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Estimating Rewards & Rare Events in Nondeterministic Systems

Axel Legay, Sean Sedwards and Louis-Marie Traonouez

Inria Rennes – Bretagne Atlantique

Abstract: Exhaustive verification can quantify critical behaviour arising from con-
currency in nondeterministic models. Rare events typically entail no additional
challenge, but complex systems are generally intractable. Recent work on Markov
decision processes allows the extremal probabilities of a property to be estimated
using Monte Carlo techniques, offering the potential to handle much larger mod-
els. Here we present algorithms to estimate extremal rewards and consider the
challenges posed by rarity. We find that rewards require a different interpretation
of confidence and that reachability rewards require the introduction of an auxiliary
hypothesis test. We show how importance sampling can significantly improve esti-
mation when probabilities are low, but find it is not a panacea for rare schedulers.

Keywords: Nondeterminism, Markov decision process, rewards, rare events, Monte
Carlo, importance sampling, statistical model checking.

1 Introduction

Complex systems often contain implicit elements of uncertainty, arising from human interactions
or unknown deployment configurations. Such uncertainty may be expressed as nondeterminism
in formal models and then analysed using formal verification. In this work we focus on Markov
decision processes (MDP), although the techniques we present are adaptable to other formalisms
that include nondeterminism.

MDPs interleave nondeterministic actions and probabilistic transitions and may be seen as
comprising probabilistic subsystems whose transitions depend on the states of the other sub-
systems. Assigning rewards to actions, MDPs have proven useful in many real optimisation
problems [Whi93]. Rewards are a useful decoration to model quantitative aspects of systems
that are not expressible as probabilities, such as information, energy and financial cost.

Given a system represented as an MDP, model checking [BK08] may be used to detect and
optimise its critical performance, but exhaustive numerical algorithms have complexity related
to the size of the system’s state space and scale exponentially with respect to the number of
independent variables in the model. The application of symmetry reductions and compositional
approaches may help, but real systems are typically intractable due to their scale and heterogene-
ity.

Statistical model checking (SMC) describes a collection of Monte Carlo techniques that ap-
proximate the results of numerical model checking and aim to avoid considering the entire state
space. States are generated on the fly during simulation and results are given with statistical con-
fidence. Monte Carlo techniques may be divided linearly on parallel computation architectures
and are generally insensitive to the number of states of a model, but the number of simulations
required for a given confidence scales quadratically with the rarity of the event being quantified.
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Since systems are designed to function correctly, failure is typically very rare and critically im-
portant. Rare event techniques, such as importance sampling [Sha94] and importance splitting,
have therefore been applied to SMC.

SMC requires a means to sample execution traces, but MDPs deliberately avoid completely
specifying how a system executes. The notion of a scheduler is thus used to transform an MDP
into a discrete time Markov chain that can be executed using stochastic simulation. The ver-
ification problem becomes one of finding optimal schedulers—schedulers that optimise some
quantitative property.

Early attempts to apply SMC to MDPs store schedulers explicitly, but schedulers typically
have the same complexity as the system as a whole, so these approaches tend to scale no better
than numerical algorithms. In [LST14, DLST15] the authors use pseudo-random number gener-
ators to define the possibly infinite behaviour of schedulers in constant memory, allowing them to
be sampled at random and tested individually. While sampling offers a significant computational
saving over enumeration, it raises the problems of rare schedulers and rare events. The problem
of rare schedulers has been partially ameliorated by ‘smart sampling’ [DLST15], but properties
with low probability make even non-rare schedulers difficult to find.

In this work we enhance the ideas of [LST14, DLST15] with importance sampling, to sig-
nificantly increase the chance of finding optimal schedulers when properties have low prob-
ability. Since rewards properties have not yet been implemented in the sampling context of
[LST14, DLST15], we also present an algorithm to find schedulers that approximately maximise
or minimise expected rewards. Unlike probabilities, rewards have no inherent a priori bounds,
so the standard statistical techniques to bound the absolute error do not apply. Our solution is to
use a relative bound, based on a generalisation of the Chernoff-Hoeffding bound often used in
SMC [Oka58]. A further challenge is that the commonly used ‘reachability rewards’ [KNP07]
assume the probability of a property is known with absolute certainty and define the reward of
properties with probability less than 1 to be infinite. With no additional information about the
property, this definition induces an unknown distribution with potentially infinite variance. As
such its properties cannot be directly estimated by sampling. Our solution is to introduce an
auxiliary hypothesis test to assert that the probability of the property is 1. The estimation results
can then be said to lie within the specified confidence bounds given that the hypothesis is true,
while the confidence of the hypothesis test can be made arbitrarily high.

