightly weaker than RDX but stronger than TNT. It is extremely 
insensitive to shock, vibration, fire or shock. The possibility of accidental detonation is very small, even under 
severe conditions, so this explosive can be used for applications that require extreme safety, such as 
explosives in nuclear weapons where accidental detonation would pose an extreme danger. All British nuclear 
warheads use TATB-based explosives in their primary phase. 
Some explosive formulations based on HMX, TATB and KeL-F were characterized for density, VOD 
(velocity of detonation), initiation sensitivity, ignition temperature and other explosive properties. At a density 
of 1.80 g/cm3, the TATB has a detonation velocity of  7350 m/s. It decomposes without melting at 350 °C, 
and is stable at temperatures up to 250 °C even over a long period of time. Pure TATB has a light yellow 
color and is insoluble in most solvents [2]. 

1.2. Fox-7 
Fox-7 or DADNE is a candidate for use as an insensitive explosive. This molecule has attracted attention due 
to its insensitivity to external impulses and its performance comparable to RDX and HMX, while its 
sensitivity to shock and friction is much lower than that of RDX and other nitramines. There are three 
different pathways of FOX-7 synthesis beeing developed, all involving nitration of the heterocyclic compound 
followed by hydrolysis to give FOX-7. Nitration is performed with mixed acid (sulfuric or nitric acid) at low 
temperature (<30 °C), and hydrolysis can be performed by isolating the intermediate and hydrolyzing with 
aqueous ammonia or by adding an acidic mixture of the nitrated intermediate with water[2]. Some properties 
of FOX-7 compared to the properties of RDX are given further in Table 1. Table 1.shows that the FOX-7 is 
much less sensitive to shock and shock than the RDX, and is very insensitive to friction. The detonation 
properties are comparable to RDX. Because of all of the above, the FOX-7 can be considered an attractive 
alternative to the RDX. 

Table 1. Properties of FOX-7 (calculations with Cheetah 1.40) and comparison with RDX[2] 
Property FOX-7 RDX 

BAM impact sensitivity (Nm) >15 7.4 
Petri friction sensitivity (N) >200 120 
Deflagration temperature (oC) >240 230 
Density (g/cm3) 1.885 1.816 
Formation energy (calculated)(kJ/mol) -118.9 92.6 
Detonation velocity (calculated)(m/s) 9040 8930 
Detonation pressure (GPa) 36.04 35.64 
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1.3. Fox-12 (GUDN) 
Energy dinitramides are high-energy materials that can be used for the purposes of synthesizing low-
sensitivity ammunition. N-guanylurea dinitramide (GUDN or FOX-12) is a stable salt of dinitramidic acid that 
has good thermal stability and low solubility in water, has good resistance to mechanical shocks and as such is 
used in the application of insensitive energy materials [3]. 
Its thermal stability is comparable to RDX and superior to ammonium dinitramide (ADN). FOX 12 can be 
used for casting as with LOVA (low vulnerable ammunition) fuels. In addition to the advantages of low 
sensitivity  Fox-12 burns at low temperatures, important in automatic rifles due to the erosion of barrels. 
The effect of  FOX-12 was assessed by thermochemical calculations. These calculations were based on 
density (ρ = 1.7545 g /cm3) and heat of formation (ΔHf = -355.64 kJ/mol) . The results are shown in Table 2. 
The density, detonation velocity, and detonation pressure for FOX 12 are between the density values of TNT 
and RDX. Replacing RDX with FOX 12 in the RDX / TNT  60/40 composition causes a decrease in density 
and a consequent decrease in detonation velocity and pressure[3]. 
 

Table 2. Calculated characteristics [4] 

Explosive Density 
(g/cm3) 

Detonation velocity 
(m/s) 

Detonation  
pressure (GPa) 

FOX-12 1.75 8210 25.7 
TNT 1.65 6900 19.6 
RDX 1.81 8940 34.7 
FOX-12/TNT (60/40) 1.61 7650 23.3 
RDX/TNT (60/40) 1.74 8050 28.1 

 

1.4. TEX 
TEX is a derivative of the powerful and very sensitive CL-20 explosive. Unlike the CL-20, the TEX is 
insensitive to friction, has low impact sensitivity and has a low impact sensitivity and a large critical diameter, 
which makes it an interesting explosive charge for insensitive ammunition. TEX has a crystal density of 1.99 
g/cm3, the highest density of all nitramine explosives. The high density is due to its isovurtzitan structure, 
which has a tightly packed crystal lattice, and nitro groups occupy the free space between the cages. TEX is a 
very energetic material (due to the tense structure of the cage) that has a good combination of high detonation 
velocity with low sensitivity to mechanical stimuli and good thermal stability. The insensitive nature of  TEX 
suggests that it could be a suitable alternative to TATB, NTO and RDX high performance explosives [5]. 

