
Electronic Communications of the EASST
Volume 73 (2016)

Graph Computation Models
Selected Revised Papers from GCM 2015

20 Years of Triple Graph Grammars:
A Roadmap for Future Research

Anthony Anjorin, Erhan Leblebici and Andy Schürr

20 pages

Guest Editors: Detlef Plump
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

20 Years of Triple Graph Grammars:
A Roadmap for Future Research

Anthony Anjorin1, Erhan Leblebici2 and Andy Schürr2

1anjorin@chalmers.se
Chalmers | University of Gothenburg

2surname@tu-darmstadt.de
Technische Universität Darmstadt

Abstract: Triple graph grammars (TGGs) provide a declarative, rule-based means
of specifying binary consistency relationships between different types of graphs.
Over the last 20 years, TGGs have been applied successfully in a range of appli-
cation scenarios including: model generation, conformance testing, bidirectional
model transformation, and incremental model synchronisation.

In this paper, we review the progress made in TGG research up until now by ex-
ploring multiple research dimensions, including both the current frontiers of TGG
research as well as important future challenges. Our aim is to provide a roadmap for
the coming years of TGG research by stating clearly what we regard as adequately
researched, and what we view as still unexplored potential.

Keywords: Triple Graph Grammars, Bidirectional Model Transformation, Model
Synchronisation

1 Introduction and motivation

Triple graph grammars (TGGs) [Sch94] provide a declarative, rule-based means of specifying
binary consistency relationships between different types of graphs. Over the last 20 years, TGGs
have been primarily used as a bidirectional model transformation language. Models are encoded
as graphs and model transformations, used to maintain the consistency of related pairs of models
in a concurrent engineering scenario by propagating changes in both directions, are derived from
a given TGG specification. Bidirectional transformations (bx) are highly relevant in numerous
domains [CFH+09], and multiple frameworks, approaches, and tools have been suggested for
bx (cf. [Ste08] for an overview). Important application scenarios of bx include model synchro-
nisation, round-tripping, and realising editable views [DWGC14].

As a bx approach, TGGs enjoy both a solid formal foundation rooted in algebraic graph trans-
formation [EEPT06], as well as rich and varied tool support (cf. [LAS+14b, HLG+13] for an
overview). Research on TGGs has been fairly active in recent years, and results, foci, and chal-
lenges have shifted and developed considerably since the last visionary paper on TGGs [SK08].

This paper provides essentially an update of [SK08], reviewing and reporting on results and
progress after 20 years of TGG research. We extend the challenges posed in [SK08] to cover
five dimensions, with most extensions strongly influenced by recent research in the field of bx in

1 / 20 Volume 73 (2016)

mailto:anjorin@chalmers.se
mailto:surname@tu-darmstadt.de


20 Years of Triple Graph Grammars

general. In each dimension we (i) review the relevant status quo, providing ample references to
existing formalisations and implementations, and (ii) pose future challenges required to push the
current frontiers of TGG research in what we believe are the most promising directions.

The rest of the paper is structured as follows: Section 2 provides a brief introduction to TGGs
with a running example taken from the bx example repository [CMSG14]. Section 3 presents
our main contribution as a radar chart of research dimensions, motivated and clarified infor-
mally using the running example. In Section 4 we compare our contribution with other related
“visionary” papers, and conclude in Section 5 with a brief summary and outlook on future work.

2 Running Example and Preliminaries

A TGG specification consists of a TGG schema and a set of TGG rules. A TGG schema is a triple
of source, correspondence, and target metamodels, which define the languages of models of the
two domains (source and target) over which consistency is to be specified, as well as a language
of explicit correspondence links that are created between related elements of source and target
models. TGGs are symmetric as the consistency relation is not in any way directed. Referring to
one domain as “source” and the other as “target” is, therefore, just a historic convention.

The TGG schema for our running example, a variant of ModelTests [Ste] from the bx examples
repository [CMSG14], is depicted in Fig. 1. The source metamodel represents a simple language
of class diagrams consisting of a hierarchy of diagrams (Diagram), classes (Class), and meth-
ods (Method). All elements are named (string attribute name), and methods can be public or
private (boolean attribute public). As multiplicities can only express simple constraints (dia-
grams/classes contain arbitrarily many classes/methods, and every class/method is connected to
exactly one diagram/class), an additional constraint language is required to formulate more com-
plex domain constraints. In this paper, we use so called graph conditions (cf., e.g., [RAB+15]),
which are less expressive than the Object Constraint Language (OCL) but fit better in the general
framework of algebraic graph transformation and consequently TGGs (cf., e.g., [AST12]). Two
domain constraints, nc for negative constraint and pc for positive constraint, are used in the
source metamodel to ensure that no two classes exist with the same name, and that every class
has a public method, respectively.

name:String
Diagram

name:String
TestSuite

name:String
TestClass

D2TS

name:String
Class

public:Boolean
name:String

Method

C2T

M2T

1

0..*

1

0..*

1

0..*classes

methods

testClasses

src

src

src

trg

trg

trg

C1:Class

C2:Class
C1.name == C2.name

nc

C:Class
C:Class

pc

public == true
M:Method

)

Figure 1: TGG schema: source, correspondence, and target metamodels with domain constraints

Selected Revised Papers from GCM 2015 2 / 20



ECEASST

A negative constraint is a pattern N that must not exist in a valid model. A positive constraint
is of the form P→ C, where P and C are patterns representing the premise and conclusion of
the constraint, respectively. If the premise can be found in a model then the conclusion, as
an extension of the premise, must also hold. For formal definitions of graph conditions and
multiplicities we refer to [Tae12, RAB+15]. To clearly differentiate patterns from (meta)models,
patterns are placed in a light grey border that is tagged with the name of the pattern, and capital
letters are used for the names of objects in patterns. Where there is only one possible association
between types, the name of the link is omitted to prevent diagram clutter (e.g., the link between
C:Class and M:Method can only be of type methods and is thus omitted).

Patterns contain attribute conditions such as C1.name == C2.name in nc, or public
== true in pc, where the latter condition is inlined in the object M:Method. The target
metamodel consists of test suites (TestSuite) with test classes (TestClass), while the cor-
respondence metamodel provides types for “links” between source and target elements: diagrams
correspond to test suites, classes and methods correspond to test classes.

The consistency relation between class diagrams and test suites is specified informally in [Ste],
and we extend it by introducing an additional requirement concerning methods (condition 3
below). To fit in a TGG context, the conditions are additionally interpreted as requirements on
the correspondence model between consistent source and target models:

1. For every diagram there exists a test suite with the same name.
2. For every class with name “Foo”, there exists at least one test class called “TestFooX” for

some natural number X .
3. Every public method of a class is associated with all test classes for the class.