In Section 2 we provide the notational definitions used in the sequel. In Section 3 we review
the notions of lightweight verification that underlie our approach. In Section 4 we briefly de-
scribe smart sampling [DLST15] and show how it may be profitably extended with importance
sampling. In Section 5 we present our algorithm for rewards properties. In Section 7 we present
experimental results that demonstrate the effectiveness and limitations of our algorithms. Section
8 concludes the paper.

Related Work

The Kearns algorithm [KMN02] is a well known sampling algorithm for discounted MDPs which
approximately optimises rewards over infinite horizons. The rewards used in model checking,
however, are typically not discounted and are defined over finite horizons [KNP07].

In [LP12] the authors use an adaptation of the Kearns algorithm to find a memoryless scheduler
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that is near optimal with respect to a discounted reward scheme. The resulting scheduler induces
a Markov chain whose properties may be verified with standard SMC, but these are not rewards
properties of the original MDP.

In [BFHH11, HT13] the authors present algorithms to remove ‘spurious’ nondeterminism on
the fly, so that standard SMC may be used. This approach is limited to the class of MDPs whose
nondeterminism is not affected by scheduling.

In [HMZ+12] the authors count the occurrence of state-actions in simulations, to iteratively
improve a probabilistic scheduler that is assessed using sequential hypothesis testing. If an ex-
ample that satisfies the hypothesis is found it is correct, but the frequency of state-actions is not
in general indicative of global optimality.

In [BCC+14] the authors present learning algorithms to bound the maximum probability of
(unbounded) reachability properties. The algorithms refine upper and lower bounds associated to
state-actions, according to the contribution of individual simulations. The algorithms converge
very slowly and may not converge to the global optimum.

In [LST14] the authors define the behaviour of a scheduler by combining a pseudo-random
number generator with an incremental hash function. Schedulers are selected at random and
SMC is applied to each of the discrete time Markov chains they induce, to find one that is ap-
proximately optimal. This simple sampling approach is made more efficient by ‘smart sampling’
in [DLST15]: an initial candidate set of randomly selected schedulers is progressively refined
by discarding those which are sub-optimal and re-assigning their simulation budget to the sched-
ulers that remain. The present work builds on these results, which are reviewed in more detail in
Sections 3 and 4.

Importance sampling has been widely applied to quantify failure in ‘highly reliable’ systems
(e.g., [Sha94]) and more recently in the specific context of SMC (e.g., [JLS12]). We believe the
present work is the first to apply importance sampling to MDPs.

2 Preliminaries

In this work an MDP comprises a possibly infinite set of states S, a finite set of actions A,
a finite set of probabilities Q and a relation T : S×A× S×Q, such that ∀s ∈ S and ∀a ∈ A,
∑∀s′∈S T (s,a,s′) = r, where r ∈ {0,1}. The execution of an MDP proceeds by a sequence of
transitions between states, starting from an initial state, inducing a set of possible traces Ω = S+.
Given an MDP in state s, an action a is chosen nondeterministically from the set {a′ ∈ A :
∑∀s′∈S T (s,a′,s′) = 1}. A new state d ∈ S is then chosen at random with probability T (s,a,d).
We assume that rewards are defined by some function R : S+ → Q or R : A+ → Q that maps
a sequence of states or a sequence of actions to a total reward. In what follows we abuse the
notation and simply write R(ω) to mean the total reward assigned to trace ω ∈Ω according to an
arbitrary reward scheme.

Our algorithms find deterministic schedulers that approximately maximise or minimise ex-
pected rewards and probabilities for an MDP. A history-dependent scheduler is a function S :
Ω → A. A memoryless scheduler is a function M : S → A. Intuitively, at each state in the
course of an execution, a history-dependent scheduler chooses an action based on the sequence
of previous states and a memoryless scheduler chooses an action based only on the current state.
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History-dependent schedulers therefore include memoryless schedulers. In the context of SMC
we consider finite simulation traces of bounded length, hence S and M are finite.

