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ABSTRACT
Introduction: Obesity and coronavirus disease (COVID)-19 are overlapping pandemics, and one might worsen 
the other. 
Methods: This narrative review discusses one of the primary mechanisms to initiate acute respiratory distress 
syndrome, uncontrolled systemic inflammation in COVID-19, and presents a potential candidate for adjuvant 
treatment. Blocking the S protein binding to angiotensin-converting enzyme 2 (ACE-2) and the 3C-like protease 
(3CL pro) is an effective strategy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. 
Results: Host proteases such as FURIN, trypsin, and transmembrane serine protease 2 (TMPRSS) act in S protein 
activation. Tamarind trypsin inhibitor (TTI) shows several beneficial effects on the reduction of inflammatory 
markers (tumor necrosis factor α [TNF-α], leptin) and biochemical parameters (fasting glycemia, triglycerides, 
and very low-density lipoprotein [VLDL]), in addition to improving pancreatic function and mucosal integrity in an 
obesity model. TTI may inhibit the action of proteases that collaborate with SARS-CoV-2 infection and the neutro-
phil activity characteristic of lung injury promoted by the virus. 
Conclusion: Thus, TTI may contribute to combating two severe overlapping problems with high cost and social 
complex implications, obesity and COVID-19.
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The consequences of SARS-CoV-2 infection range from 
self-limited flu to fulminant pneumonia, respiratory failure, 
and death (4,5). Although the new coronavirus has mutations, 
it is still unclear whether they are related to its virulence (6), 
which might soon be answered through ongoing studies (7).

Advanced age is a risk factor that leads to the worsening 
of the clinical condition of the disease, placing the elderly as 
a vulnerable population with a high risk of death. However, 
severe cases also occur in middle-aged or younger people, 
and one of the possible contributing factors for this is the 
already known relationship between nutritional status and 
the prognosis of viral infections, which can contribute to the 
improvement or worsening of the disease (8-10).

According to Butler et al (11) and Muscogiuri et al (12) 
broader access to a healthy and balanced diet rich in vitamins, 
minerals, bioactive compounds, and antioxidants is essential 
to assist in reducing susceptibility to SARS-CoV-2 infection, in 
addition to the complications that can occur in the long term. 
The regional councils of the four United Nations Agencies 
(Food and Agriculture Organization of the United Nations—
FAO, United Nations Children’s Fund—UNICEF, World Health 
Organization—WHO, and World Food Program—WFA) issued 

Introduction

The relation between obesity and severe COVID-19

 Coronavirus disease (COVID)-19 pandemic, caused by se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
coronavirus, is a serious threat to health systems around the 
world. It overlaps with obesity, another global pandemic 
(1-3). SARS-CoV-2 infection started in December 2019 and 
spread rapidly because its transmission occurs through the 
airways.

https://doi.org/10.33393/dti.2021.2192
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a joint statement on nutrition in the context of the COVID-19 
pandemic in Asia and the Pacific. The recommendations em-
phasized the need for continuous adoption of advice and 
strategies ensuring nutritional surveillance, food quality, and 
food security.

On the other hand, the current moment demands the iso-
lation of the world population as a strategy to contain the in-
fection spread. Isolation can increases consumers’ preference 
for industrialized and ultra-processed foods. This preference 
occurs due to the practicality, hygienic safety, longer shelf 
life, of industrialized and ultra-processed foods compared 
to fresh and unprocessed products (13). This possible trend 
may increase food insecurity and directly impact weight gain  
(13-16), increasing the risk of overweight and obesity, which 
can persist for an extended period (17).

Diet composition and obesity have a fundamental role in 
the coregulation of adaptive immunity (18), influencing the 
modulation of the immune response and, consequently, af-
fecting the severity of respiratory diseases and other infec-
tions (9). In general, adiposity can impair the ventilation of 
the base of the lungs, resulting in less oxygen saturation in 
the blood (19). Thus, in COVID-19, the need for treatment 
in intensive care units (ICUs) increases, and intubations are 
technically more challenging in obese patients, in addition to 
the difficulty in obtaining a diagnosis by imaging techniques.

