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Abstract: We introduce Single-Pushout Rewriting for arbitrary partial algebras.
Thus, we give up the usual restriction to graph structures, which are algebraic cat-
egories with unary operators only. By this generalisation, we obtain an integrated
and straightforward treatment of graphical structures (objects) and attributes (data).
We lose co-completeness of the underlying category. Therefore, a rule is no longer
applicable at any match. We characterise the new application condition and make
constructive use of it in some practical examples.
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1 Introduction

The current frameworks for the (algebraic) transformation of typed graphs are not completely
satisfactory from the software engineering perspective. For example, it is hardly possible to spe-
cify and handle associations with “at-most-one”-multiplicity, since most frameworks are based
on some (adhesive) categories of graphs which allow multiple edges between the same pair of
vertices.1

Another example is the handling of attributes. The standard approaches to the transforma-
tion of attributed graphs, compare for example [4, 14], explicitly distinguish two parts, i. e. the
structure part (objects and links) which can be changed by transformations and the base-type
and -operation part (data) which is immutable. Typically, objects can be attributed with data via
some special edges the source of which is in the structure part and the target of which is data.
This set-up either leads to set-valued or immutable attribute structures. Both is not satisfactory
from the software engineering point of view.2

Another problem in current frameworks for attributed graphs is the infiniteness of rules stip-
ulated by the infiniteness of the term algebra which is typically used in the rules. Even if the
algebra for the objects which are subject to transformation is finite (for example integers modulo
some maximum), the term algebra tends to contain infinitely many terms.

All these problems are more or less caused by the usage of total algebras. In this paper, we
use partial algebras instead as the underlying category for single-pushout rewriting. In partial al-
gebras, operation definitions can be changed without deleting and adding an object (edge). Thus,

1 Typically, some negative application conditions [8] are employed to handle these requirements making the frame-
work more complicated.
2 In object-oriented programming languages, for example, attributes have the standard multiplicity 0..1.
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we get a straightforward model for “at-most-one” associations. We also give up the distinction
between structure and data, i. e. we allow arbitrary signatures which are able to integrate both
parts. We lose co-completeness of the base category and import some application conditions
into single-pushout rewriting. But we gain a seamless integration of structure and data. Finally,
partial term algebras in the rules help to keep rules finite.

The paper is a short version of [17] and an extended version of [15]. Section 2 introduces our
concept of partial algebra. We show explicitly the similarities between partial algebras and hy-
pergraphs. Section 3 provides sufficient and necessary conditions for the existence of pushouts
in categories of partial algebras and partial morphisms. It contains our main results. Section 4
defines the new single-pushout approach and compares it to the sesqui-pushout approach [3].
Section 5 demonstrates by some examples that the application conditions in the introduced re-
writing approach are useful in many situations. Finally, Section 6 discusses related work and
provides some conclusions.

2 Graphs and Partial Algebras

In this section, we introduce the basic notions and constructions for partial algebras. We use
a rather unusual approach in order to emphasise the close connection of categories of par-
tial algebras to categories of hypergraphs. We employ a kind of objectification for partial
mappings. A partial map f : A → B is not just a subset of A× B satisfying the uniqueness
condition (∗) (a,b1) ,(a,b2) ∈ f implies b1 = b2. Instead, a partial map f : A→ B is a triple
( f ,d f : f → A,c f : f → B) consisting of a set f of map entries together with two total maps d f :
f → A and c f : f → B which provide the argument and the return value for every entry respect-
ively. The uniqueness condition (∗) above translates to ∀e1,e2 ∈ f : d f (e1) = d f (e2) =⇒ e1 = e2
in this set-up.

A signature Σ = (S,O) consists of a set of sorts S and a domain- and co-domain-indexed
family of operations O = (Ow,v)w,v∈S∗ .