A scheduler applied to an MDP induces a Markov chain over which there is a probabilistic
measure F : Ω→ R such that

´
Ω dF = 1. Given a set of paths ω ∈Ω that satisfy some bounded

linear temporal logic property φ, denoted ω |= φ, the probability of φ is given by p =
´
Ω 1(ω |=

φ)dF , where 1 : {true, false} → {0,1} is an indicator function that returns 1 if its argument is
true and 0 otherwise. To estimate p, SMC algorithms typically construct an automaton to decide
the truth of the statement ωi |= φ, i.e., whether concrete simulation trace ωi satisfies property φ.
The estimated probability of φ is then given by

p̂ =
1
N

N

∑
i=1

1(ωi |= φ) ωi ∼ F, (1)

where ω1, . . . ,ωN are N statistically independent random simulation traces distributed according
to F , denoted ωi ∼ F , and p̂ denotes the estimate of p. To bound the estimation error it is
common to use the “Chernoff” bound of [Oka58]. The user specifies an absolute error ε and a
probability δ to define the bound P(| p̂− p |≥ ε)≤ δ. The bound is guaranteed if N satisfies the
relation

N ≥
⌈
(ln2− lnδ)/(2ε2)

⌉
. (2)

3 Lightweight Verification of Markov Decision Processes

We recall here the lightweight verification techniques of [LST14] that underlie our approach.

Schedulers as Pseudo-Random Number Generators To avoid storing schedulers as explicit
mappings, we construct schedulers on the fly using uniform pseudo-random number generators
(PRNG) that are initialised by a seed and iterated to generate the next pseudo-random value. Our
technique uses two independent PRNGs that respectively resolve probabilistic and nondetermin-
istic choices. The first is used in the conventional way to make pseudo-random choices during
a simulation experiment. The second PRNG is used to choose actions such that the choices are
consistent between different simulations in the same experiment. Given multiple simulation ex-
periments, the further role of the second PRNG is to range uniformly over all possible sets of
choices. The seed of the second PRNG can be seen as the identifier of a specific scheduler.

To estimate the probability of a property under a scheduler, we generate multiple probabilistic
simulation traces by fixing the seed of the PRNG for nondeterministic choices while choosing
random seeds for the PRNG for probabilistic choices. To ensure that we sample from history-
dependent schedulers, we construct a per-step PRNG seed that is a hash of a large integer repre-
senting the sequence of states up to the present and a specific scheduler identifier [LST14].

A Hash Code to Identify a Trace We assume that the state of an MDP is an assignment of
values to a vector of n system variables vi, i∈ {1, . . . ,n}, with each vi represented by a number of
bits bi. The state can thus be represented by the concatenation of the bits of the system variables,
while a sequence of states (a trace) may be represented by the concatenation of the bits of all
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the states. We interpret such a sequence of states as an integer of ∑n
i=1 bi bits, denoted s, and

refer to this as the trace vector. A scheduler is identified by an integer σ of bσ bits, which is
concatenated to s (denoted σ : s) to uniquely identify a trace and a scheduler. Our approach is
to generate a hash code h =H(σ : s) and to use h as the seed of a PRNG that resolves the next
nondeterministic choice. In this way we can approximate the scheduler functions S and M: H
maps σ : s to a seed that is deterministically dependent on the trace and the scheduler; the PRNG
maps the seed to a value that is uniformly distributed but also deterministically dependent on the
trace and the scheduler. Algorithm 1 implements these ideas as a simulation function that returns
a trace, given a scheduler and bounded temporal property as input. The uniformity of scheduler
selection is demonstrated by the accuracy of the estimates labelled ‘uniform prob’ in Figs. 1–3.

Algorithm 1: Simulate
Input:
M: an MDP with initial state s0
φ: a bounded temporal logic property
σ: an integer identifying a scheduler

Output:
ω: a simulation trace

1 Let Uprob,Unondet be uniform PRNGs with respective samples rpr,rnd
2 LetH be a hash function
3 Let s denote a state, initialised s← s0
4 Let ω denote a trace, initialised ω← s
5 Let s be the trace vector, initially empty
6 Select seed of Uprob randomly
7 while ω |= φ is not decided do
8 s← s : s
9 Set seed of Unondet toH(σ : s)

10 Iterate Unondet to generate rnd and use to resolve nondeterministic choice
11 Iterate Uprob to generate rpr and use to resolve probabilistic choice
12 Set s to the next state
13 ω← ω : s

An Efficient Incremental Hash Function To implement our approach we use an efficient hash
function that constructs seeds incrementally using standard precision mathematical operations.
The function is based on modular division, such that h = (σ : s) mod m, where m is a large prime
not close to a power of 2 [CLRS09, Ch. 11]. Since s is typically very large, we use Horner’s
method [CLRS09, Ch. 30] to generate h: we set h0 = σ and find h≡ hn (n as above) by iterating
the recurrence relation

hi = (hi−12bi + vi) mod m. (3)

Equation (3) allows us to generate a hash code knowing only the current state and the hash
code from the previous step. When considering memoryless schedulers we need only know
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the current state. Using suitable congruences [LST14], the following equation allows (3) to be
implemented using efficient native arithmetic:

(hi−12 j) mod m = (hi−12 j−1) mod m+(hi−12 j−1) mod m

In a typical implementation on current hardware, a hash function and PRNG may span around
1019 schedulers. This is usually many orders of magnitude more than the number of schedulers
sampled. There is no advantage in sampling from a larger set of schedulers until the number of
samples drawn approaches the size of the sample space.