According to the review study by Johnson et al (20), 
obesity damages various organs, which increases the sus-
ceptibility to several diseases, such as metabolic disorders, 
cardiovascular diseases, cancer, and viral infections such as 
influenza and COVID-19 (1,21).

There is an intrinsic relationship between fat distribution 
and metabolic health status. The location of fat deposition in 
the body is determinant for health, and the ectopic deposi-
tion of triglycerides in the abdominal region, mainly visceral 
fat, causes a phenotype of high cardiometabolic risk—even 
for individuals who have a normal body mass index (BMI) but 
with a high abdominal circumference (AC)—due to unregu-
lated cytokine secretion pathways. In addition, inflammation 
and increased release of circulating fatty acids is associated 
with visceral fat. Thus, the fat distribution phenotype con-
tributes to metabolism, leading to metabolically unhealthy 
individuals (22).

Thus, visceral obesity can be an important risk factor to 
increase the severity of COVID-19 (23). Studies with patients 
affected by this disease in Germany and Italy have shown 
that as the area of visceral adipose tissue increased, there 
was a greater need for intensive therapy, regardless of other 
factors, such as age, sex, and associated diseases (24,25). 
Another study performed in China with COVID-19 patients 
showed that higher visceral and subcutaneous adipose tissue 
were independent risk factors for critical illness (26). In addi-
tion, visceral adipose tissue positively regulates the expres-
sion of plasminogen activator inhibitor 1, thus generating 
an increased risk of developing thrombosis in patients with 
visceral obesity affected by COVID-19 (27). Thus, understand-
ing the metabolically unhealthy individual is essential, care-
fully assessing the response to SARS-CoV vaccination (23), as 
obesity and impaired metabolic health generate a potentially 
reduced immune response, which can negatively affect the 
vaccine’s effectiveness (28-31).

Obesity is characterized by a state of low-grade chronic 
inflammation related to changes in immune cells, including 
the number and types of cells present in the inflamed tis-
sue. At the beginning of weight gain, immune cells infiltrate 
adipose tissue, contributing to persistent adipose inflamma-
tion and insulin resistance. Macrophages are classified into 
two subtypes of phenotypes, M1 proinflammatory and M2 
anti-inflammatory. In eutrophic individuals, the M2 subtype 
is distributed throughout adipose tissue, producing inter-
leukin (IL)-10 and expressing arginase-1 for collagen synthe-
sis, which is important for promoting tissue repair. During 
the progression of weight gain to obesity, the M1 subtype 
becomes dominant, spreading inflammation through the 
production of mediators, such as tumor necrosis factor α 
(TNF-α), IL-1β, monocyte chemoattractant protein-1 (MCP-
1), plasminogen activator inhibitor 1 (PAI-1) and reactive 
oxygen species (ROS). As a result, M1 macrophages interrupt 
insulin sensitivity in adipose tissue and the liver (20).

The hormone leptin overlaps when referring to the link 
between obesity and inflammation, since leptin synthesis is 
directly proportional to the amount of adipose tissue, and in-
flammatory cytokines stimulate this synthesis. These inflam-
matory cytokines, such as TNF-α, IL-1β, IL-6, and interferon 
gamma (IFN-γ), coagulation factors (fibrinogen and PAI-1), 
acute-phase protein (C-reactive protein and amyloid serum A 
[SAA]), white blood cell count, and chemokines are markers 
of inflammation. In patients with obesity, these markers are 
commonly elevated, and with the reduction of excess weight, 
there is a reduction in their plasma concentrations (32). There 
are also anti-inflammatory adipokines, such as IL-4, IL-5, and 
IL-10, which can be observed in obesity at low concentra-
tions. Thus, an imbalance between these anti- and inflamma-
tory cytokines can induce the inflammatory response (33).

