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Loop Patterns in C Programs

Thomas Pani, Helmut Veith, Florian Zuleger∗

Vienna University of Technology

Abstract: In this work, we conduct a systematic study of loops in C programs.
We describe static analyses capable of efficiently identifying definite iteration in
C code. Our experiments show that over one third of loops in our benchmarks
take this form. To cover further loops, we systematically weaken our definition of
definite iteration and derive a family of loop classes that are heuristics for definite
iteration. We then measure the occurrence of these classes on real-world C code and
investigate which statements are used to express them. Finally, we empirically show
that our classification is meaningful – (a) it describes the majority of loops in our
benchmarks, (b) the classes are good heuristics for termination, and (c) they can be
used as software metrics to characterize benchmarks for software verification.

Keywords: Loops, loop patterns, structured programming, definite iteration, soft-
ware metrics, program features.

1 Introduction

Historically, some programming languages provide restricted loop statements, such as the For-
tran do statement or the Ada for statement. Such statements express definite iteration, i.e.
structured iteration over the elements of a finite set, such as an integer sequence or the elements
of a data structure [Sta95]. Other languages – like C – do not provide such constructs, and all
language-provided loop statements have the full expressive power inherent to Turing-complete
languages. Lately, object-oriented languages implement definite iteration via the iterator pattern,
often supported by syntactic sugar (e.g. foreach-like statements in Java, C#, C++11, Python).
However, we are not aware of a recent study determining if and how often this form of restricted
iteration occurs in practice. This is the gap we intend to close.

In this paper, we study “typical” iteration patterns in real-world C code. Such a study is of
interest because it allows us – for example – to answer the following questions: How do loops
in source code usually “look like” (what are their properties)? How often do different kinds of
loops appear in program source code? How difficult are these different kinds of loops to analyze
for an automated procedure? In spirit of Dijkstra’s famous Go-to statement considered harmful
[Dij68]: Can practical examples of iteration be expressed using a more well-behaved, structured
construct? As we target the C language, which does put any restriction on looping constructs,
does it make sense to introduce restricted loop statements like in Fortran or Ada?

To our knowledge, no up-to-date systematic study of definite iteration in real-world code ex-
ists. [Sta93] does a manual, ad-hoc classifification of iteration over high-level, abstract structures
∗ The authors are supported by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science
Fund (FWF) and by the Vienna Science and Technology Fund (WWTF) through grants PROSEED, ICT12-059, and
VRG11-005.
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such as sets, sequences or finite mappings. Our work takes an algorithmic approach, yielding a
concise definition and automated classification. [RAPG14] presents a simple, powerful heuristic
similar to our work for computing loop trip counts. In contrast, we base our study on a sound
analysis, and present extensive experimental results.

We thus aim to study the occurrence of definite iteration in real-world C code. However, there
is no dedicated, well-defined construct supporting definite iteration in the C language. We thus
describe a pattern-based, lightweight static analysis to identify such loops (Section 2), which
we call FOR loops L FOR: We define three easily verifiable restrictions on loops which capture
the structured nature of definite iteration. As our experiments (Section 5) show, this allows us
to identify about one third of the loops in our benchmarks as FOR loops – a major portion, but
not the majority of loops in our benchmarks. We conjecture that programmers enjoy a bit more
flexibility than what is provided by our definition of FOR loops.

In an attempt to understand further loop patterns, we extend our analysis to describe loops
similar to, but not identified as FOR loops. To do so, we derive the family of generalized FOR
loops L FOR(...) from the definition of L FOR by systematically weakening the three restrictions
(Section 3). This lets us describe up to 82% of the loops in our benchmarks (Section 5). Next, it is
natural to look at statement usage: The C language provides four statements of equal expressive
power capable of implementing iteration (while, do-while, for, goto). We thus measure
their use for each of the generalized FOR loop classes (Section 5.1).