Confidence with Multiple Estimates To avoid the cumulative error when choosing a sin-
gle probability estimate from a number of alternatives, [LST14] defines the following Chernoff
bound for multiple estimates:

N ≥
⌈(

ln2− ln
(

1− M
√

1− δ
))

/(2ε2)
⌉
. (4)

Given M estimates {p̂1, . . . , p̂M} of corresponding true probabilities {p1, . . . , pM} each gener-
ated with N samples, (4) asserts that for any estimate p̂i, in particular the minimum or maximum,
P(| p̂i− pi |≥ ε)≤ δ. Note that when M = 1, (4) degenerates to (2).

4 Smart Sampling with Importance Sampling

Smart sampling [DLST15] builds on the foregoing techniques to maximise the probability of
finding an optimal scheduler with a finite simulation budget. It works by iteratively eliminating
sub-optimal schedulers from a candidate set and re-allocating their budget to those that remain.

The problem of finding optimal schedulers by sampling has two independent components: the
probability of near-optimal schedulers (denoted pg) and the average probability of the property
under near-optimal schedulers (denoted pg). A near-optimal scheduler is one whose reward or
probability (depending on the context) is within some ε of the optimal value. If we select M
schedulers at random and verify each with N simulations, the expected number of traces that
satisfy the property using a near-optimal scheduler is thus MpgN pg. The probability of seeing a
trace that satisfies the property using a near-optimal scheduler is the cumulative probability

(1− (1− pg)
M)(1− (1− pg)

N). (5)

To maximise the chance of finding a good scheduler with a simulation budget of Nmax = NM,
N and M should be chosen to maximise (5). Then, following a sampling experiment using
these values, any scheduler that produces at least one trace that satisfies the property becomes a
candidate for further investigation. Since the values of of pg and pg are usually unknown a priori,
it is necessary to perform an initial uninformed sampling experiment to estimate them, setting
N = M = ⌈

√
Nmax⌉. The results can be used to numerically optimise (5), however an effective

heuristic is to set N = ⌈1/p̂g⌉, where p̂g is the maximum observed estimate (or minimum non-
zero estimate in the case of finding minimising schedulers).
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The best scheduler is found by iteratively refining the candidate set. At each iteration the
per-iteration simulation budget (Nmax) is divided between the remaining candidates, simulations
are performed and the average probability or reward for each scheduler is estimated. Schedulers
whose estimates fall into the “worst” quantile (lower or upper half, depending on context) are
discarded. Refinement continues until estimates are known with specified confidence, according
to (4). With a per-iteration budget satisfying (2), the algorithm is guaranteed to terminate with a
valid estimate.

Smart sampling offers a potentially exponential improvement in performance over the simple
sampling strategy described in Sect. 3, but if the property is a rare event, i.e., pg is small, finding
a good scheduler may remain challenging even if schedulers are not rare. To address this we
enhance the basic algorithm with the variance reduction technique of importance sampling, to
make pg ≈ 1 and thus maximise the number of schedulers considered.

Importance sampling is a standard variance reduction technique that works by weighting the
executable model of a probabilistic system to make a rare event occur more frequently in sim-
ulations. The proportion of simulations in which the event occurs using the weighted model
overestimates the true probability, but the estimate may be exactly compensated by the weights.
This arises from the equality p =

´
Ω 1(ω |=φ)dF =

´
Ω 1(ω |=φ) dF

dG dG, where F and G are mea-
sures over Ω such that 1(ω |= φ) dF

dG > 0,∀ω |= φ. F is the original (unweighted) measure, G is
the importance sampling (weighted) measure and dF

dG is the so-called likelihood ratio. From this
we construct the importance sampling counterpart of (1):

p̂ =
1
N

N

∑
i=1

1(ωi |= φ)
dF(ωi)

dG(ωi)
ωi ∼ G. (6)

N simulation traces ωi are generated under measure G and their contribution is compensated by
the likelihood ratio, which is calculated on the fly. If G is constructed to strongly favour φ, a
high percentage of traces will satisfy φ and (6) will converge much faster than (1).