An example of a consistent triple of source, correspondence, and target models is depicted in
Fig. 2. The source model is a diagram with two classes, while the target model is a test suite
with three test classes. Note that every class has at least one public method (cf. source domain
constraint pc), and every public method is connected to every test class for its containing class.

name = "Ordering"
d:Diagram

name = "Ordering"
ts:TestSuite

name = "Customer"
c1:Class

name = "TestCustomer0"
t1:TestClass

public = true
name = "placeOrder"

m1:Method

name = "Order"
c2:Class

name = "TestCustomer1"
t2:TestClass

public = true
name = "load"
m3:Method
public = true

name = "save"
m4:Method name = "TestOrder0"

t3:TestClass

public = false
name = "init"
m2:Method

Figure 2: Example consistent triple

3 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

This is a model and not a pattern, so small letters are used for node names, and attribute values
are depicted with a single equals sign, e.g., name = Ordering. Correspondence links are
depicted as dashed bidirectional arrows with the assumption that they are of the correct type.

An informal consistency specification can be formalised with a set of TGG rules that together
generate the language of all consistent triples such as the triple depicted in Fig. 2. Two simple
TGG rules R1 and R2 for the running example are depicted in Fig. 3. A TGG rule consists of
two patterns L→ R, where L is the precondition and R, an extension of L, is the postcondition
for applying the rule. Elements in L are called context elements as they must be present to apply
the rule, while elements in R \ L are called created elements as they are created as a result of
applying the rule. To represent rules, a compact concrete syntax is used, merging both patterns L
and R into a single pattern by using colours and markup to distinguish elements: context elements
are black, while created elements are green with an additional “++” markup. As with the types
of links, this markup is only depicted when absolutely necessary, e.g., all links connected to a
created object must be also created and do not have any explicit markup.

The rule R1 (to the left of Fig. 3) creates a consistent pair of a diagram and a test suite, demand-
ing that they have the same name via the simple attribute condition D.name == TS.name.
Rules such as R1 are referred to as island rules [ALK+15] as they do not require context and are
thus always applicable, resulting in an “island” that is not connected to anything else. The rule
R2 (to the right of Fig. 3) demands a consistent pair of a diagram and a test suite, and extends
this pair by creating a class and a test class. A simple attribute condition is used to demand that
the name of the test class be formed by adding the suffix “0” to the name of the class. Such rules
are called extension rules [ALK+15] as they create elements that are directly attached to existing
context elements. With just these two TGG rules, a substantial part of the example triple in Fig. 2
can already be created: R1 can be used to create d↔ ts, R2 can be applied two times to create
c1↔ t1, and c2↔ t3. All other elements require advanced TGG language features, which will
be discussed in the following sections.

D:Diagram TS:TestSuiteL:D2TS

++++++
R1

C:Class T:TestClassL2:C2T

++++++

D:Diagram TS:TestSuiteL1:D2TS

C.name + "0" == T.name

R2

D.name == TS.name

Figure 3: Basic TGG rules for running example

3 Research dimensions

Research on TGGs can be viewed in a hyperspace spanned by five dimensions each representing
the progress in a certain direction, going from basic to advanced. Every “point” in this hyper-
space is thus a specific combination of five properties taken from these dimensions, and can be
represented as a trace through a radar chart as depicted in Fig. 4. The points depicted in Fig. 4
represent the state of TGG research in 1995 (as presented in the first paper on TGGs [Sch94]),
the current state as of 2015, and our vision for the future.

Selected Revised Papers from GCM 2015 4 / 20



ECEASST

Concurrency

Expressiveness

Reliability

Tolerance

Scalability

multi-domain

integration

synchronization

batch

NACs

complex attribute 
conditions

multi-amalgamation

PACs

transformation correctness

transformation completeness

domain correctness

domain completeness

consistent model, 
consistent delta

consistent model, 
inconsistent delta

inconsistent model, 
inconsistent delta

exponential in 
model size

polynomial in 
model size

polynomial in 
delta size

simultaneous

complex conditions

least change/surprise

1995:
2015:
??? : 

Figure 4: Overview of TGG research dimensions

A brief overview of all research dimensions is provided in the following, before the five di-
mensions are discussed in detail in corresponding sections 3.1 – 3.5.

Expressiveness, defined in this paper as the class of consistency relations that can be expressed
with a set of TGG language features, is a crucial dimension as increasing expressiveness is
important for the practical applicability of TGGs, i.e., capturing real-world consistency relations
as precisely as possible. The expressiveness dimension in Fig. 4 lists TGG language features that
have been discussed in existing literature. As we shall see in Section 3.1, our relatively simple
running example already requires Negative Application Conditions (NACs), complex attribute
conditions, and even multi-amalgamation.

The concurrency dimension represents the various operational scenarios in which TGGs can
be used. The main idea is to induce a high-level consistency relation with the TGG as follows: A
pair of source and target models are consistent, if they can be generated as part of a triple using
the rules of the TGG. This specification is then adjusted appropriately (operationalised) so it can
be used to accomplish different tasks. Typical operational scenarios are discussed in Section 3.2.

To ensure the practical applicability of TGGs, scalability is important so that real-world mod-
els of realistic size can be handled appropriately. Scalability with respect to relevant factors
(model size, size of changes to be propagated) is discussed in Section 3.3.

The reliability dimension comprises desirable formal properties that can be guaranteed for
the different TGG-based operational scenarios. In Section 3.4, we discuss the most established
properties in this dimension, and give references to different existing formalisations.

5 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

The focus up until now in TGG research has been primarily on building fully automated trans-
formations that guarantee consistent output for consistent input, i.e., all formal properties (cf.
reliability dimension) are typically only guaranteed for consistent input. As argued by Stevens
in [Ste14], however, models might never be fully consistent in practice, with engineers work-
ing concurrently and using tool support to improve (but not necessarily enforce!) consistency at
regular steps. Related challenges for TGG research are discussed in Section 3.5.

3.1 Expressiveness

Negative Application Conditions (NACs): Consider our running example and the TGG con-
sisting of the schema depicted in Fig. 1 and TGG rules R1 and R2 (Fig. 3). Apart from not
yet being able to fully create the example triple depicted in Fig. 2, R2 can be applied multiple
times to create classes with the same name. This violates the negative source domain constraint
nc (Fig. 1) and should be prevented. NACs are a well-known feature from graph transfor-
mation used to control rule applicability, and have been studied extensively in the context of
TGGs [EHS09, GEH11, HEGO10, KLKS10, AST12]. R2 can be extended with a NAC that
forbids the presence of a class with the same name as the class to be created. Such an extension
is depicted in Fig. 5 as R2’. Negative elements are depicted as “crossed out” and extend the
precondition of the rule, blocking rule application if they can be found in a model.

Transferring NACs to TGGs is, however, not as straightforward as it might seem. In contrast
to normal graph transformation, the set of TGG rules is typically used as a high-level specifica-
tion of consistency to derive operational transformations (cf. the concurrency dimension) and
it is challenging to extend the various operationalisations to take NACs into account. Most ap-
proaches restrict the usage of NACs in some way or the other, e.g., to source and target NACs
consisting of only source or target elements, respectively.