Finally, we conduct two experiments to show that the defined loop classes are meaningful:
We compare the loops matching our loop classes with the state-of-the-art bound analysis tool
LOOPUS (Section 6.1). LOOPUS tries to statically determine a symbolic bound on the number
of times a loop is executed. As the number of iterations of a FOR loops is predetermined, loop
classes should align with results from bound analysis. We also sketch how to derive software
metrics from our loop classification, and that they describe properties interesting for program
analysis by applying them in a machine-learning portfolio for software verification (Section 6.2).

Summarizing, our work conducts a systematic study of loops in C programs, making the
following contributions:

1. We give a definition of definite iteration, FOR loops, for the C programming language,
which does not have dedicated support for this concept (Section 2).

2. We define the family of generalized FOR loops, which capture some aspects of definite
iteration and allow us to describe a majority of loops in our benchmarks (Section 3).

3. We study the occurrence of these loop classes on benchmarks taken from different problem
domains (Section 5) by measuring the occurrence of FOR loops and generalized FOR
loops, and study which C statements are used to express them (Section 5.1).

4. We give empirical evidence for the usefulness of our loop classes (Section 6):

(a) We show that the generalized FOR loop classes capture the difficulty of automated
program analysis (Section 6.1).

(b) We sketch how to use the loop classes as software metrics, and how to apply them in
a machine-learning portfolio for software verification (Section 6.2, [DPVZ15]).
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2 FOR Loops

In this section, we introduce a first loop pattern, FOR loops L FOR, expressing definite iteration.
One central implication of FOR loops is that once started executing, they always terminate. We
thus characterize FOR loops L FOR by giving an efficient, syntactic pattern-based termination
proof for its members. This termination procedure exploits that in many cases, local reasoning is
powerful enough to decide termination of loops expressing definite iteration. Such loops usually
alter a limited set of variables during each iteration, which are then compared against a fixed
(loop-invariant) bound to decide termination.

while (i < N) {
if (nondet())

i+=2;
else

i+=3;
i--;

}

i < N

i+=2

i+=3

i ≥ N

i--

Figure 1: Motivating example, source code
and labeled transition system.

Example. Consider the program on the right:
We can show the loop to terminate in a straight-
forward manner: the value of i is changed by the
loop, while the value of N is fixed. The loop’s
condition induces a predicate P(i) : i < N. If P(i)
evaluates to false, the loop terminates. We show
that executing the loop, P(i) eventually evaluates
to false: The domain of P can be partitioned into
two intervals [−∞,N) and [N,∞], for which P(i)
evaluates to true or false, respectively (q in Fig-
ure 2). As i is (in total) incremented during each
iteration, we eventually have i ∈ [N,∞], and thus ¬P(i) and the loop terminates.

2.1 Program Model

We base our analysis on the program’s labeled transition system:

Definition 1 A labeled transition system (LTS) is a digraph T = (Loc,Labels,Edges, l0) con-
structed from the program’s source code, where Loc is the finite set of program locations,
Edges ⊆ Loc × Labels × Loc is the transition relation, and l0 ∈ Loc is the singleton initial
state. Labels is the set of edge labels, consisting of the program’s statements, and expressions
assume(a,b) corresponding to branches. If a node has a singleton successor, the edge is labeled
with the corresponding program statement. Branching is modeled by two successors, where the
edge labels P : assume(a,b) and ¬P : assume(a,c) are the predicates guarding control flow from
program location a to b and c, respectively.

2.2 Determining membership in L FOR

To compute the syntactic termination proof for a given loop L, we proceed in the three steps
described below: First, we consider predicates assume(a,b) on edges a ∈ L,b ̸∈ L leaving the
loop. We try to show that the predicate eventually (during program execution) becomes true,
meaning the edge becomes executable (Section 2.2.1). Second, we check that other variables
v ̸= i occurring in the predicate are loop-invariant (Section 2.2.2). Finally, we impose a control
flow constraint to make our termination proof sound (Section 2.2.3).
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N

false
true

false
true

r : i ̸= N

s : i = N

i N

false
true

false
true

q : i < N

p : i ≥ N

i

Figure 2: Monotonic (p, q) and eventually true (p, q, r, s) predicates.