1.5. NTO 
NTO is an insensitive highly explosive material, a potential substitute for RDX in explosive formulations. 
Although its performance is slightly lower than that of RDX, NTO is more thermally stable and less sensitive 
to external influences. NTO has performance levels close to RDX levels and its insensitivity is comparable to 
TATB. Its thermal stability is also high and it decomposes exothermically to about 272 °C. The pressure in 
NTO and cast explosives show superior mechanical and thermal properties and are insensitive[6].  

1.6. RSS-RDX 
RDX is sensitive to mechanical stimuli such as shock and friction. In recent years, it has been dedicated to the 
development of RDX in another form, with reduced shock sensitivity RDX (RSS-RDX) or insensitive RDX 
(insensitive RDX or I-RDX). When this explosive is incorporated into a molded polymer explosive PBX-109, 
it can reduce impact sensitivity [7]. It is important to note that I-RDX and conventional RDX do not differ in 
chemical, physical, and safety characteristics, and even raw impact sensitivity tests. I-RDX and conventional 
RDX can be produced in the same particle size distribution ranges. Differences between I-RDX and 
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conventional RDX are visible in the impact sensitivity characteristics of cast PBX compositions. It was also 
observed that the use of I-RDX does not change any properties of PBX (such as aging, reaction to thermal 
stimuli, etc.), but only the properties of sensitivity to shock [8]. 

1.7. ANTA and DAAF 
ANTA is an amino-nitro-heterocyclic compound used in the use of  IM due to the high heat of formation. It 
can also be said that the insensitive energy material with a density of 1.81 g/cm3, 228 °C melting point, 225.2 
kJ/mol heat of formation and performance is slightly lower than TATB [6]. 
DAAF is also an insensitive explosive that has good resistance to mechanical stimuli and characteristics 
similar to those of  TATB. With its characteristics such as density 1.747 g/cm3, heat of formation 443.5 
kJ/mol, impact sensitivity h50%>320 makes it suitable for use in boosters [9]. 

2. Technical requirements for IM (Insensitive Munitions) 
In fact, the potential to develop energetic materials with IM properties is not limited to new materials. The 
sensitivity of well-established energetic materials can be reduced through various material improvements, 
such as better crystal quality, reducing crystal or molecular defects, eliminating voids, chemical impurities or 
the existence of multiple phases. Properties that are advantageous for IM systems include the following [10]: 
high decomposition temperature; low impact and friction sensitivity; no phase transitions when the substance 
is subjected to rapid volume expansion or contraction; no autocatalytic decomposition; spherical crystal 
morphology; good adhesion of the binder matrix; no voids brought about by solvent or gas bubbles; phase 
purity. Performance characteristics and IM properties of various materials are given in Table 3. 
 

Table 3. Performance characteristics of explosive components and example formulations [11] 
Properties RS-RDX FOX-7 GUDN NTO TEX DAAF TATB 

Decomposition temperature (oC) 238,8 260 217 272 >250 249 >350 
Melting point (oC) 206 254 no 270 299 255 330 
Oxygen balance (%) -21.6 -21.6 -19.1 -24.6 -42.7 -22.64 -55.8 
Detonation pressure (GPa) 34.1 33.7 25.7 349 365 306 300 
Velocity of detonation (m/s) 8750 9090 8210 8500 8560 7930 8100 
Impact senisivity (cm) 39 126 >49 87 170 >320 170 
Friction sensivity (N) 160 360 >335 360 490 >360 >360 
∆Hf-heat of formation (kJ/mol) 16 -133.9 -355 -129.4 -445.6 +443.35 -140 
Density (g/cm3) 1.82 1.87 1.75 1.93 1.99 1.74 1.93 

3. Tests and standards for insensitive ammunition 
The primary purpose of IM testing is to determine the response of ammunition to unplanned stimuli when 
tested under certain conditions. This information is then used to determine compliance with national IM 
policies. System security testing conducted 50 years ago in the United States has become the foundation of 
today’s IM testing standards. In 1964, the US Navy established a safety directive for the WR-50 system for 
registering warhead vulnerabilities and certain security features [12]. This included a fast and slow cook-off 
test and a reaction to a projectile impact. Following the establishment of the IM program in the United States, 
requirements for IM tests were also introduced. Requests for testing also followed in the international 
community through the NATO program. NATO established IM principles and technical requirements in 1995, 
and in 2003 the USA incorporated NATO technical requirements into MIL-STD-2105C [13]. The test 
requirements are defined via individual STANAGs. The number of tests and testing practices varies from 
country to country, but most IM testing programs are based on NATO STANAG 4439 Edition 2 (Policy for 
introduction and assessment of insensitive ammunition (IM)) and AOP-39 (Guidance on the Assessment and 
Development of Insensitive Munitions (IM)) edition 2 [14]. For each of the six tests defined in AOP-39, there 
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is a standard test designed to classify ammunition based on the type of response. Those six tests and their 
performance are [15] : 