Depending on the TGG approach, NACs can also have an adverse effect on scalability and,
e.g., [AST12] restricts the usage of NACs to only enforcing negative domain constraints as in
R2’. Indeed, some approaches with a primary focus on scalability have explicitly chosen not
to provide any support for NACs, e.g., [GHL14]. NACs are, nevertheless, an important and
useful TGG language feature and the current support for NACs can still be improved especially
regarding lifting current restrictions.

C:Class T:TestClassL2:C2T

++++++

D:Diagram TS:TestSuiteL1:D2TS

C.name == name 
 T.name == name + "0"

R2'

C':Class

C'.name == name

Figure 5: Using a NAC to control rule application

Selected Revised Papers from GCM 2015 6 / 20



ECEASST

Complex Attribute Conditions: In any practical application, specifying the consistency of
attribute values cannot be avoided. As algebraic graph transformation is generally more suitable
for specifying structural rather than attribute-related relationships [Ren10], integrating a flexible
handling of complex attribute conditions in TGGs has been a long standing challenge. Some of
the difficulties involved are discussed in [KW07, LHGO12].

Allowing arbitrary OCL constraints in TGG rules [KRW04] certainly increases expressive-
ness, but also makes it harder (perhaps impossible) to guarantee any formal properties (cf. re-
liability dimension). Another approach is to use the attribute constraints in TGG rules as an
“interface”, i.e., only to check the conformance of manually implemented operationalisations
(e.g., in OCL or plain Java) [GHL14]. A further approach is to integrate black-box constraints in
TGG rules, guaranteeing that such atomic constraints can be mixed and combined as required to
formulate complex constraints in each rule [AVS12]. This allows for both user-defined, problem-
specific constraints (implemented in, e.g., Java) as well as a supplied set of library constraints.

To handle our running example, a constraint addUniqueIndex(className, test-
ClassName) can be implemented as a user-defined constraint and used in a TGG rule that
creates a new test class for an existing class. This is depicted as rule R3 to the left of Fig. 6
(ignore R4 for the moment). Depending on the operationalisation, the constraint implementation
might have to deal with (i) deciding if a given class name and test class name are consistent,
(ii) deriving a consistent test class name from a given class name by post-pending a unique index,
(iii) deriving a consistent class name from a given test class name by simply stripping off the
index, and finally (iv) generating consistent pairs of class names and test class names. Depending
on how a constraint is combined with other constraints, however, note that not all possible cases
must be supported. The “feasibility” of a combination of constraints can be checked at runtime
when operationalising the rules [AVS12].

Support for complex attribute conditions in TGG rules is now supported in most TGG tools to
a certain extent, but again this can still be improved, especially regarding corresponding formal
analysis techniques (cf. reliability dimension), which often do not take attribute values and
conditions into account (cf. [DV14] for a discussion and ongoing work on this).

C:Class T:TestClassL2:C2T

++++

D:Diagram TS:TestSuiteL1:D2TS

addUniqueIndex(C.name, T.name)

C:Class T:TestClassL2:C2T

public == true

M:Method

++++

L3:M2T
++

R3 R4

Figure 6: Rules for adding additional test classes

Multi-Amalgamation: Considering our running example and the triple depicted in Fig. 2,
we can now create all test classes with appropriate attribute values using R3. Whenever an
additional test case is created, however, a correspondence link is supposed to be created to all

7 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

public methods of the class. As c1 only has a single method m1, creating the correspondence
link m1↔ t2 could be accomplished by extending R3 and adding an additional rule for this case.
In the case of c2 that has two public methods, however, two links m3↔ t3 and m4↔ t3 have to
be created meaning that a further extension of R3 is again required. This will not work in general
as classes can have arbitrarily many public methods.

A solution to the problem of establishing 1-to-m relations in a single rule application is pro-
vided by multi-amalgamation [BFH87, GEH10], a well-known language feature from graph
transformation. Progress on transferring multi-amalgamation to TGGs has been made [LAST15,
LAS15] and the so-called multi-rule R4 depicted in Fig. 6 can be used to handle the creation
of correspondence links to existing public methods. The main idea is to generalise TGG rules
to interaction schemes, which consist of a kernel rule that is applied once, and a number of
multi-rules (denoted in the concrete syntax with a double border and an incoming arrow from
the kernel rule) that are applied as often as possible in such a manner that all applications agree
with the kernel application. In this case, the kernel is R3, which is applied to create a new test
class for an existing class, while R4 is the multi-rule that is applied as often as possible (creating
a correspondence link to every existing public method of the class). Multi-rules contain and ex-
tend the entire kernel, but only necessary elements, emphasised with a grey background, need to
be specified in the concrete syntax.

To complete our running example, we still have to add rules that create methods and connect
them to their classes. Interestingly, this also requires multi-amalgamation as a newly added pub-
lic method must be connected to all existing test classes. Figure 7 depicts an interaction scheme
consisting of kernel R5 to add a new public method, and multi-rule R6 to create correspondence
links to all existing test classes. Finally, a so-called ignore rule R7 [ALK+15] is used to specify
that adding private methods does not affect the target or correspondence models in any way.

Support for multi-amalgamation is still work in progress and requires further research, espe-
cially regarding the development of the fundamental theory and related static analyses [TG15].

public := true

M:Method

C:Class C:Class T:TestClassL:C2T

L1:M2T
++

R5 R6

++ ++

public := true

M:Method
public := false

M:Method

C:Class

R7

++

Figure 7: Rules for adding methods

Positive and Complex Application Conditions: The final two points on the expressiveness
axis can be viewed as challenges for future TGG research. Positive Application Conditions
(PACs) generalise NACs and are required in TGG rules, e.g., to ensure that positive constraints
such as pc (Fig. 1) are not violated. As NACs can only ensure upper bounds of multiplicities,
PACs are also required to ensure lower bounds. PACs can be further generalised to complex
application conditions, providing support for nesting of conditions. This has been shown to be

Selected Revised Papers from GCM 2015 8 / 20



ECEASST

equivalent to first order logic and covers a useful subset of OCL [RAB+15]. Although complex
application conditions have been integrated into TGGs in [GEH11], this is only a first step in
the direction as the operationalisation of such TGG rules and corresponding algorithms for the
various application scenarios (cf. concurrency dimension) are not discussed.

3.2 Concurrency

Simultaneous Creation of Consistent Triples: This might seem surprising but applying TGG
rules directly as specified can already be useful. This “simultaneous” creation of triples can, for
example, be used to implement a syntax directed visual modelling tool with separate models
for concrete syntax and semantic interpretation [LGB07]. In this case, the TGG models the
synchronised evolution of both models in parallel.