Name Informal motivation Formal definition

Escape i “escapes” Exp, i.e. P(i) iff i ̸= Exp.
Example: i ̸= N

fP has exactly one non-root, i.e. there ex-
ists exactly one x s.t. fP(x) = 1.

Search i “searches” and eventually “finds” Exp,
i.e. P(i) iff i = Exp. Example: i = N

fP has a single root, i.e. there exists exactly
one x s.t. fP(x) = 0.

Increase i increases enough to enter interval [Exp,∞],
i.e. P(i) iff i ∈ [Exp,∞]. Example i ≥ N

fP is monotonically decreasing and even-
tually 0.

Decrease i decreases enough to enter interval [−∞,Exp],
i.e. P(i) iff i ∈ [−∞,Exp]. Example i ≤ N

fP is monotonically increasing and eventu-
ally 0 ( fP grows from 0).

Table 1: Strategies for proving termination based on the representing function fP of an exit
predicate P. We assume expression Exp to be loop-invariant.

2.2.1 Terminating Predicates

To find predicates guarding loop termination, we consider control flow edges leaving the loop:

Definition 2 (Exit node, exit predicate.) Let T = (Loc,Labels,Edges, l0) be a loop’s LTS, (a,b)
such that a ∈ Loc,b ̸∈ Loc an edge leaving the loop, and P : assume(a,b) the edge’s label. We
call a an exit node and P an exit predicate.

We introduce a predicate’s representing function as a means to define necessary characteristics
for our termination proof:

Definition 3 (Representing function, monotonicity, eventually true predicates.) The represent-
ing function fP of a predicate P with the same domain takes, for each domain value, the value
0 if the predicate holds, and 1 if the predicate evaluates to false, i.e. P(X) ⇔ fP(X) = 0. A
predicate P is monotonically increasing (decreasing) if its representing function fP is monoton-
ically increasing (decreasing). A predicate P is eventually true if its representing function fP is
eventually 0, i.e. if there exists an x s.t. fP(x) = 0. These definitions are inspired by [KW11].

Depending on the predicate’s syntactic form, we describe four strategies for showing that
the predicate is eventually true. These strategies were chosen to represent cases that in our
experience frequently occur in practice. We illustrate the strategies in Figure 2 and describe
them in Table 1. Based on the strategies from Table 1, we call predicates whose representing
function takes such a form well-formed:
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Definition 4 (Well-formed exit predicate.) Let L be a loop, (a,b) an edge leaving L, and P :
assume(a,b) the edge’s label. P is a well-formed exit predicate if and only if its representing
function fP matches one of the forms in Table 1.

Strategy Condition

Escape 0 ̸∈ AccIncsL(i)
Search AccIncsL(i) = {s}∧ s ∈ {−1,1}
Increase ∀inc ∈ AccIncsL(i) . inc > 0
Decrease ∀inc ∈ AccIncsL(i) . inc < 0

Table 2: Sufficient conditions for an exit
predicate’s terminating the loop.

Given a predicate’s representing function fP(i), we
first determine the appropriate strategy in Table 1. We
then consider updates on i in loop L to decide if the
strategy’s condition holds: For each variable i occur-
ring in an exit predicate, we compute the set of pos-
sible updates to i in a single iteration of the loop and
obtain the accumulated increment AccIncsL(i). We
do so by folding constant increments/decrements of i
along a path of the loop into a single, constant value.
At nodes where branches join, we build the union of the accumulated increment along each path.
In case of non-constant updates, or a nested loop that updates i, we cannot precisely determine
the set and AccIncsL(i) = Z. We use the accumulated increment AccIncsL(i) to give sufficient
conditions for an exit predicate P(i)’s eventual truth for a given loop L and variable i in Ta-
ble 2. Intuitively, the conditions all describe scenarios under which the representing function fP

eventually takes the value 0:

• For escape, either fP(i) is already 0, or any non-zero increment makes it 0 in the next iteration.
The condition ensures such a non-zero increment exists along all paths of the loop.