Considering that obesity negatively affects the immune 
system, there is, therefore, a clear relationship with the 
higher susceptibility to the more severe COVID-19. This close 
relationship occurs due to the increased release of inflamma-
tory cytokines by disrupting the integrity of tissues (adipose 
and lymphoid tissue, intestines, and lungs), which alters the 
activation of leukocytes, impairing the action of the immune 
system. As a result, there is a direct impact on the healing 
process, which prolongs recovery and increases the risk of 
evolution from respiratory infection to severe diseases with a 
high risk of death (34).

It is important to highlight that SARS-CoV is responsible 
for coding 3C-like protease (3CL pro), a cysteine protease (35), 
formally known as C30 endopeptidase that is chymotrypsin-
like (36). It is considered a key component in polyprotein pro-
cessing (37), which synthesizes nonstructural proteins and 
structural proteins, such as spike (S), envelope (E), membrane 
(M), and nucleocapsid (N) proteins (38). Thus, this protease 
plays an important role in the replication and transcription of 
viral ribonucleic acid (RNA) (39).

Recently, Hoffmann et al (40) demonstrated that the 
new coronavirus enters human cells through glycoprotein 
S, found on the surface of the virus. This glycoprotein can 
bind to the angiotensin-converting enzyme 2 (ACE-2) lo-
cated in human cells. ACE-2 receptors are expressed in 
the intestine, kidneys, lungs, and blood vessels, becoming 
targets for SARS-CoV-2 infection. Hoffmann et al (40) also 
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observed that the cellular transmembrane serine protease 2 
(TMPRSS2) is needed for SARS-CoV-2 entrance in host cells. 
Xu et al (41) investigated the possible routes of SARS-CoV-2 
infection in the oral cavity mucosa, exploring the expression 
of ACE-2 and the proportion and composition of the cells 
responsible for this function based on RNA-seq profiles and 
cell transcript-independent data. The results showed that 
ACE-2 could be expressed in the epithelial cells of the oral 
cavity, mainly in the tongue, oral and gingival tissues, indi-
cating that the oral cavity mucosa can be a potential route 
for infection.

In the respiratory system, ACE-2 hydrolyzes angiotensin 
II to angiotensin 1-7, with an essential role in regulating the 
system. When ACE-1 activity is increased and ACE-2 is inhib-
ited, intact angiotensin II acts through the angiotensin 1 (AT1) 
or 2 (AT2) receptor to exert proinflammatory responses and 
stimulate aldosterone secretion. As a result, these effects in-
crease blood pressure and potentially cause hypokalemia, in 
addition to intensifying local vascular permeability, increasing 
the risk of respiratory distress syndrome. On the other hand, 
angiotensin 1-7 acts on the receptor pathway, leading to anti-
inflammatory and antifibrotic responses that would be favor-
able to the recovery of patients with COVID-19 (42). Studies 
also describe the importance of the renin-angiotensin system 
(RAS) in the regulation of metabolism and the development of 
cardiovascular and inflammatory diseases (43-45). This system 
also modulates the endocrine and metabolic functions of adi-
pocytes, hypertrophy, and hyperplasticity in obesity (46,47).

Obesity and its related comorbidities facilitate viral 
replication, increasing the risk of severe complications in 
SARS-CoV-2 infections. This increased risk occurs in obesity 
because the enlarged adipose tissue expresses higher levels 
of ACE-2 and, consequently, serves as a reservoir for the vi-
rus (48). The expression of ACE-2 in target tissues (lung, liver, 
and heart) is increased in diabetes (49), commonly seen in 
obese individuals. Hyperglycemia and type 2 diabetes also 
trigger the release of inflammatory cytokines, which in cases 
of COVID-19 can lead to higher release of cytokines (cytokine 
storm), generating an immune dysregulation that can lead to 
multiple organ failure and death (50). Obesity also induces 
deregulated lipogenesis that promotes the high expression of 
ACE-2 in the lungs (51). The increased leptin synthesis stim-
ulated by inflammatory cytokines (33) can also worsen the 
clinical condition of obese patients with COVID-19.