We use this phenomenon to significantly improve the performance of smart sampling when
pg≪ 1. If pg denotes the fraction of traces we expect to satisfy φ using near-optimal schedulers
under F and p′g is the fraction of traces we expect to satisfy φ using near-optimal schedulers under
G, then importance sampling will increase the expectation of seeing a near-optimal scheduler by
p′g/pg. Typically, p′g ≈ 1, so the improvement is ≈ 1/pg.

The smart sampling algorithm with importance sampling follows the procedure described
above, but substitutes p′g, p̂′g for pg, p̂g to optimise (5) and generate the initial candidate set of
schedulers. Thereafter, the algorithm uses the corrected estimates, i.e., according to (6), to order
and refine the candidate set.

Given F generated by an optimal scheduler, the theoretically optimal importance sampling
distribution G∗ is defined by dG∗ = 1(ω |= φ)dF/p, where p is the probability of φ. To maintain
the advantages of sampling, G is typically generated by a syntactic re-parametrisation of F and
constructed by efficient means that do not iterate over the entire state space, such as ‘failure
biasing’ [Sha94] and cross-entropy minimisation [JLS12]. These techniques generally find G
that only approximate G∗, but are nevertheless very effective. We make use of failure biasing in
one of our case studies in Section 7 and leave cross-entropy minimisation for future work.
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A well known limitation of importance sampling is that the standard statistical confidence
bounds do not apply. In our application this is less important because the principal goal is to
make near-optimal schedulers more visible. Once such schedulers have been found, we are at
liberty to use other methods to estimate the probability of the property, such as standard Monte
Carlo. The values estimated by importance sampling may nevertheless provide useful non-zero
bounds when standard Monte Carlo returns a zero estimate because the probability is too low.

5 Statistical Model Checking of MDPs with Rewards

In the classic context, rewards are assigned to actions [Put94]. In the context of formal verifica-
tion, rewards are often assigned to states or transitions between states [KNP07]. In both cases the
rewards are summed over the length of a trace and the expected reward is calculated by averaging
the total reward with respect to the probability of the trace. In this work we focus on MDPs in
the context of formal verification, but the mechanism of accumulating rewards is unimportant to
our algorithms and we simply assume that a total reward is assigned to a finite trace.

The notions of probability estimation used in standard SMC can be adapted to estimate the
expected reward of a trace. Given a function R(ω) ∈ [a,b], a,b finite, that assigns a total reward
to simulation trace ω, the expected reward may be estimated by 1

N ∑N
i=1 R(ωi), where ω1, . . . ,ωN

are statistically independent simulation traces. Since rewards may take values outside [0,1],
we must use Hoeffding’s generalisation of (2) to bound the errors [Hoe63]. To guarantee P(|
r̂− r |≥ ε)≤ δ, where r and r̂ are respectively the true and estimated values of expected reward,
N is required to satisfy the relation

N ≥
⌈
ln(2/δ)× (a−b)2/(2ε2)

⌉
. (7)

For non-trivial problems the values of a and b are usually not known, while guaranteed a
priori bounds (e.g., by assuming maximum or minimum possible rewards on each step) may be
too conservative to be useful. Although it is possible to develop a strategy using a posteriori
estimates of a and b, i.e., based on maxi∈{1,...,N}(R(ωi)) and mini∈{1,...,N}(R(ωi)), we see that N
depends on the ratio of the absolute error ε to the range of values (a− b). The confidence of
estimates of rewards may therefore be specified a priori as a percentage of the maximum range
of the support of R. We adopt this idea in Algorithm 2, where we use (2) and (4) and assume that
ε expresses a percentage as a fraction of 1.

Rewards Properties

The rewards properties commonly used in numerical model checking are based on an extension
of the logic PCTL [KNP07]. This extension defines ‘instantaneous’ rewards (the average reward
assigned to the kth state of all traces, denoted Ik), ‘cumulative’ rewards (the average total reward
accumulated up to the kth state of all traces, denoted Ck) and ‘reachability’ rewards (the average
accumulated reward of traces that eventually satisfy property φ, denoted Fφ). Instantaneous and
cumulative rewards are based on finite traces and can be immediately approximated by sampling,
using (2) and (4) to bound the errors. Reachability rewards are based on unbounded reachability
(F) and require additional consideration.
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By the definition of reachability rewards [KNP07], properties that are not satisfied with prob-
ability 1 are assigned infinite reward. The rationale behind this is that if P(Fφ) < 1, there must
exist an infinite path that does not satisfy φ, whose rewards will accumulate infinitely. This
definition is somewhat arbitrary, since rewards are not constrained to be positive nor to have a
minimum value. An infinite sum of positive and negative values can equate to zero and it is also
possible for an infinite sum of positive values to converge, as in the case of discounted rewards.