• For search, either fP(i) already 0, or i eventually takes all values in its type’s range. The con-
dition ensures all increments are integer successor functions in a single direction. Assuming
(cf. Section 4.1) two’s complement integer wrap-around on overflow, i steps through all values
in its type’s range.

• For increase (decrease), either fP(i) already 0, or i is incremented (decremented) on all paths.
The condition ensures all updates to i along all paths are non-zero increments (decrements).

Definition 5 (Terminating node, terminating predicate.) Let P : assume(a,b) be an exit predi-
cate for which the condition given by Tables 1 and 2 holds. We call a a terminating node and P
a terminating predicate.

Example. For our example in Figure 1, we have AccIncsL(i) = {2− 1,3− 1} = {1,2} and
identify an exit predicate P(i) : i ≥ N. Matching P(i) against Tables 1 to 2 we can see that we
need to apply strategy “Increase”, i.e. check whether all elements of AccIncsL(i) are positive.
Clearly this is the case, and we proceed to check two further constraints.

2.2.2 Invariant Constraint

Our syntactic termination proof only considers predicates P(i) in a single variable i. Other subex-
pressions are checked to be loop-invariant by verifying that none of the referenced variables are
updated inside the loop.
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Example. In our example (Figure 1), N is never updated inside the loop. The constraint is
satisfied and we proceed to check the last constraint.

2.2.3 Control Flow Constraint

Finally, we need to make sure that a terminating predicate P : assume(a,b) is actually evaluated
(i.e. node a is reached) when it evaluates to true. Listing 1 illustrates that due to our local
reasoning this is not always the case: while there is a terminating predicate P : i > N, it may
never be evaluated (e.g. if decide(i) always returns false).

As determining feasibility of reaching a is in itself a hard problem, we restrict our analysis to
a case in which we can ensure soundness: a has to lie on each path through the loop.

Example. In our example (Figure 1), the loop condition (and hence the exit predicate P(i)) is
evaluated in each iteration of the loop. Thus we classify the loop as FOR loop L ∈ L FOR:

Definition 6 (FOR loop.) Given a loop L and an exit predicate P(i) : assume(a,b), we call L a
FOR loop L ∈ L FOR if and only if the following conditions hold:

• S1: Predicate constraint. P(i) is a terminating predicate, i.e. AccIncsL(i) implies eventual
truth of P(i) (Section 2.2.1).

• S2: Invariant constraint. We only consider predicates P(i) in a single variable i. All
other subexpressions are loop-invariant (Section 2.2.2).

• S3: Control flow constraint. a lies on each path through the loop (Section 2.2.3).

2.3 Strengthening Syntactic Termination

So far, we have only considered an isolated notion of loop termination: If execution starts from
l0, any path of execution leaves the loop. A stronger notion considers a loop to be bounded if
and only if the number of executions of the loop’s paths is bounded. The example below shows
where the two notions differ:

while (1) { for (unsigned i = 0; i < 42; i++) {} }

While the nested loop itself terminates whenever executed, the number of executions of the
nested loop is infinite. We can strengthen the notion of syntactic termination to accommodate
this property:

Definition 7 (Syntactically bounded loop.) Given a loop L ∈ L FOR, we call L syntactically
bounded L ∈ L SB if and only if L itself and all of its nesting (outer) loops are in L FOR.