Therefore, drugs that mediate metabolic responses tar-
geting ACE-2 have been considered promising in the modu-
lation of glucose metabolism and blood pressure control. 
These drugs may also prevent the entry of the new coronavi-
rus through competitive pathways of ACE (9).

Results

Can the Kunitz trypsin inhibitor from tamarind seeds combat 
SAS-CoV-2 Infection in Obesity?

Considering these dysfunctions in patients with CO-
VID-19, several studies and tests with drugs, traditionally 
used to control these changes, whether endocrine or met-
abolic, appear. Some adjuvant therapies for COVID-19 de-
serve special mention, such as immunomodulatory agents, 

immunoglobulin therapy, corticosteroids, and anticytokines 
used to control endocrine and metabolic changes (9,52,53).

A new mechanism related to the inhibition of the trans-
membrane protease serine 2, encoded by the TMPRSS2 
gene, is an additional target for drugs for research. As al-
ready discussed, researchers have demonstrated that SARS-
CoV-2 uses the SARS-CoV ACE-2 receptor to enter cells. The 
serine protease TMPRSS2 is also necessary for the initiation 
of protein S. A TMPRSS2 inhibitor, Camostat mesylate—a syn-
thetic serine protease inhibitor (trypsin), approved in Japan 
for clinical use, blocked entry and could be another option 
treatment in COVID-19 (9,40). Other studies also highlight 
Camostat mesylate for the treatment of pancreatitis (9,52) 
currently in phase 2 clinical trial in COVID-19.

Furthermore, inhibition of 3CL pro can block protein S syn-
thesis and coronavirus proliferation (39). Most studies have 
focused mainly on small-molecule compounds from virtual 
screening based on a 3CL pro structure (54). Several inhibitors, 
which can be classified as peptoids and non-peptidomimet-
ics, have shown good inhibitory activity of this protease (39).

Protease inhibitors have been widely studied. One reason 
is that they are present in multiple forms in plants, animals, 
and microorganisms. In addition, protease inhibitors are nat-
ural protease regulators that are intrinsically involved in bio-
logical processes such as digestion, healing, viral replication, 
and the blood clotting cascade, among others, and that need 
precise regulation (55,56).

Thus, the prospect of peptides for use in biotechnology 
has led to a number of molecules’ discovery. Its use in ex-
perimental models has exposed mammals to risks that have 
not yet been evaluated. Although the benefits of proteins 
and peptides substantially outweigh the potential harmful 
effects, their use is not without risks. There is a balance be-
tween the ability of peptides to induce desirable effects, that 
is, their bioactivity, and the potential toxic effects associated 
with their cell-penetrating properties (57).

Among protease inhibitors, trypsin inhibitors are widely 
extracted from seeds to be purified and characterized for 
application in various studies (58). These molecules have 
shown, in recent studies, performance in different mecha-
nisms involving the control of obesity and its related effects, 
such as the production of hormones related to satiety, affect-
ing the central nervous system and the small intestine; re-
duction of food consumption and weight gain; improvement 
of the lipid profile; and reduction of the inflammatory pro-
cess associated with obesity, regardless of weight loss (59).

A trypsin inhibitor extracted from seeds of the tamarind 
fruit, Tamarindus indica L., belonging to the legume family, 
occurring in all regions of Brazil (60) has been extensively 
studied by our research group.

The first study to evaluate the potential of the tamarind 
trypsin inhibitor (TTI) to reduce weight gain was developed 
by Ribeiro et al (61). In this study, male eutrophic Wistar rats 
were fed a standard diet and received the isolated TTI by ga-
vage for 11 days at a dose of 25 mg/kg. TTI administration 
reduced food intake in these animals. To better understand 
this reduction in consumption, another experiment using 
the same experimental model evaluated food consumption 
1 h, 2 h, and 16 h after gavage with TTI, in addition to serum 
cholecystokinin (CCK), using doses of 25 and 50 mg/kg. TTI 
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reduced food consumption 16 h after its administration dose-
dependently (61). In this study, TTI did not cause changes in 
the liver enzymes and serum proteins of Wistar rats, in ad-
dition to not affecting the histological aspects of the liver, 
stomach, intestine, and pancreas. In addition, TTI did not 
cause classical deleterious effects on protein digestion and, 
consequently, malnutrition at the doses tested, as demon-
strated by the measurement of serum proteins.