The definition of reachability rewards makes sense in the context of numerical model check-
ing, where paths are not considered explicitly and unbounded properties can be quantified with
certainty, but it causes problems for sampling. In particular, using sampling alone it is not pos-
sible to say with certainty whether P(Fφ) = 1, even if every observed trace of finitely many
satisfies φ. Without additional guarantees, the random variable from which samples are drawn
could include the value infinity, giving it infinite variance. Statistical error bounds, which gen-
erally rely on an underlying assumption of finite variance, will therefore not be correct without
additional measures.

To accommodate the standard definition of reachability rewards, our solution is to implement
Fφ as Fkφ, i.e., bounded reachability where φ must be true within k steps, with an auxiliary
hypothesis test to assert that P(Fφ) = 1 is true. A positive result is thus an estimate within
user-specified confidence plus an accepted hypothesis within other user-specified confidence. A
negative result is a similar estimate, but with an hypothesis that is not accepted. This approach
is consistent with intuition and with the SMC ethos to provide results within statistical confi-
dence bounds. The hypothesis test may be implemented in any number of standard ways. Our
implementation uses a convenient normal approximation model, which we describe in Section 6.

In practice, the bound k for reachability rewards is set much longer than it is supposed nec-
essary to satisfy φ and the hypothesis is of the form P(Fkφ)≥ p0, p0 ⪅ 1. Intuitively, the more
traces of length≤ k that satisfy φ, the more confident we are that P(Fφ)≥ p0 is true. Traces that
fail to satisfy φ after k steps may nevertheless satisfy φ if allowed to continue, hence the value
of p0 defines how certain we wish to be after k steps. If the hypothesis is rejected, we may either
conclude that the average reward is infinite (by definition), accept the calculated average reward
as a lower bound or increase k and try again.

Our SMC engine quits as soon as a property is satisfied or falsified, so there is very little
penalty in setting k large when we require high confidence, i.e., when p0 ≈ 1. Simulations that
satisfy the property will only take as many steps as necessary, independent of a much larger value
of k, while those that do not satisfy the property will be few because the auxiliary hypothesis is
falsified quickly when p0 is close to 1.

For the standard rewards properties described above, the value of pg in (5) is effectively 1. In
the case of instantaneous and cumulative rewards, traces are not filtered with respect to a prop-
erty, so the probability of acceptance is 1. In the case of reachability rewards, either nearly all
traces satisfy the property (‘nearly’ because the auxiliary hypothesis test allows for the case that
not all traces satisfy the property) or the reward is assumed to be infinite. Hence, the case of
probabilities significantly less than 1 does not have to be quantified, just detected. The conse-
quence of this is that there is no need for an undirected simulation experiment to estimate pg and
the initial candidate set will contain the maximum number of schedulers for the specified budget,
i.e., N = 1 and M = Nmax.
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6 Smart Reward Estimation Algorithm

Algorithm 2 builds on Algorithm 4 in [DLST15] to find schedulers that maximise rewards. The
algorithm to minimise rewards follows intuitively: replace instances of ‘max’ with ‘min’ in
lines 16, 17, 21 and the Output line, and replace line 20 with S← {σ ∈ S | σ = Q′(n)∧ n ∈
{1, . . . ,⌈|S|/2⌉}}.

The reward property ρ may be of type instantaneous, cumulative or reachability, which are
denoted Ikφ, Ckφ and Fkφ, respectively, to unify the description. The reward function Rρ :
N×Ω→ Q maps the identifier of a scheduler and a trace to a reward, given reward property ρ.
In the case of Ikφ and Ckφ, k is the standard user-specified parameter for these rewards and φ
is implicitly Gktrue (i.e., true in the initial state and for k steps). In the case of Fkφ, φ is user-
specified and k is set as large as feasible to satisfy the hypothesis P(Fkφ)≥ p0, with confidence
defined by α (described below). Given that our actual requirement is that P(Fφ) = 1, both p0 and
α will typically be close to 1, such that very few traces will be necessary to falsify the hypothesis.

The initial candidate set of schedulers and corresponding estimates are generated in lines 1 to
4. Applying (5), 1 simulation is performed using each of Nmax schedulers chosen at random. The
function Q maps schedulers to their current estimate. A number of initialisations take place in
lines 5 to 6.