3 A graph G wrt. a signature consists of a carrier set Gs

(of vertices) for every sort s ∈ S and a set of hyperedges
(

f G,dG
f : f G→ Gw,cG

f : f G→ Gv
)

for every operation f ∈ Ow,v and w,v ∈ S∗ where the total mappings dG
f and cG

f provide the
“arguments” and “return values”.4 A graph morphism h : G→ H between two graphs G and H
wrt. the same signature Σ = (S,O) consists of a family of vertex mappings h = (hs : Gs→ Hs)s∈S

and a family of edge mappings hO =
(

hO
f : f G→ f H

)
f∈O

such that, for all operations f ∈ Ow,v

and for all edges e ∈ f G, we have:5

dH
f
(
hO

f (e)
)
= hw (dG

f (e)
)

and cH
f
(
hO

f (e)
)
= hv (cG

f (e)
)
.

3 Note that we generalise the usual notion of signature which allows single sorts as co-domain specification for
operations only. Operations in Ow,ε will be interpreted as predicates, operations in Ow,v with |v|> 1 will be interpreted
as operations which deliver several results simultaneously.
4 For w ∈ S∗ and a family (Gs)s∈S of sets, Gw is recursively defined by (i) Gε = {∗}, (ii) Gw = Gs if w = s ∈ S and
(iii) Gw = Gv×Gu if w = vu.
5 Given a sort-indexed family of mappings ( fs : Gs→ Hs)s∈S, f w : Gw→ Hw is recursively defined for every w ∈ S∗

by (i) f ε = {(∗,∗)}, (ii) f w = fs if w = s ∈ S, and (iii) f w = f v× f u, if w = vu.
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The category of all graphs and graph morphisms wrt. a signature Σ is denoted by GΣ in
the following.6 GΣ is complete and co-complete. All limits and co-limits can be constructed
component-wise on the underlying sets. The pullback for a co-span B m→ A n← C is given by
the partial product B×(m,n) C with the two projection morphisms π

B×C
B : B×(m,n) C → B and

π
B×C
C : B×(m,n)C→C:

∀s ∈ S :
(
B×(m,n)C

)
s = {(x,y) :: ms(x) = ns(y)}

∀ f ∈ Ow,v : f (B×(m,n)C) =
{
(x,y) :: mO

f (x) = nO
f (y)

}
∀ f ∈ Ow,v : d(

B×(m,n)C)
f ::= (x,y) 7→ dB

f (x) ||w dC
f (y)

∀ f ∈ Ow,v : c(
B×(m,n)C)

f ::= (x,y) 7→ cB
f (x) ||v cC

f (y),

where the operator ||w : Bw×Cw→ (B×C)w transforms pairs of w-tuples into w-tuples of pairs:((
x1, . . . ,x|w|

)
,
(
y1, . . . ,y|w|

))
7→
(
(x1,y1) , . . .

(
x|w|,y|w|

))
. A graph G ∈ GΣ=(S,O) is a partial al-

gebra, if it satisfies for all f ∈ O:

∀e1,e2 ∈ f G : dG
f (e1) = dG

f (e2) =⇒ e1 = e2. (1)

The full sub-category of GΣ consisting of all partial algebras7 is denoted by AΣ in the follow-
ing. In a partial algebra A, operations f ∈ Oε,v with |v|> 0 are interpreted as (partial) constants,
i. e. f A : Aε → Av is a partial map from the standard one-element set Aε = {∗} into Av. Sym-
metrically, operations p ∈ Ow,ε with |w| > 0 are interpreted as predicates, since pA : Aw→ {∗}
is a partial map into the standard one-element set, i. e. it determines a subset on Aw only, namely
the part of Aw where it is defined. Finally for operations f ∈ Oε,ε , there are only two possible
interpretations in A, namely f A = /0 (false) or f A = {(∗,∗)} (true). Thus f A is just a boolean flag.