Another application for the simultaneous creation of triples is for test generation [WAS14,
HLG+11]. The idea here is to view the TGG as a high-level specification of correctness, i.e., a
“test model” for a transformation that can be implemented manually in any language of choice.
Even though such a transformation could be automatically derived from the TGG, in some cases
it still makes sense to do this manually: (i) the TGG tool in use does not support the target
platform, (ii) extra possibly problem-specific optimisations are necessary for efficiency reasons,
or (iii) the TGG is incomplete in the sense that only certain (very important) aspects of the
transformation are modelled and are to be tested.

Supporting the simultaneous creation of triples is straightforward but, as is often the case, the
devil is in the details. Challenges include supporting NACs efficiently, implementing complex
attribute conditions as high-quality attribute value generators, and guiding the generation process
to produce “balanced” or realistic models with respect to the concrete task or domain. Some of
these challenges are discussed in [WAS14].

Batch Transformations: A considerable amount of work has been invested in supporting
batch forward and backward transformations, which are derived automatically from a TGG. The
main idea is to derive a forward transformation FWD that is able to extend an existing source
model to a complete triple, i.e., appending a consistent correspondence and target model. This
is depicted for our running example in Fig. 8 and applies analogously to a backward transforma-
tion BWD. These operational scenarios are referred to as “batch” transformations as the output is
created from scratch, and the entire input is processed afresh, independent of former results.

name = "Ordering"
d:Diagram

name = "Customer"
c1:Class

public = true
name = "placeOrder"

m1:Method

name = "Ordering"
d:Diagram

name = "Ordering"
ts:TestSuite

name = "Customer"
c1:Class

name = "TestCustomer0"
t1:TestClass

public = true
name = "placeOrder"

m1:Method

FWD   

Figure 8: A batch forward transformation

9 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

There exist theoretical results characterising precisely when a TGG can be operationalised to
yield forward and backward transformations, and when given forward and backward transfor-
mations conform to a TGG [EEE+07]. This is particularly important when considering or in-
troducing new language features as it might no longer be possible to derive a forward/backward
transformation that retains the semantics of the TGG, i.e., conforms to the TGG.

Different approaches can be used to derive forward and backward transformations, ranging
from fully interpretative approaches [KRW04], to “compiling” the TGG to yield a set of “for-
ward” graph transformation rules that can be directly executed to realise the forward transfor-
mation [EH12]. Most approaches take a mixed approach, deriving forward/backward rules and
controlling their application with an underlying TGG control algorithm [GHL14, LAS14a]. A
comparison of TGG approaches with a focus on batch transformations is provided in [HLG+13].

Batch transformations are certainly relevant and useful in practise [HGN+13], but it is diffi-
cult to argue why TGGs are better than a straightforward combination of unidirectional model
transformation languages. Arguments do include increased productivity and consistency by con-
struction, but these can be guaranteed for a combination of separate unidirectional approaches,
effectively “faking” bidirectionality [PDPR14] without a bx tool. Indeed, batch forward and
backward transformation might not be a very convincing primary application scenario for TGGs,
especially as unidirectional approaches are often more efficient [LAS14a].

Model Synchronisation: The true potential of TGGs lies more in realising incrementally
working synchronisation tools, already mentioned as future work in the first paper on TGGs
[Sch94]. A forward model synchroniser SyncF takes a triple and a change to the source model
∆S (referred to as a source delta) as input, and produces a consistent output triple by manipu-
lating the existing correspondence and target models. This means that ∆S is propagated to yield
corresponding ∆C and ∆T in a manner that conforms to the underlying TGG. This is depicted
schematically in Fig. 9 for our running example (analogously for backward model synchro-
nisers). Note that ∆S consists of an attribute change (c1.name is changed from Client to
Customer), an addition of an object (method m1), and a link (connecting c1 to m1).

The challenge here is to work incrementally, taking the entire input triple into account and only
changing what is necessary. This is indicated in Fig. 9 by greying out unaffected parts. Model
synchronisation is a generalisation of the batch case as batch transformations correspond to the
empty triple as input, and creating an entire source or target model as the source/target delta to
be propagated. Model synchronisation cannot be “faked” so easily by combining unidirectional
transformations, as it is impossible to avoid information loss in general without accessing the
old state of the models involved. In our example, applying a batch forward transformation to the
source model in Fig. 9 would result in the same triple depicted in Fig. 8, i.e., test class t2 would
not be created. The reason here is that it is impossible to know how many additional test classes
to create for each class in the source model, solely by inspecting the source model.

Building well-behaved incremental synchronisation tools is challenging, and establishing a
theoretical foundation for this task is a current focus of the bx community [CFH+09, Ste08].
Practical scenarios that require synchronisation are often “symmetric” in the sense that both
domains contain data that is irrelevant for consistency but must not be discarded in the synchro-
nisation process [DWGC14]. TGG-based formal synchronisation frameworks (e.g., [HEO+11]),

Selected Revised Papers from GCM 2015 10 / 20



ECEASST

name = "Ordering"
d:Diagram

name = "Ordering"
ts:TestSuite

name = "Client"
c1:Class

name = "TestClient0"
t1:TestClass

name = "TestClient1"
t2:TestClass

name = "Ordering"
d:Diagram

name = "Ordering"
ts:TestSuite

name = "Customer"
c1:Class

name = "TestCustomer0"
t1:TestClass

name = "TestCustomer1"
t2:TestClass

  �S

public = true
name = "placeOrder"

m1:Method

  �T  �C  SyncF

Figure 9: A forward synchronisation

as well as multiple implementations (cf. [LAS+14b] for a comparison) exist. The different ap-
proaches apply various strategies and pose certain restrictions to make a compromise between
efficiency, being as incremental as possible, and guaranteeing well-behavedness. Improving the
existing support for model synchronisation is a current focus of TGG research.

Model Integration: Model synchronisation can be further generalised to model integration,
where the task is not just to propagate a source or target delta, but to consolidate a given pair of
source and target deltas applied independently to the same triple of models. Model integration
is required to support concurrent engineering activities, where engineers work for a “sprint” in
parallel on multiple models and then restore consistency at given points in time (cf. [Anj14,
RLSS11]). Model integration thus requires some form of conflict detection and resolution as the
pair of source and target deltas cannot be expected to be consistent in any sense.

Existing frameworks for model integration all follow the straightforward idea presented by
[XSHT13] of combining forward and backward model synchronisers with a model merge: source
and target deltas are propagated to the respective other side so they can be merged with the
changes applied directly there. The TGG-based model integration framework of [HEEO12]
combines this idea with existing theory of conflict detection and resolution provided by [EET11].
These “propagation based” frameworks for model integration are far from ideal (see [OBE+13]
for a comparison and discussion) and share the common problem of treating the forward and
backward synchronisation steps in a black-box manner, i.e., not being to control them for opti-
mal conflict avoidance. A more “bidirectional” approach is suggested by [OBE+13] as a possible
improvement. The TGG-based frameworks are also all currently only theoretical and are yet to
be implemented and practically evaluated with respect to, e.g., scalability and expressiveness.