1. Slow Cook-off – This requirement specifies a slow warming test that may result from a fire in an 
adjacent magazine, premises, or vehicle. These types of incidents require exposure to a gradually 
increasing thermal environment at a rate of 3.3 °C/h. 

2. Fast Cook-off – The requirement to investigate the danger of rapid warming comes from a liquid fuel 
fire, such as burning aviation fuel on a flight deck or burning diesel fuel from a truck as a result of a 
car accident. Therefore, these types of incidents require the test sample to be exposed to heat fluxes in 
a burning flame of a burning fuel. 

3. Sympathetic Detonation − The purpose of this test is to subject one or more packages of ammunition 
to the effects of the worst case scenario, is to detonate an identical package of ammunition under 
conditions that are most likely to result in a sympathetic reaction. The purpose is to determine the 
sympathetic response of ammunition sensitivity and ultimately to provide information on the 
effectiveness of the safety barriers used to separate a single, packaged, or multiple ammunition 
package. 

4. Multiple Bullet Impact − This requirement describes the examination of the danger of ammunition 
strikes from small arms during terrorist or combat events. The aim of this test is to provide a standard 
test procedure for assessing the reaction of ammunition to the impact of a triple burst of M2 machine 
gun, caliber 12.7 mm, AP ammunition (armor-piercing). 

5. Multiple Fragment Impact – The request for testing comes from combat or terrorist events that use 
artillery missiles or improvised explosive devices for attacks. To predict the response of ammunition 
to these types of events, the test sample is subjected to the impact of a calibrated high-speed fragment 
representing fragments of a bomb or fragments formed from artillery grenades. 

6. Shaped Charge Jet Impact Testing − This test is performed due to possible damage or unwanted 
reaction of ammunition when using missiles, guided weapons or air bombs. The test is performed by 
subjecting the ammunition to a direct impact of a cumulative shaped charge jet and monitoring their 
reaction. It is also preferred that the diameter of the detonation be larger than the diameter of the jet so 
that the test can be performed. 

4. Chemical and thermal stability of IM 
4.1. Chemical stability 
An energetic material may undergo chemical reaction in response to shock, thermal, or chemical insults. In 
this review, we concentrate on stability to shock excitation. It is often the case, however, that a material’s 
stability to various forms of loading is highly correlated with one another. Energetic materials exist in a higher 
energy state than their lowest energy decomposition products. Thus energetic molecules are often termed 
metastable.  
Recently, several metastable nitrogen and oxygen compounds have been proposed that contain novel bonding. 
This has led to recent theoretical studies of hypothetical systems as high-energy density materials (HEDM), 
such as oxygen ring–strained systems (O4 and O8), tetrahedral N4, and cubic N8. The dissociation energy of 
the weakest bond of an explosive molecule plays an important role in initiation events. However, the 
correlation between bond strength and impact sensitivity is not general, but is limited within a particular class 
of molecules. Given the complexity of the chemistry of detonation of explosives, it is not surprising that the 
energy of dissociation of bonds alone is not sufficient to explain the sensitivity of explosives [16]. 
It can be seen from Table 3. that there is some correlation between the dissociation energy of the De bond and 
the sensitivity of the explosives. Nitrobenzene compounds with the highest De values are the least sensitive. 
The correlation between De and Ed could be an important quantity in determining the impact sensitivity of 
molecules[16]. 
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Table 3. Bond strength (De) of the weakest bond, energy content (Ed, kJ/cc), impact sensitivity H50 (cm) [16] 
Material Weakest bond De (kJ/mol) Ed (kJ) H50 (cm) 

TATB C-NO2 323 8.6 >320 
DATB C-NO2 312 8.6 >320 
TNA C-NO2 300 8.1 177 

TNT C-NO2 261 7.7 148 
HMX N-NO2 179 11.1 32 
RDX N-NO2 174 10.4 28 
TNAZ C-NO2 167 11.229 29 
NTO C-NO2 284 7.7 >280 
TETRYL C-NO2 120 8.8 37 
TNB C-NO2 283 8.6 100 

EDNA N-NO2 207 9.2 35 

HNB C-NO2 183 14.3 8,5 
DINGU N-NO2 180 8.5 24 

PETN O-NO2 167 10.5 14 
N N-NO2 157 10.0 20 

 
From an analysis of the structures of thermally stable explosives, it appears that there are four general 
approaches to impart thermal stability to explosive molecules [17]: 

 introduction of amino groups; 
 condensation with a triazole ring; 
 salt formation; 
 introduction of conjugation. 