3 Generalized FOR Loops

In this section, we aim for a classification of the remaining loops, i.e. those loops not identified
as FOR loops. We develop heuristic loop classes based on L FOR, by systematically weakening
L FOR criteria along three dimensions corresponding to the three FOR loop constraints S1–S3

Proc. AVoCS 2015 6 / 15
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(cf. Definition 6). The heuristics are designed to leave enough leeway to match a considerable
amount of loops, but still capture some of the termination-related properties of FOR loops. We
call this family of loop classes generalized FOR loops L FOR(...).

3.1 Dimensions of Generalized FOR Loops

3.1.1 Predicate Constraint

extern int decide(int);
extern int update(int);

int i=0;
while (1) {

if (decide(i))
if (i > N)

break;

if (decide(i)) N--;
i = update(i);
i++;

}

Listing 1: Almost a FOR loop: sev-
eral obstacles for classifying a loop as
FOR loop are addressed by general-
ized FOR loops.

Depending on the chosen abstract domain and ab-
stract semantics, the computed set AccIncsL(i) (cf. Sec-
tion 2.2.1) may be too coarse to show termination. Thus
we aim to cover cases where symbolic updates take sen-
sible values, but our local, path-insensitive analysis can-
not establish them. Our heuristic decouples the termina-
tion property from predicates by not requiring the accu-
mulated increment to imply eventual truth of the pred-
icate: We alter the constraint S1 (Definition 6), which
only considers terminating predicates, to heuristic W1,
which is content with well-formed predicates (Defini-
tion 4).

Example. In Listing 1, we cannot determine which
values update(i) returns. Thus we do not classify
the loop under constraint S1. For constraint W1, we
only consider the syntactic form of P(i) : i > N and do
not check the constraint from Table 2. In our example, pattern matching against (Table 1) suc-
ceeds, and P(i) fulfills W1. Intuition: We assume update(i) returns sensible values.

3.1.2 Invariant Constraint

Our syntactic termination proof only considers predicates P(i) in a single variable i. Other subex-
pressions are checked to be loop-invariant (constraint S2, Definition 6). For our heuristic W2,
we omit this check. Intuitively, we allow predicates in multiple variables and assume that all
variables v ̸= i are updated in a way that does not interfere with termination.

Example. In Listing 1, N is not loop-invariant, i.e. we have a predicate in two variables P(i,N).
As N is updated in the loop, we do not classify the loop under constraint S2. Heuristic W2 omits
the loop-invariance check, and thus the loop fulfills heuristic W2. Intuition: We assume updates
to N take sensible values (in our example they do, as N is only decremented).

3.1.3 Control Flow Constraint

Instead of requiring the terminating node a associated with a terminating predicate P : assume(a,b)
to lie on each path through the loop (constraint S3, Definition 6), heuristic W3: only requires
existence of some terminating node in the loop.
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(a) Dimensions of generalized FOR loops.
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(b) Structure of the L FOR(...) poset.

Figure 3: Dimensions of generalized FOR loops.

Example. Consider the code in Listing 1: Predicate P(i) : i>N is nested inside of a conditional
branch. As we cannot determine if decide(i) ever evaluates to true when i > N, we do not
classify the loop under constraint S3. For heuristic W3 we only require that there is a terminating
node somewhere in the loop. Intuition: We assume the node is reached when its associated
predicate P(i) evaluates to true.

Definition 8 (Generalized FOR loop constraint, generalized FOR loop.) A generalized FOR
loop constraint is a tuple (P, I,C), where P ∈ {S1,W1} is a predicate constraint, I ∈ {S2,W2}
is an invariance constraint, and C ∈ {S3,W3} is a control flow constraint. A loop L satisfies
constraint (P, I,C) if and only if all of P, I,C are satisfied. L is a generalized FOR loop L ∈
L FOR(PIC) if and only if L satisfies (P, I,C).