11 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

Model integration can be seen as the application scenario for bx in general and TGGs in particu-
lar. It is relatively easy to argue the added value of a bx language with direct support for model
integration, as opposed to somehow combining unidirectional transformation languages. Model
integration is, therefore, a promising current and future focus of TGG research.

Multi-Domain TGGs: In practice, even though some cases might involve only two related
models, supporting concurrent engineering activities in general will involve maintaining the con-
sistency of a whole set of related models. The bx community is currently only considering the
simplified case of handling a pair of related models, not because this is all that is required, but
simply because this simplifies the problem, which is already complex enough.

Nonetheless, [KS06, TA15] have already shown that at least the basic theory for TGGs can be
extended elegantly from triples to arbitrarily connected networks of models. All TGG tools we
are aware of, however, still consider multi-domain TGGs to be currently out-of-scope.

3.3 Scalability

An advantage of TGGs compared to, e.g., constraint solver-based solutions is the potential to
scale better. This is due to the considerable experience in the graph transformation community
with developing scalable graph pattern matching engines, which have been successfully lever-
aged for TGGs [LAS+14b, HLG+13].

The underlying problem of “graph parsing”, however, remains difficult and naı̈ve solutions
can easily explode exponentially, even for TGGs with only a few rules, and moderate model
sizes. In practice, therefore, the class of supported TGGs is typically restricted in some suitable
way to guarantee scalability [ALST14, HEGO10, KLKS10].

There are two relevant factors when discussing scalability of TGG-based tools: (i) the average
size (number of elements) of (rule) patterns k, and (ii) the size (number of elements) of involved
models n. To be useful in practice, current TGG tools make a tradeoff between expressiveness
(e.g., restricting the usage of NACs) and scalability, ensuring at least polynomial runtime in
model size, i.e., at most O(nk).

The challenge for future work is to completely decouple synchronisation/integration time from
model size, i.e., to scale polynomially with respect to the number of elements changed n′, where
n′ is normally much smaller than n. Approaches such as [JKS06, ARDS14, GHL14] have shown
that this can be attained if the set of supported TGGs is severely restricted. Further relaxing these
restrictions and still scaling with respect to delta size (perhaps at least in most “important” cases)
is ongoing and future work.

3.4 Reliability

To simplify the following discussion, models will denoted by GX (G for graph), where X ∈
{S,C,T} represents the domain (source, correspondence, or target) of the model. Triples of
models are consequently denoted by GS← GC → GT . The rules of a TGG generate a language
of consistent triples, denoted by L (T GG). With this notation, we can now formulate TGG-based
consistency succinctly as: GS,GT are consistent⇔ ∃ GS← GC→ GT ∈L (T GG).

Selected Revised Papers from GCM 2015 12 / 20



ECEASST

Transformation Correctness and Completeness: Let us refer to one of the operationalisa-
tions on the concurrency axis as a transformation τ . A fundamental requirement is that such a
derived transformation τ conform to its underlying TGG:

A transformation τ is transformation correct if it produces consistent triples only.

This is formalised differently depending on the exact operationalisation: for batch transforma-
tions cf. [KLKS10, SK08, EEE+07], for model synchronisation [HEO+11, LAVS12], and for
model integration [HEEO12, OBE+13]. Considering our running example, transformation cor-
rectness guarantees that the result of executing a synchronisation (Fig. 9) will always be a triple
that could also be created from scratch by applying the rules of the TGG (Fig. 3, 6, 7).

A related and equally desired property of transformations is totality, i.e., demanding that the
domain of a transformation τ be precisely stated and that τ be total on its set of valid inputs:

τ is transformation complete if it is total on a precisely defined set of valid inputs.

Although not demanded explicitly, “precisely defined” often means a set of conditions that can be
checked at design time via static analysis techniques. The practical relevance of transformation
completeness is that when an implementation throws an exception, this can only mean that the
input was invalid (and this can possibly be ruled out with a corresponding static analysis).

Once again, transformation completeness is formalised differently depending on the opera-
tional scenario: for batch transformations cf. [KLKS10, SK08, EEE+07], and for model syn-
chronisation [HEO+11, LAVS12]. For our running example, transformation completeness guar-
antees that any source delta that leads to a source model, which is part of a consistent triple, can
be forward synchronised (Fig. 9). Note that the concept of transformation completeness does not
seem to make sense in the more general context of model integration, where a host of properties
have been suggested to formulate reasonable expectations on the conflict detection and resolution
process instead [HEEO12, OBE+13]. Indeed, capturing an analogous completeness property for
model integration can be viewed as work in progress.

Domain Correctness and Completeness: When working with models and metamodels, the
rules of a TGG are not the sole source of consistency. The domains of the source and target
models also comprise “domain” constraints, which should not be violated by valid or domain
consistent models. According to [EEPT06], a triple of metamodels can be formalised as a type
triple graph T G together with a set C of domain constraints. In analogy to L (T GG), L (T G)
denotes the set of all well-typed triples, while L (T G,C ) denotes the set of all domain consistent
triples that are well-typed and additionally do not violate any domain constraints from a given
set of constraints C .

Given these independent sources of consistency requirements, L (T GG) and L (T G,C ), the
following two properties are used to demand the “compatibility” of a TGG with its domains:

A TGG is domain correct if: G ∈L (T GG)⇒ G ∈L (T G,C ).

This means that transformation correctness is sufficient for domain consistency. Domain com-
pleteness requires that transformation correctness also be necessary for domain consistency in
both the source and target domains. To express this for the source domain (applies analogously

13 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

to the target domain), let L (T GS,CS) denote the set of all source domain consistent models,
i.e., well-typed and valid source models according to the source type graph T GS and given set of
source domain constraints CS:

A TGG is source domain complete if: GS ∈L (T GS,CS)⇒∃ GS← GC→ GT ∈L (T GG).

A static analysis technique for ensuring domain correctness given a TGG and a set of domain
constraints is presented in [AST12], while initial results on analysing domain completeness is
given by [EHSB13]. In both cases, an extension to advanced language features (cf. expressive-
ness dimension), an implementation, and integration in a TGG tool is still work in progress. The
TGG for our running example is not domain correct, as it can create classes without any public
methods using R2’ (Fig. 5). The analysis of [AST12] would identify this violation, and even
suggest extending R2’ to create a public method together with every new class C. The TGG is
also not domain complete, as numerous target domain constraints are missing, e.g., to ensure that
the names of test classes are unique and can actually be generated by the TGG.

The practical relevance of domain correctness is to ensure that TGG-based tools take domain
constraints adequately into account. A check for domain completeness can be used to indi-
cate that certain domain consistent models cannot yet be generated by the TGG. This is often
unwanted as it points to implicit domain constraints. In certain operational scenarios, domain
completeness can also be exploited as a means of checking for input validity: for a batch for-
ward transformation that is both transformation complete and domain complete, a source model
is valid input if it is source domain consistent.