5. Detonation Performance Analyses for Recent Energetic Molecules 
In order to assess the potential of new high-energy materials, their energy characteristics must be compared 
with those of modern materials. One of the programs used to predict IM performance is Jaguar's computer 
program, which provides accurate estimates for the detonation and performance of an explosive if precise data 
on its density and heat of formation are known. This post-assessment data is used to compare performance 
against already known energy materials such as TNT, RDX, HMX and CL-20. The detonation properties of 
the known compounds obtained by the Jaguar model have deviations of about 2-3% compared to the 
experimental results. The predicted values of the C-J velocities, temperatures, and pressures, Gurney 
velocities at 3 and 7 area expansions, and limiting energies are presented in Table 4.[18]. 
 

Table 4. Jaguar predicted detonation properties[18]   

Explosive Density 
(g/cm3) 

∆Hf 
(kJ/mol) 

Det. 
velocity 
(km/s) 

C-J  
Pressure 

(GPa) 

C-J 
Temp. 

(K) 

Gurney 
velocity 
(km/s) 

Boundary 
energy 

 E0 (kJ/cm3) 

Oxygen 
balance 

(%) 
CL-20 2.044 376.6 9.79 45.6 4035 2.88 -13.07 -11 
TNAZ 1.832 11.8 8.73 35.1 4224 2.77 -11.49 16.7 
HMX 1.905 75 9.09 38.7 3514 2.76 -11.38 -21.6 
RDX 1.816 70 8.76 34.8 3708 2.73 -10.88 -21.6 
TNT 1.654 -63 6.89 19.8 3092 2.20 -7.11 -74 
TATB 1.937 -140 8.778 31.8 2393 2.12 -7.78 -55.6 
FOX-7 1.885 -133.9 8.80 35 2917 2.554 -9.35 -21.6 
TEX 1.99 -445.6 8.51 32.7 2631 2.26 -8.83 -40.4 
DAAF 1.747 443.35 8.16 28.2 3155 2.44 -8.23 -52.8 
NTO 1.93 -129.4 8.64 32.7 2389 2.25 -7.34 -24.6 
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6. Conclusion 
No explosive molecule has all the desired properties from a high efficiency and low sensitivity perspective. In 
a constant effort to optimize desirable properties such as insensitivity to stimuli and shocks (shock, spark and 
friction), as well as high thermal stability and small critical diameter, various energy materials and material 
mixtures are constantly researched and developed. 
The main disadvantages of current conventional explosives such as those based on RDX and HMX are the 
relatively high impact sensitivity and moderately high handling sensitivity. However, their advantage is small 
critical diameter and high performance. With materials that are the basis of low-sensitivity ammunition, there 
is a compromise for lower performance and higher critical diameter, but impact sensitivity is reduced and 
sensitivity in handling is almost eliminated. 
Insensitive ammunition (IM) is defined as ammunition that reliably meets its performance, readiness and 
operational requirements when needed, but minimizes violent reactions and subsequent collateral damage 
when exposed to unplanned stimuli. 
Testing is a vital component of any national IM program. Hazards and threats to high-energy materials are 
either thermal events or caused by shock and shock. The international community has established 
requirements for testing and testing the insensitivity of materials, developing six unique tests representing 
these events. There are two basic documents that provide guidelines for IM testing. STANAG 4439 (Non-
Sensitive Ammunition Introduction and Assessment Policy), lists all STANAG tests that provide requirements 
and provide guidance for individual IM tests. Additional information can be found in AOP-39 (Guidelines for 
the Assessment and Development of Non-Sensitive Ammunition). This document includes test requirements, 
test protocols, a list of response descriptions, and an assessment methodology for IM coding. 
Thermochemical calculation methods have been developed to predict the properties of new materials. The 
detonation properties of the known compounds can be calculated with deviations of about 2-3% from the 
experimental results. In the future, it is expected that a wider range of energy materials will be able to be 
adapted to specific purposes. 
Many new low-sensitivity energy materials are still in the experimental phase. Their production costs are very 
high, which is currently a limiting factor for their use. Therefore, it is necessary to make an effort to make 
their production profitable. 
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