The function trues is used by the auxiliary hypothesis test and counts the total number of
traces per scheduler that satisfy the property. The variable samples is also used by the auxiliary
hypothesis test and counts the total number of traces used per scheduler. The value of conf ,
initialised to 1 to ensure at least one iteration, is the probability that the estimates exceed their
specified bounds (defined by ε), given the current number of simulations. The main loop (lines
6 to 20) terminates when conf is less than or equal to the specified probability δ. Typically, the
per-iteration budget will be such that the required confidence is reached according to (4) before
the candidate set is reduced to a single element. Lines 10 to 14 contain the main simulation loop,
which quits as soon as the required confidence is reached. Lines 15 to 20 order the results by
estimated reward and select the upper quantile of schedulers.

The auxiliary hypothesis test necessary for reachability rewards is provided in lines 21 to 23.
To test P(Fkφ)≥ p0, it considers the error statistic Z = samples×(p̂φ− p0)/

√
samples× p0(1− p0),

where p̂φ = trues(σmax)/samples is the estimate of P(Fkφ). For typical values of samples, the
distribution of Z is well approximated by a normal with mean = 0 and variance = 1 when the
expectation of p̂φ, denoted E(p̂φ), is equal to p0. To test the hypothesis with confidence α, the
algorithm compares the statistic Z with the standard normal quantile of order α, denoted z(α).
The value of z(α) may be drawn from a table or approximated numerically. If E(p̂φ) ≥ p0, the
value of Z will be ≥ z(α) with probability ≥ α.

To simplify the presentation, the auxiliary hypothesis test is also used by the instantaneous and
cumulative rewards. In these latter cases, however, the test is guaranteed to always be satisfied.

7 Case Studies

The following results demonstrate typical performance on a selection of standard case studies.
We necessarily use models whose expected rewards can be calculated or inferred using numerical
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Algorithm 2: Reward Estimation
Input:
M: an MDP
ρ ∈ {Ikφ,Ckφ,Fkφ}: a reward property
Rρ: the reward function for ρ
H0 : P(Fkφ)≥ p0: the auxiliary hypothesis
z(α): confidence of H0, the normal quantile of order α
ε,δ: the reward estimation Chernoff bound
Nmax > ln(2/δ)/(2ε2): the per-iteration budget

Output:
r̂max ≈ rmax, where rmax ≈ rmax and P(|rmax− r̂max| ≥ ε)≤ δ

1 N← 1, M← Nmax
2 S←{M seeds chosen uniformly at random}
3 ∀σ ∈ S,∀ j ∈ {1, . . . ,N} : ωσ

j ← Simulate(M,φ,σ)

4 Q←{(σ,q) | σ ∈ S∧Q ∋ q = ∑N
j=1Rρ(σ,ω

σ
j )/N}

5 ∀σ ∈ S : trues(σ)← 0
6 samples← 0, conf ← 1, i← 0
7 while conf > δ∧S ̸= /0 do
8 i← i+1
9 Mi← |S|, Ni← 0

10 while conf > δ∧Ni < ⌈Nmax/Mi⌉ do
11 Ni← Ni +1
12 conf ← 1− (1− e−2ϵ2Ni)Mi

13 ∀σ ∈ S : ωσ
Ni
← Simulate(M,φ,σ)

14 samples← samples+1

15 Q←{(σ,q) | σ ∈ S∧Q ∋ q = ∑Ni
j=1Rρ(σ,ω

σ
j )/Ni}

16 σmax← argmaxσ∈S Q(σ)
17 r̂max← Q(σmax)
18 ∀σ ∈ S, j ∈ {1, . . . ,Ni} : trues(σ) = trues(σ)+1(ωσ

j |= φ)

19 Q′ : {1, . . . , |S|} → S is an injective function s.t.
∀(n,σ),(n′,σ′) ∈ Q′ : n > n′ =⇒ Q(σ)≥ Q(σ′)

20 S←{σ ∈ S | σ = Q′(n)∧n ∈ {⌊|S|/2⌋, . . . , |S|}}
21 Z← (trues(σmax)− samples× p0)/

√
samples× p0 (1− p0)

22 if Z ≤ z(α) then
23 H0 is rejected
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Figure 1: Network virus infection: reward es-
timation.
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Figure 2: Network virus infection: probability
estimation using importance sampling.

methods, but observe that this does not give our algorithms any advantage. The models and
properties can be found on the PLASMA website1 and are illustrated in detail on the PRISM case
studies website2. All timings are based on parallel simulations using 64 simulation cores of the
IGRIDA cluster3.