Obesity is a condition that leads to numerous physiologi-
cal changes, and the behavior of TTI in this condition needs 
to be assessed. For this, Carvalho et al (62) used Wistar rats 
with diet-induced obesity, assessing food consumption and 
other biochemical parameters, using the 25 mg/kg dose of TTI, 
as proposed by Ribeiro et al (61). In animals with obesity, TTI 
reduced food consumption without inducing weight loss. TTI  
reduced plasma TNF-α to undetectable concentrations, show-
ing that the isolated inhibitor also influenced other aspects re-
lated to obesity, such as low-grade chronic inflammation (62).

In the same experimental model of obesity, Costa et al 
(63) observed that animals with obesity treated with TTI de-
creased food intake in a similar way to eutrophic animals. The 
animals with obesity treated with TTI showed a slight reduc-
tion in the Lee index, which, although not significant, was 
important because of the consumption of a diet rich in ultra-
processed foods called High Glycemic Index and Glycemic 
Load (HGLI) (64). Although TTI did not alter the plasma CCK, 
it decreased the expression of the CCK-1R gene and plasma 
leptin in animals with obesity compared to the group with 
obesity without treatment (63).

TTI is characterized as a protein isolate with high inhibi-
tory activity for trypsin, obtained in a process that gener-
ates enrichment of this protein, but not its purification (61). 
Therefore, it is possible that other molecules can influence 
the biochemical and bioactive characteristics of TTI.

Due to the many biological functions of TTI in the con-
text of obesity, new technologies that could potentialize 
these functions were assessed. Nanotechnology, through 
nanoencapsulation, can promote the protection of bioactive 
substances in oral administration, which exposes these mol-
ecules to digestive processes, compromising active sites es-
sential to biological activity. In addition, nanoencapsulation 
provides controlled release at a specific target and further 
intensification of the biological effect (65).

Thus, TTI was nanoencapsulated to increase the effi-
ciency and stability of antitrypsin activity. The isolated and 
conjugated effects of chitosan and isolated whey protein on 
incorporation, antitrypsin activity, and TTI stability at differ-
ent temperatures and pH conditions were investigated. The 
combination of chitosan and isolated whey protein (ECW) 
formed nanoparticles (109 nm), promoted a reduction in the 
half maximal inhibitory concentration (IC50; 0.05 mg) com-
pared to pure TTI (0.21 mg), and preserved antitrypsin activ-
ity up to 80°C (35.0% [3.74]) compared to isolated agents and 
TTI, which have no inhibitory activity. Besides, the nanopar-
ticles showed stability under different pH conditions. Thus, 
ECW proved to be an essential strategy to improve the func-
tion and stability of TTI (66).

To assess the safety of administration by gavage in addi-
tion to maintaining the inhibitory activity, the encapsulated 
TTI (ECW) was evaluated in a preclinical obesity study. Costa 

(67) also assessed cytotoxicity using the Caco-2 and CCD-
18Co strains (human intestinal cells). The cytotoxicity assay 
exceeded 70% cell viability for Caco-2 and CCD-18Co when 
exposed to different concentrations of ECW. For the subacute 
blood toxicity of the bioactive dose of ECW, through a com-
plete blood count, liver, and kidney function, there was an 
absence of subacute blood toxicity, demonstrated by the lack 
of toxic effects on the biochemical parameters evaluated.

Considering that ECW proved to be safe in the face of the 
parameters evaluated, its biological activity was tested after 
encapsulation (68). The nanoencapsulated TTI was also offered 
by gavage in a preclinical obesity model to test whether the 
isolated inhibitor would maintain its modulating properties on 
the altered biochemical parameters of the experimental model 
used. The biological activity was maintained, with emphasis on 
ECW, which significantly reduced blood glucose, Homeostatic 
Model Assessment of Insulin Resistance (HOMA-IR), and raised 
high-density lipoprotein cholesterol (HDL-c), in addition to pos-
sibly favoring greater protection to pancreatic tissue.