For a visual interpretation, consider Figure 3a showing the three categories above as indepen-
dent dimensions. Moving away from the center along dimensions P, I,C, we cover additional
loops at the expense of losing soundness. Note that the strongest generalized FOR loop class
L FOR(S1S2S3) is the class of FOR loops introduced in Section 3, i.e. L FOR(S1S2S3) =L FOR. Also
note that loop constraints are partially ordered, i.e. C1 ≤C2 if and only if L FOR(C1) ⊆L FOR(C2).
The obtained partially ordered set is shown in Figure 3b.

4 Implementation

We implemented the analyses described above in our tool SLOOPY1. It is built on top of Clang,
a C language frontend for the LLVM compiler infrastructure. The analysis proceeds as follows:

1 Available at http://forsyte.tuwien.ac.at/∼pani/sloopy/.
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1. We use Clang’s representation of the control flow graph to identify so-called natural loops.
These are subgraphs whose edges form a cycle with exactly one entry point. As an im-
plementation detail, we choose this definition of loops to simplify the definition and im-
plementation of data-flow analysis. In general, irreducible flow graphs may contain loops
with multiple entry points. However, a recent study [SW12] “found 5 irreducible functions
in a total of 10427, giving a total average irreducibility for this set of current programs of
0.048%”. The authors conclude that irreducibility “is an extremely rare occurrence, and it
will probably be even rarer in the future”.

2. Next, our tool attempts to find terminating predicates (Section 2.2.1). It computes the
accumulated increment using data-flow analysis and the constant propagation framework
[WZ85, ASU86] for all variables occurring in exit predicates. We rewrite each exit predi-
cate into a normal form and perform syntactic pattern matching on it. This selects a strat-
egy according to Table 1, which we check against the accumulated increment according to
Table 2. At the moment, our analysis considers linear inequalities P(i) in a single variable
i, which allows us to handle condition expressions with common comparison operators of
the C programming language (==, !=, <, >, <=, >=) as top-level connective.

3. Finally, we enforce the invariance constraint (Section 2.2.2) – by checking for statements
that update variables – and the control flow constraint (Section 2.2.3) – by assigning to
each basic block the number of open (un-joined) branches using data-flow analysis. Any
LTS node a of natural loop L with zero open branches lies on all paths through L.

4.1 Restrictions and Assumptions of Our Implementation

Our analysis makes a number of assumptions to determine eventual truth of predicates:

1. Due to the locality of our analysis, we assume the absence of aliasing and impure functions.

2. The C standard leaves pointer arithmetic undefined if operands and/or the result don’t
point into or just beyond the same array object [ISO, 6.5.6]. We assume the result of
pointer arithmetic is always defined.

3. The C standard does not define overflow on signed integer types [ISO, 6.5.6]. The search
strategy relies on covering the whole value range, thus we assume two’s complement wrap-
around behavior on overflow for search predicates over signed integer types.

We may also prove termination of increase/decrease predicates over unsigned integers un-
der this assumption, e.g. in the loop for (unsigned i = 42; i < N; i--) ;
If we prove increase/decrease predicates over signed integers using this assumption, we
likely discovered a bug [DLRA12]. We actually encountered one such bug, which had
gone undetected for sixteen years in GPL Ghostscript, during experimental evaluation.

4. For any strategy other than escape, we assume that i in an exit predicate P(i) : E(i) ◦N,
where E(i) is an expression in i and ◦∈ {<,≤,≥,>}, is not prevented by its (finite integer)
type to enter the required interval to make P(i) evaluate to true. As both E(i) and N are
expressions, we cannot determine their ranges by merely syntactic means.
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Name Description |L |

cBench [cBe] Open-source sequential programs used in program and com-
piler optimization.

4157

coreutils [cor] GNU Core Utilities, a collection of basic userland utilities. 1002
SPEC CPU2006 [Hen06] Compute-intensive benchmarks composed from real life appli-

cations code. We only consider benchmarks written in C.
15043

Mälardalen WCET [GBEL10] Used in Worst-Case Execution Time (WCET) analysis. 262

Table 3: Benchmarks.