Least Change, Least Surprise: Especially relevant in the general case of model integration,
the formal property of least change or least surprise is meant to capture the perceived quality
of the synchronisation / integration process. Transformation correctness is only a very basic
requirement and does not pose any restrictions on how consistency is restored. For instance,
based solely on transformation correctness, i.e., ignoring runtime, there are TGGs for which it is
impossible to distinguish a forward synchroniser that simply deletes all correspondence / target
elements and always performs a batch forward transformation, from a forward synchroniser
that works incrementally and only performs minimal changes. Compare the case of our running
example depicted in Fig. 8 and Fig. 9: Retaining test class t2 during synchronisation is obviously
desirable (Fig. 9), yet there is nothing stating formally that this is better than the result in Fig. 8!

The intuition here is to prefer synchronisers that restore consistency by “changing as little
as possible”. This turns out, however, to be challenging to formalise and is a current focus of
bx research. Amongst other factors, the “best behaviour” of a synchroniser is not necessarily
directly connected to the “size” of the changes applied according to, e.g., some form of metric,
but might be more related to being as predictable as possible, i.e., causing least surprise as
opposed to afflicting least change. The interested reader is referred to [CGMS15] for a detailed
overview of related work in this context as well as a discussion of challenges.

In some (simple) cases, the round-tripping laws of the delta lens framework [Dis08], often
capture desirable behaviour better than transformation correctness. First steps at comparing the
lens laws with TGGs have been taken by [HEO+11], but only for the simplified case of TGGs
with functional behaviour, i.e., rule R3 in our running example would not be allowed as it can
be applied arbitrarily often, leading to the discrepancy between batch (Fig. 8) and sync (Fig. 9).

Selected Revised Papers from GCM 2015 14 / 20



ECEASST

3.5 Tolerance

The current trend, especially for model integration, is towards tools that tolerate or better yet
embrace inconsistencies [Ste14]. As indicated in the tolerance dimension (Fig. 4), a first step in
this direction could involve accepting inconsistent deltas but ensuring that the resulting triple is
always consistent. In many cases, however, this might not be what is wanted at all. It might actu-
ally be better for a tool to only improve the situation if possible, and not enforce full consistency
(which could mean deleting everything in an extreme case) [Ste14].

For bx tools to be of any use in practice, a fine grained notion of consistency should be sup-
ported, i.e., not consistent or inconsistent, but providing something akin to a “lattice” of consis-
tency, together with formal guarantees to ensure that the bx tool either improves the situation with
respect to consistency, or does nothing. The argument is that in practice, models might never be
fully consistent, with engineers working constantly and concurrently on them [Ste14, CGMS15].

This is a completely new challenge for TGG research, as all formal results are currently based
on a fully consistent starting point. It is still unclear how to provide a fine grained notion of
consistency for TGGs and how best to integrate a concept of “tolerance” in the current formal
framework. In combination with model integration, providing support for tolerance is perhaps
the primary future challenge that TGG research must address.

4 Related work

The goals and scope of the bx community are outlined in [CFH+09]. A survey of bx approaches
is provided by [Ste08], while a more recent feature-based bx taxonomy is given by [HTCH15]. A
complementary classification of bx scenarios is presented in [DWGC14]. While all these papers
present and classify research in bx, giving a vision in some cases, e.g., support for increasingly
symmetric bx scenarios in [DWGC14], our paper focusses solely on TGG research, and is thus
able to discuss TGG-specific issues and challenges in more detail.

A proposal and vision for a repository of bx examples is presented in [CMSG14]. The bx
repository has since then been established and is now a source for a growing number of bx ex-
amples, including numerous TGG specifications. While [CMSG14] does not explicitly discuss
TGGs, the repository serves as a source for examples that cannot or can only partially be speci-
fied using TGGs, motivating new language features, application scenarios, and formal properties.
Visionary papers in the context of bx such as [Ste14] on tolerance, and [CGMS15] on the prin-
ciple of least change / surprise, have had a substantial influence on TGG research. In this paper,
we have discussed these challenges for TGGs, stating relevant current and future work.

There are currently two TGG tool comparison papers: [HLG+13] for general aspects, and
[LAS+14b] to focus primarily on support for model synchronisation. This paper complements
these practical and often technical, tool-specific comparisons, by providing a more general dis-
cussion and a vision for future TGG research.

This paper can be seen as a continuation of [Sch94], already with a vision for “incremen-
tally working translators”, and [SK08], summarising 15 years of TGGs and focussing on chal-
lenges concerning mainly TGG-based batch transformations. In contrast to [SK08], we have
chosen to distinguish two different kinds of correctness/completeness: transformation correct-
ness/completeness and domain correctness/completeness. We have also posed, for the first time

15 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

for TGGs, challenges concerning tolerance and least change/surprise, both currently areas of
active research in the bx community. Finally, we have identified model integration, considered
clearly out-of-scope in [SK08, Sch94], as a primary focus for future TGG research.

5 Summary and conclusion

In this paper, we have given an overview of the current state-of-the-art in TGG research, organis-
ing the different directions in five research dimensions with past, current, and future challenges.
As a conclusion, we believe that the primary potential of TGGs in the years to come lies in
realising tolerant, scalable, and reliable tools for model integration.

Some practical but equally important points we did not have space to discuss include: ex-
tending the current support for the modularity of TGG specifications [GR12, KKS07, ASLS14],
establishing debugging frameworks, providing ample documentation (handbooks, examples, tu-
torials), and improving tool support in general. Some of these issues are discussed in our TGG
tool comparison papers [LAS+14b, HLG+13].

Bibliography

[ALK+15] A. Anjorin, E. Leblebici, R. Kluge, A. Schürr, P. Stevens. A Systematic Approach
and Guidelines to Developing a Triple Graph Grammar. In Cunha and Kindler
(eds.), BX 2015. CEUR Workshop Proceedings 1396, pp. 81–95. CEUR-WS.org,
2015.

[ALST14] A. Anjorin, E. Leblebici, A. Schürr, G. Taentzer. A Static Analysis of Non-
Confluent Triple Graph Grammars for Efficient Model Transformation. In Giese
and König (eds.), ICGT 2014. LNCS 8571, pp. 130–145. Springer, 2014.

[Anj14] A. Anjorin. Synchronization of Models on Different Abstraction Levels using Triple
Graph Grammars. Phd thesis, Technische Universität Darmstadt, 2014.

[ARDS14] A. Anjorin, S. Rose, F. Deckwerth, A. Schürr. Efficient Model Synchronization
with View Triple Graph Grammars. In Cabot and Rubin (eds.), ECMFA 2014.
LNCS 8569, pp. 1–17. Springer, 2014.