The purification of these inhibitors is a necessary and crit-
ical step to define their structural characteristics and speci-
ficity of binding to other molecules. Isolating these proteins 
from all other proteins that are present in the same biologi-
cal source is difficult because trypsin inhibitors have great 
molecular diversity (69). Medeiros et al (70) described the 
TTI purification process, obtaining a molecule with 100% in-
hibition for trypsin (pTTI), heat resistant and with a partially 
identified amino acid sequence (currently complete and with 
structural modeling—unpublished data), which had high ho-
mology with other trypsin inhibitors of the Kunitz family. pTTI 
also did not affect plasma CCK concentrations but reduced 
circulating leptin concentrations in animals with obesity at 
a dose of 730 μg/kg. Leptin is an important hormone in the 
energy balance, which is elevated in individuals with obesity, 
leading to the development of a resistance condition (70).

The effect of the purified trypsin inhibitor tamarind was 
also evaluated in a model of metabolic changes in Wistar rats 
with obesity and dyslipidemia. Obesity was induced using the 
HGLI diet (64). The animals treated with pTTI at a dose of 730 
μg/kg had significantly lower food intake than the untreated 
group. However, the groups did not show differences in weight 
gain. pTTI showed great anti-inflammatory potential, reducing 
the relative expression of TNF-α messenger RNA and positive 
immunostaining in adipocyte immunohistochemical analysis 
of obese animals, as well as plasma cytokine concentrations 
(71). The anti-inflammatory effects of the isolated or puri-
fied inhibitor on adipose tissue were observed regardless of 
weight changes, which may suggest a direct beneficial effect 
on this tissue that may alter its structure.

This result shows the potential of this molecule since 
obesity is classically considered a disease that induces a low 
grade of chronic inflammation, causing changes in tissues, 
notably the intestinal mucosa (72) and adipose tissue (73). 
Due to these promising biological effects and safety demon-
strated in preclinical studies with partially purified TTI, this 
inhibitor could be explored in alternative obesity therapies.

The purification process can enhance the functional 
properties of a molecule, making it necessary to reassess the 
safety of its use. At a dose approximately thirty times lower, 
pTTI performed the same biological activities as TTI. This 
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result emphasizes the need to assess whether its use gener-
ated harmful effects on the liver, a target tissue in toxicity 
studies; pancreas, a classically affected organ by trypsin in-
hibitors; adipose tissue, where pTTI, in previous studies, has 
shown anti-inflammatory effects; and intestine, a potential 
site of action that has not yet been studied.

Trypsin inhibitors have well-reported deleterious effects. 
Evidence has shown impaired growth due to poor digestion 
and absorption, metabolic changes in the pancreas, such as 
increased enzyme secretion, hypertrophy and hyperplasia, 
and metabolic disturbance in the use of amino acids (74).

Thus, pTTI was evaluated for possible toxic effects, focus-
ing on the histopathological and stereological characteristics 
of organs involved in its metabolism, processing, and biological 

activity (liver and pancreas) and the tissues most affected by the 
obesity model (small intestine and visceral adipose tissue). pTTI 
at its bioactive dose did not cause signs or symptoms of general 
toxicity or potential damage to the liver and pancreatic tissue of 
obese Wistar rats. pTTI also promoted a protective effect on the 
intestines of these animals, reducing the loss of intestinal villi, a 
well-characterized damage in obesity models. pTTI reduced the 
presence of inflammatory infiltrates in perirenal (visceral) adi-
pose tissue. Therefore, its use in the tested models is safe and 
presents anti-inflammatory effects (unpublished data).