In most instances of reward estimation we were able to achieve accurate results with a rela-
tively modest per-iteration simulation budget of Nmax = 105 simulations, using a Chernoff bound
of ε = δ = 0.01. In the case of the gossip protocol this budget was apparently not sufficient for
all considered parameters. We nevertheless claim that the results provide useful conservative
bounds. Note that for all reachability rewards we made the value of k in the auxiliary hypoth-
esis test sufficiently large to ensure that all traces satisfied the property, giving us maximum
confidence for the specified budget.

The figures plot the estimates generated by our algorithms against the values calculated using
numerical methods. In addition to maximum and minimum, we also plot the the average esti-
mates of the initial candidate set. This average corresponds to the expected reward or probability
using the uniform probabilistic scheduler or, equivalently, treating the MDP as a DTMC with uni-
form probabilities assigned to nondeterministic choices. The average estimates are consistently
accurate, demonstrating that Algorithm 1 is sampling uniformly from scheduler space.

Network Virus Infection This case study is based on [KNPV09] and comprises a network of
linked sets of nodes. Initially, there is a set containing one node infected by a virus, a set with
no infected nodes and a set of uninfected barrier nodes that divides the first two sets. A virus
chooses which node to infect nondeterministically and infects it with probability 0.5. A node
detects a virus probabilistically. Figure 1 plots the results of using a rewards property to estimate
the expected number of attacks before a particular node is infected, varying the probability that
a barrier node detects a virus as a parameter. Each point required approximately 15 seconds

1 project.inria.fr/plasma-lab
2 www.prismmodelchecker.org/casestudies
3 igrida.gforge.inria.fr
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of simulation time. All estimates are within ±1% of the true values. Figure 2 plots the results
of using importance sampling to estimate the probability of infection when the probability of a
virus infecting a node is reduced to 0.01. Our importance sampling distribution is generated by
the simple expedient of setting this parameter to its original value of 0.5. The plotted estimates
are the average of 10 individual estimates generated using a per-iteration budget of just 104

simulations. In most cases this budget is orders of magnitude less than the expected number of
simulations necessary to see a single trace that satisfies the property.

Choice Coordination To demonstrate the scalability of our approach we consider instances
of the choice coordination model of [NM10] with BOUND = 100. This value makes most of
the models intractable to numerical model checking, however it is possible to infer the correct
values of rewards from tractable instances. The chosen reachability property gives the expected
minimum number of rounds necessary for a group of tourists to meet. The following table
summarises the results:

Number of tourists 2 3 4 5 6 7 8 9 10
Estimated minimum rounds to converge 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0

All the estimates are exactly correct, while the average time to generate each result was just 8
seconds.
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Figure 3: Gossip protocol.

Gossip Protocol The gossip protocol of
[KNP08] uses local connectivity to propagate
information globally. Using a reachability re-
ward property, our algorithms accurately es-
timate the expected minimum and maximum
number of rounds necessary for the network
to become connected as 1.486 and 4.5, com-
pared to correct values 1.5 and 4.5. The aver-
age simulation time per estimate was approx-
imately 1 minute.

Figure 3 plots the maximum and minimum
estimated path length at different time steps,
using an instantaneous reward property. We
see that the estimates are accurate up to about
75 time steps, but less so above this value.
Since pg in (5) is effectively 1, this problem
cannot be overcome by importance sampling. The estimates are nevertheless guaranteed by (4)
not to exceed the true values by more than a factor of 1+ε with probability δ.

8 Prospects and Challenges

In this work we have focused on estimating the expected values of rewards and rare events. We
believe the same techniques may be immediately extended to sequential hypothesis testing, as
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in [LST14] and [DLST15]. Ongoing work suggests that estimating rewards in continuous time
models will also be feasible.

With respect to rewards, our case studies demonstrate that our approach is effective and can
be efficient with state space that is intractable to numerical methods. We do not yet provide
numerical confidence with respect to optimality, but our techniques generate useful conservative
bounds with correct statistical guarantees of accuracy: the estimate will be greater (less) than the
true maximum (minimum) expected reward by a factor of ≥ 1+ε with probability ≤ δ.

The use of importance sampling can improve the performance of smart sampling by a factor of
1/pg. We have demonstrated this technique using an importance sampling distribution generated
by simple failure biasing, but as future work we propose to develop a cross-entropy minimisation
algorithm to find an optimal parametrised distribution, along the lines of [JLS12].

In the case of standard rewards properties, pg = 1 and importance sampling cannot help. Fig-
ure 3 illustrates circumstances where our chosen per-iteration budget of 105 is apparently not
sufficient to explore the tails of the distribution of schedulers. Merely increasing the budget will
not in general be adequate, since near-optimal schedulers may be arbitrarily rare. Our proposed
future solution is to combine sampling with learning to construct composite schedulers.
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