[ASLS14] A. Anjorin, K. Saller, M. Lochau, A. Schürr. Modularizing Triple Graph Grammars
Using Rule Refinement. In Gnesi and Rensink (eds.), FASE 2014. LNCS 8411,
pp. 340–354. Springer, 2014.

[AST12] A. Anjorin, A. Schürr, G. Taentzer. Construction of Integrity Preserving Triple
Graph Grammars. In Ehrig et al. (eds.), ICGT 2012. LNCS 7562, pp. 356–370.
Springer, 2012.

[AVS12] A. Anjorin, G. Varró, A. Schürr. Complex Attribute Manipulation in TGGs with
Constraint-Based Programming Techniques. In Hermann and Voigtländer (eds.),
BX 2012. ECEASST 49, pp. 1–16. EASST, 2012.

Selected Revised Papers from GCM 2015 16 / 20



ECEASST

[BFH87] P. Boehm, H.-R. Fonio, A. Habel. Amalgamation of graph transformations: A syn-
chronization mechanism. JCSS 34(2-3):377–408, 1987.

[CFH+09] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, J. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective. In Paige (ed.), ICMT 2009.
LNCS 5563, pp. 260–283. Springer, 2009.

[CGMS15] J. Cheney, J. Gibbons, J. McKinna, P. Stevens. Towards a Principle of Least Surprise
for Bidirectional Transformations. In Cunha and Kindler (eds.), BX 2015. CEUR
Workshop Proceedings 1396, pp. 66–80. CEUR-WS.org, 2015.

[CMSG14] J. Cheney, J. McKinna, P. Stevens, J. Gibbons. Towards a Repository of Bx Exam-
ples. In Candan et al. (eds.), Proceedings of the Workshops of EDBT/ICDT 2014.
CEUR Workshop Proceedings 1133, pp. 87–91. CEUR-WS.org, 2014.

[Dis08] Z. Diskin. Algebraic Models for Bidirectional Model Synchronization. In Czarnecki
et al. (eds.), MoDELS 2008. LNCS 5301, pp. 21–36. Springer, 2008.

[DV14] F. Deckwerth, G. Varró. Attribute Handling for Generating Preconditions from
Graph Constraints. In Giese and König (eds.), ICGT 2014. LNCS 8571, pp. 81–
96. Springer, jul 2014.

[DWGC14] Z. Diskin, A. Wider, H. Gholizadeh, K. Czarnecki. Towards a Rational Taxonomy
for Increasingly Symmetric Model Synchronization. In Ruscio and Varró (eds.),
ICMT 2014. LNCS 8568, pp. 57–73. Springer, 2014.

[EEE+07] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer. Information Preserving
Bidirectional Model Transformations. In Dwyer and Lopes (eds.), FASE 2007.
LNCS 4422, pp. 72–86. Springer, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2006.

[EET11] H. Ehrig, C. Ermel, G. Taentzer. A Formal Resolution Strategy for Operation-Based
Conflicts in Model Versioning Using Graph Modifications. In Giannakopoulou and
Orejas (eds.), FASE 2011. LNCS 6603, pp. 202–216. Springer, 2011.

[EH12] C. Ermel, F. Hermann. Visual Modeling and Analysis of EMF Model Transforma-
tions Based on Triple Graph Grammars. ECEASST 54:1–12, 2012.

[EHS09] H. Ehrig, F. Hermann, C. Sartorius. Completeness and Correctness of Model Trans-
formations Based on Triple Graph Grammars with Negative Application Condi-
tions. In Boronat and Heckel (eds.), GT-VMT 2009. ECEASST 18. EASST, 2009.

[EHSB13] H. Ehrig, F. Hermann, H. Schölzel, C. Brandt. Propagation of constraints along
model transformations using triple graph grammars and borrowed context. VLC
24(5):365–388, 2013.

17 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

[GEH10] U. Golas, H. Ehrig, A. Habel. Multi-Amalgamation in Adhesive Categories. In
Ehrig et al. (eds.), ICGT 2010. LNCS 6372, pp. 346–361. Springer, 2010.

[GEH11] U. Golas, H. Ehrig, F. Hermann. Formal Specification of Model Transformations
by Triple Graph Grammars with Application Conditions. In Echahed et al. (eds.),
GCM 2010. ECEASST 39. ASST, 2011.

[GHL14] H. Giese, S. Hildebrandt, L. Lambers. Bridging the Gap Between Formal Semantics
and Implementation of Triple Graph Grammars. SoSyM 13(1):273–299, 2014.

[GR12] J. Greenyer, J. Rieke. Applying Advanced TGG Concepts for a Complex Transfor-
mation of Sequence Diagram Specifications to Timed Game Automata. In Schürr
et al. (eds.), AGTIVE 2011. LNCS 7233, pp. 222 – 237. Springer, 2012.

[HEEO12] F. Hermann, H. Ehrig, C. Ermel, F. Orejas. Concurrent Model Synchronization with
Conflict Resolution Based on Triple Graph Grammars. In Lara and Zisman (eds.),
FASE 12. LNCS 7212, pp. 178–193. Springer, 2012.

[HEGO10] F. Hermann, H. Ehrig, U. Golas, F. Orejas. Efficient Analysis and Execution of
Correct and Complete Model Transformations Based on Triple Graph Grammars.
In Bézivin et al. (eds.), MDI 2010. MDI 2010 1866277, pp. 22–31. ACM Press,
2010.

[HEO+11] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong. Correctness of
Model Synchronization Based on Triple Graph Grammars. In Whittle et al. (eds.),
MoDELS 2011. LNCS 6981, pp. 668–682. Springer, 2011.

[HGN+13] F. Hermann, S. Gottmann, N. Nachtigall, B. Braatz, G. Morelli, A. Pierre, T. Engel.
On an Automated Translation of Satellite Procedures Using Triple Graph Gram-
mars. In Duddy and Kappel (eds.), ICMT 2013. LNCS 7909, pp. 50–51. Springer,
2013.

[HLG+11] S. Hildebrandt, L. Lambers, H. Giese, D. Petrick, I. Richter. Automatic Confor-
mance Testing of Optimized Triple Graph Grammar Implementations. In Schürr
et al. (eds.), AGTIVE 2011. LNCS 7233, pp. 238–253. Springer, 2011.

[HLG+13] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer, W. Schäfer, M. Lauder,
A. Anjorin, A. Schürr. A Survey of Triple Graph Grammar Tools. In Stevens and
Terwilliger (eds.), BX 2013. ECEASST 57. EASST, 2013.

[HTCH15] S. Hidaka, M. Tisi, J. Cabot, Z. Hu. Feature-Based Classification of Bidirectional
Transformation Approaches. SoSyM, pp. 1–22, 2015.

[JKS06] J. Jakob, A. Königs, A. Schürr. Non-Materialized Model View Specification with
Triple Graph Grammars. In Corradini et al. (eds.), ICGT 2006. LNCS 4178,
pp. 321–335. Springer, 2006.