Besides the effects mentioned above, TTI is a promising 
molecule concerning the mechanisms associated with the 
inhibition of genes involved in the production of ACE-2, such 
as TMPRSS2 and FURIN (Fig. 1). These genes probably act by 

Fig. 1 - Obesity and associated comorbidities as risk factors for complications from SARS-CoV-2 infection, and hypothesis of the TTI mecha-
nism of action. Obesity affects several organs, which have several responses, such as increased inflammation, changes in sensitivity and the 
action of hormones, dyslipidemia, and others. This metabolic deregulation favors increased expression of ACE-2, which is cleaved in the C-
terminal segment by proteases such as TMPRSS2 and FURIN, and there is activation of the spike glycoprotein, so this process facilitates the 
entry of SARS-CoV-2 into the cells, causing viral infection. Also, 3CL pro is considered a key component in polyprotein processing and plays 
an important role in the replication and transcription of viral RNA. The TTI effects in in vitro and preclinical studies show several antiobesity 
and anti-inflammatory effects and appear to be possible inhibitors of the proteases TMPRSS2, FURIN, and 3CLpro.

ACE-2 = angiotensin-converting enzyme 2; CCK = cholecystokinin; FURIN = member of the mammalian prohormone-protein convertases family; HNE = hu-
man neutrophil elastase; IL-1β = interleukin 1-β; LPS = lipopolysaccharide; MCP-1 = monocyte chemoattractant protein 1; SREBP = sterol regulatory element-
binding proteins; TG = triglyceride; TMPRSS2 = transmembrane serine protease 2; TNF-α = tumor necrosis factor α; TTI = trypsin inhibitor from tamarind; 
VLDL-c = very-low-density lipoprotein cholesterol; 3CL pro = 3C-like protease. 
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changing the organism’s epigenetic system responsible for 
the increase in ACE-2 expression, a potential target for antivi-
ral intervention by SARS-CoV-2.

Adipokines secreted by adipose tissue can also affect 
airway function. Leptin is involved in neonatal lung devel-
opment, surfactant production (75,76), and regulation of 
ventilatory impulse (76,77). Studies have consistently dem-
onstrated the association of high concentrations of leptin 
and asthma (78,79). The leptin concentration was reduced 
with the use of TTI in animal models (63,70).

Several studies with trypsin inhibitors were related to 
obesity and its complications (59). According to Fook et al. 
(80), TTI showed selective activity, being highly effective 
against serine proteinases, especially against bovine tryp-
sin and neutrophil elastase isolated from humans. The IC50 
value was determined to be 55.96 μg/mL. The inhibitor also 
showed no cytotoxic or hemolytic activity in human blood 
cells. In addition, it exhibited different inhibition of the re-
lease of elastase by platelet-activating factor (PAF; 44.6%) 
and release by N-formyl-l-methionyl-l-leucyl-phenylalanine 
(fMLP; 28.4%), preferentially affecting elastase release by 
PAF stimuli. This may indicate selective inhibition in the re-
ceptors of the PAF (80). The same research group in 2010 
conducted another study and demonstrated that the soy 
inhibitor (SKTI) reduced lipopolysaccharide (LPS)-induced 
acute lung injury in a preclinical model, significantly sup-
pressing the inflammatory effects caused by elastase in a 
dose-dependent manner, suggesting the route of inhibition 
of human neutrophil elastase as a promoter of the improve-
ment (81).

Several computational molecular docking studies have 
been carried out with some compounds to model binding 
interactions of various 3CL pro inhibitors and other proteases, 
such as TMPRSS2 (37,82-84). pTTI-derived peptides are also 
shown to be strong candidates for blocking these proteases 
since TTI is known to inhibit serine proteases such as trypsin 
and chymotrypsin, as previously demonstrated.

Conclusions

Therefore, trypsin inhibitors are promising alternatives, in 
addition to others already discussed in the scientific commu-
nity, which can be used as adjuvants in COVID-19, especially 
in obese patients. Thus, the tamarind seed trypsin inhibitor 
may also be a preventive or adjuvant drug in the context of 
COVID-19, especially in worsened inflammatory conditions, 
such as obesity.
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