0 10 20 30 40 50 60 70 80 90 100

cBench

coreutils

SPEC

WCET

37%

52%

35%

18%

63%

48%

65%

82%

37%

33%

39%

55%

23%

24%

21%

44%

L SB

L FOR = L FOR(S1S2S3)

L FOR(W1W2W3)

L ¬FOR

Figure 4: Percentage of loops covered by four selected loop classes.

5. For strict inequalities P(i) : i < N (i > N), we assume N evaluates to less (more) than its
type’s minimum (maximum) value. Otherwise, P never evaluates to true for any i.

5 Experiments: Occurrence of Loop Patterns

In this section, we measure the occurrence of the various loop classes introduced above on four
widely used benchmark suits from different domains. Table 3 summarizes these benchmarks.

Figure 4 and Table 4 show the percentage of loops in each of the listed classes for the re-
spective benchmark: To keep the comparison working, in charts we only consider syntactically
bounded loops L SB, the strongest generalized FOR loop class L FOR(S1S2S3) =L FOR, the weak-
est generalized FOR loop class L FOR(W1W2W3), all loops of the benchmark L , and all loops not
in any simple loop class L ¬FOR = L \L FOR(W1W2W3). These loops are especially interesting,
because those in L SB can directly be compared with bound analysis tools, L FOR(S1S2S3) and
L FOR(W1W2W3) represent the range of simple loops, and L ¬FOR represents loops most different
from our description of definite iteration.

SB S1S2S3 S1S2W3 S1W2S3 S1W2W3 W1S2S3 W1S2W3 W1W2S3 W1W2W3

cBench 22.6 37.0 46.6 37.2 47.0 48.0 62.7 48.3 63.1
coreutils 23.6 33.7 40.7 33.7 40.8 37.5 48.3 37.6 48.5
SPEC 21.5 39.2 45.9 39.3 46.0 56.0 64.5 56.2 64.7
WCET 43.5 54.6 66.8 55.0 67.6 67.2 80.5 67.6 81.7

Table 4: Percentage of loops covered by L SB and the generalized FOR loop classes L FOR(...).
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Discussion. The percentage of loops in L SB is around 23%, except for WCET where it is at
44%. Some 9–18% more loops are only in L FOR, which amounts to about 36% of all loops,
except for WCET (55%). The weakest generalized FOR loop class L FOR(W1W2W3) additionally
contains 26–27% more loops on all benchmarks except coreutils, comprising about 64% of all
loops in cBench and SPEC, and 82% in WCET. For coreutils, the ratio of L FOR(W1W2W3) is at
48% of all loops.

The percentage of loops in L SB and L FOR is stable across all benchmarks except WCET.
This can be explained by the fact that WCET stems from a narrow domain and only contains
single-path programs, which naturally fulfill the strict control flow constraint of FOR loops. We
have included it to showcase the difference to more general-purpose benchmarks.

The small difference between L FOR and L FOR(W1W2W3) in coreutils can be explained by a
significant amount of loops containing system calls in the loop conditions. This is consistent with
the low-level nature of the benchmark, but such system calls are not captured by our definition
of generalized FOR loops.

5.1 Statement Usage

An important aspect of programming language design is which constructs and patterns are ac-
tually used by programmers to formulate algorithms. In our case, we analyze which statements
are used to express loops from various classes. This is especially interesting as all C statements
capable of implementing iteration have the same expressive power.

Discussion. Figure 5 shows the occurrence of statements in our selection of loop classes: Over-
all (bar (4) in Figure 5), the for statement is used a lot more than other statements, even though
the number varies greatly between more than 80% of all loops for SPEC and WCET and less than
50% for coreutils. The next-most used statement is while, with an equally wide range from
10% on WCET to 47% on coreutils, where for and while statements occur about equally
often. do and goto statements make up a minor share of less than 10% and 2%, respectively.