[KKS07] F. Klar, A. Königs, A. Schürr. Model Transformation in the Large. In Crnkovic and
Bertolino (eds.), FSE 2007. Pp. 285–294. ACM, 2007.

Selected Revised Papers from GCM 2015 18 / 20



ECEASST

[KLKS10] F. Klar, M. Lauder, A. Königs, A. Schürr. Extended Triple Graph Grammars with
Efficient and Compatible Graph Translators. In Schürr et al. (eds.), Festschrift Nagl.
LNCS 5765, pp. 141–174. Springer, 2010.

[KRW04] E. Kindler, V. Rubin, R. Wagner. An Adaptable TGG Interpreter for In-Memory
Model Transformations. In Schürr and Zündorf (eds.), Fujaba Days 2014. Pp. 35–
38. 2004.

[KS06] A. Königs, A. Schürr. MDI: A Rule-based Multi-document and Tool Integration
Approach. SoSym 5(4):349–368, 2006.

[KW07] E. Kindler, R. Wagner. Triple Graph Grammars: Concepts, Extensions, Implemen-
tations, and Application Scenarios. Technical report, Software Engineering Group,
Department of Computer Science, University of Paderborn, 2007.

[LAS14a] E. Leblebici, A. Anjorin, A. Schürr. Developing eMoflon with eMoflon. In Ruscio
and Varró (eds.), ICMT 14. LNCS 8568, pp. 138–145. Springer, 2014.

[LAS+14b] E. Leblebici, A. Anjorin, A. Schürr, S. Hildebrandt, J. Rieke, J. Greenyer. A Com-
parison of Incremental Triple Graph Grammar Tools. In Hermann and Sauer (eds.),
GT-VMT 2014. ECEASST 67. EASST, 2014.

[LAS15] E. Leblebici, A. Anjorin, A. Schürr. Tool Support for Multi-amalgamated
Triple Graph Grammars. In Parisi-Presicce and Westfechtel (eds.), ICGT 2015.
LNCS 9151, pp. 257–265. Springer, 2015.

[LAST15] E. Leblebici, A. Anjorin, A. Schürr, G. Taentzer. Multi-amalgamated Triple Graph
Grammars. In Parisi-Presicce and Westfechtel (eds.), ICGT 2015. LNCS 9151,
pp. 87–103. Springer, 2015.

[LAVS12] M. Lauder, A. Anjorin, G. Varró, A. Schürr. Efficient Model Synchronization with
Precedence Triple Graph Grammars. In Ehrig et al. (eds.), ICGT 2012. LNCS 7562,
pp. 401–415. Springer, 2012.

[LGB07] J. de Lara, E. Guerra, P. Bottoni. Triple Patterns: Compact Specifications for the
Generation of Operational Triple Graph Grammar Rules. ECEASST 6, 2007.

[LHGO12] L. Lambers, S. Hildebrandt, H. Giese, F. Orejas. Attribute Handling for Bidirec-
tional Model Transformations: The Triple Graph Grammar Case. ECEASST 49,
2012.

[OBE+13] F. Orejas, A. Boronat, H. Ehrig, F. Hermann, H. Sch. On Propagation-Based Con-
current Model Synchronization. ECEASST 57, 2013.

[PDPR14] C. M. Poskitt, M. Dodds, R. F. Paige, A. Rensink. Towards Rigorously Faking
Bidirectional Model Transformations. In Dingel et al. (eds.), AMT 2014. CEUR
Workshop Proceedings 1277, pp. 70–75. CEUR-WS.org, 2014.

19 / 20 Volume 73 (2016)



20 Years of Triple Graph Grammars

[RAB+15] H. Radke, T. Arendt, J. S. Becker, A. Habel, G. Taentzer. Translating Essential
OCL Invariants to Nested Graph Constraints Focusing on Set Operations. In Parisi-
Presicce and Westfechtel (eds.), ICGT 2015. LNCS 9151, pp. 155–170. Springer,
2015.

[Ren10] A. Rensink. The Edge of Graph Transformation - Graphs for Behavioural Speci-
fication. In Engels et al. (eds.), Festschrift Nagl. LNCS 5765, pp. 6–32. Springer,
2010.

[RLSS11] S. Rose, M. Lauder, M. Schlereth, A. Schürr. A Multidimensional Approach for
Concurrent Model Driven Automation Engineering. In Osis and Asnina (eds.),
Model-Driven Domain Analysis and Software Development: Architectures and
Functions. Pp. 90–113. IGI Publishing, 2011.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Mayr
et al. (eds.), WG 1994. LNCS 903, pp. 151–163. Springer, 1994.

[SK08] A. Schürr, F. Klar. 15 Years of Triple Graph Grammars. In Ehrig et al. (eds.), ICGT
2008. LNCS 5214, pp. 411–425. Springer, 2008.

[Ste] P. Stevens. MODELTESTS v0.1 in Bx Examples Repository. http://bx-community.
wikidot.com/examples:home.

[Ste08] P. Stevens. A Landscape of Bidirectional Model Transformations. In Lämmel et al.
(eds.), GTTSE 07. LNCS 5235, pp. 408–424. Springer, 2008.

[Ste14] P. Stevens. Bidirectionally Tolerating Inconsistency: Partial Transformations. In
Gnesi and Rensink (eds.), FASE 2014. LNCS 8411, pp. 32–46. Springer, 2014.

[TA15] F. Trollmann, S. Albayrak. Extending Model to Model Transformation Results from
Triple Graph Grammars to Multiple Models. In Kolovos and Wimmer (eds.), ICMT
2015. LNCS 9152, pp. 214–229. Springer, 2015.

[Tae12] G. Taentzer. Instance Generation from Type Graphs with Arbitrary Multiplicities.
In Fish and Lambers (eds.), GT-VMT 2012. ECEASST 47. EASST, 2012.

[TG15] G. Taentzer, U. Golas. Towards Local Confluence Analysis for Amalgamated Graph
Transformation. In ICGT 2015. LNCS 9151, pp. 69–86. Springer, 2015.

[WAS14] M. Wieber, A. Anjorin, A. Schürr. On the Usage of TGGs for Automated Model
Transformation Testing. In Di Ruscio and Varró (eds.), ICMT 2014. LNCS 8568,
pp. 1–16. Springer, 2014.

[XSHT13] Y. Xiong, H. Song, Z. Hu, M. Takeichi. Synchronizing concurrent model updates
based on bidirectional transformation. SoSyM 12(1):89–104, 2013.

Selected Revised Papers from GCM 2015 20 / 20

http://bx-community.wikidot.com/examples:home
http://bx-community.wikidot.com/examples:home

	Introduction and motivation
	Running Example and Preliminaries
	Research dimensions
	Expressiveness
	Concurrency
	Scalability
	Reliability
	Tolerance

	Related work
	Summary and conclusion