When we compare the ratio of statements used between different loop classes of the same
benchmark, an interesting observation can be made: Regardless of the overall occurrence of
for in L , the stricter the loop class, the higher the percentage of loops expressed using a
for statement. At the same time, the less restrictive a loop class is, the higher the percentage of
while, do, goto statements. This correlation is especially strong for do and goto statements,
where virtually no such loops are in L FOR.

6 Experiments: Usefulness of Our Definitions

6.1 Comparison with Loopus

In this section, we show evidence for a relation between our loop classes and the difficulty
of automated program analysis. To this end, we describe how well LOOPUS [ZGSV11] – a
state-of-the-art termination and bound analysis tool – performs on our selection of loop classes:
Figures 6a to 9a show the percentage of loops contained in each of these classes. Bars (1)–(4) are
classes with increasingly less restrictive constraints, i.e. classes we conjecture to grow harder to
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Figure 5: C statements used to express loops from loop classes (1) L SB, (2) L FOR =
L FOR(S1S2S3), (3) L FOR(W1W2W3), (4) L , and (5) L ¬FOR.
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Figure 6: Comparison of various loop classes with LOOPUS results on cBench.
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Figure 8: Comparison of various loop classes with LOOPUS results on SPEC.
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Figure 9: Comparison of various loop classes with LOOPUS results on WCET.
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analyze in that order. Bars (5) below the dashed line refer to loops in L ¬FOR, i.e. the complement
of loops shown under (3). Figures 6b to 9b show the percentage of loops in the respective class
for which LOOPUS succeeds and fails to compute a symbolic bound.

Discussion. We see that the more restrictive the investigated loop class, the better LOOPUS

performs. This supports our conjecture that given two loop constraints C1 ≤ C2, the stronger
constraint C1 not only describes a subset of loops, but also that this subset is less challenging for
automated analysis. Additionally, as expected, for any termination proof we obtain in L SB on
benchmarks that LOOPUS was optimized for (cBench and WCET), it also bounds the loop, i.e.
LOOPUS agrees on each member of L SB identified by SLOOPY. Manual examination of loops
in L SB unbounded by LOOPUS on coreutils and SPEC suggests that this is due to unmodeled
system calls in LOOPUS. As a positive result for LOOPUS, while it performs worst on non-FOR
loops L ¬FOR, it is still successful on about two thirds of these loops, except for coreutils which
seems a much harder benchmark.

6.2 A Portfolio Solver for Software Verification

In [DPVZ15] we present our tool VERIFOLIO, a machine learning based portfolio solver for
software verification. Here, a portfolio solver is a software verification tool which uses heuristic
preprocessing to select one of several existing tools [GS01].

To represent the source code of the unit under verification to the machine learning procedure,
we introduce novel program metrics based on the loop classes presented in this work, and vari-
able roles introduced in [DVZ13]. In particular, we compute class membership using SLOOPY

and measure the relative occurrence mC of four loop classes:

mC =
|L C|
|Loops|

C ∈ {SB,FOR,FOR(W1W2W3),¬FOR} (1)

We tested our portfolio on benchmarks from the annual International Competition on Software
Verification (SV-COMP) in its 2014 and 2015 editions [Bey14, Bey15]. In both cases, our tool
VERIFOLIO is the overall winner and outperforms all other tools.

Additional experiments show that removing loop classes from the feature set yields worse
results. We thus infer that they are indeed contributing to the overall performance of the portfolio.
As the portfolio incurs an overhead for feature extraction compared to standalone tools, it is
indispensable to base it on efficiently extractable program features. Our experiments show that
the median time for computing loop class memberships per verification task in SV-COMP’14
and ’15 is x̃ ≈ 0.2 seconds (obtained on a single core of a 2 GHz Intel Core i7 processor with 2
GB 1333 MHz DDR3 RAM).
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