Due to formulae (1) being a set of Horn-axioms, AΣ is an epireflective sub-category of GΣ,
i. e. there is a reflection that maps a graph G ∈ GΣ to a pair

(
GA ∈AΣ,ηG : G→ GA

)
such that

any graph morphism h : G→A with A∈AΣ has a unique extension h∗ : GA →A with h∗◦ηG = h.
Since epireflective subcategories are closed wrt. products and sub-objects defined by regular
monomorphisms (equalisers), the limits in AΣ coincide with the limits constructed in GΣ. AΣ

has also all co-limits, since epireflections preserve co-limits. In general, however, the co-limits
in AΣ do not coincide with the co-limits constructed in GΣ. The reflection provides the necessary
correction. If, for example, (b : A→ B,c : A→C) is a span in AΣ and (c∗ : B→ D,b∗ : C→ D)
is its pushout constructed in GΣ,

(
ηD ◦ c∗ : B→ DA ,ηD ◦b∗ : C→ DA

)
is the pushout in AΣ.

Besides being complete and co-complete, the most important property of AΣ for the rest of
the paper is the existence of right adjoints to all inverse image functors. If we fix an algebra
A ∈ AΣ, AΣ ↓MA denotes the category of all (weak) sub-algebras of A. The objects in AΣ ↓MA

6 The identities in GΣ are given by families of identity mappings, and composition of morphisms is provided by
component-wise composition of the underlying mappings.
7 Note that the interpretation of an operation f ∈Ow,v in a partial algebra A is a partial map: Due to condition (1), the

assignment
(

f A,dA
f : f A→ Aw,cA

f : f A→ Av
)
7→
{(

dA
f (e),c

A
f (e)

)
:: e ∈ f A

}
provides a partial map from Aw to Av.

And, for a partial map f : Aw→ Av, there is the inverse assignment f 7→ ( f , dA
f ::= (d,c) 7→ d, cA

f ::= (d,c) 7→ c) up
to renaming of the elements in f A.
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are all monomorphisms m : M� A and a morphism in AΣ↓MA from m : M� A to n : N� A is
a (mono)morphism h : M� N in AΣ such that n◦h = m.8 For an AΣ-morphism g : A→ B, the
inverse image functor g∗ : AΣ ↓MB→ AΣ ↓MA maps an object m : M→ B ∈ AΣ ↓MB to π

A×M
A :

A×(g,m) M → A and a morphism h : (m : M→ B)→ (n : N→ B) to the uniquely determined
morphism g∗(h) : A×(g,m) M→ A×(g,n) N such that π

A×N
A ◦ g∗(h) = π

A×M
A and π

A×N
N ◦ g∗(h) =

h◦π
A×M
M .

Proposition 1 In a category AΣ of partial algebras, every inverse image functor g∗ : AΣ ↓M

B→AΣ ↓MA has a right adjoint called g∗ : AΣ ↓MA→AΣ ↓MB.

Proof. Given a sub-algebra m : M� A, we construct the sub-algebra g∗(M)⊆ B and the inclu-
sion morphism g∗(m) : g∗(M) ↪→ B as follows:

∀s ∈ S : g∗(M)s =
{

b ∈ Bs :: ∀a ∈ g−1
s (b) ∃x ∈M : ms(x) = a

}
and

∀ f ∈ Ow,v : f g∗(M) =
{

e ∈ f B :: ∀ea ∈ gO
f
−1

(e) ∃ex ∈M : mO
f (ex) = ea

}
,

such that d
g∗(M)

f = dB
f | f g∗(M) and c

g∗(M)

f = cB
f | f g∗(M) for every operation.

The co-unit εm : g∗ (g∗ (m : M� A))→ (m : M� A) can be defined on every element (a,b)∈
A×(g,g∗(m)) g∗(M) by εm(a,b) = c such that m(c) = a. Note that εm is completely defined, since,
by definition of g∗(m), a must have a pre-image wrt. m for every pair (a,b) ∈ A×(g,g∗(m)) g∗(M).

It is uniquely defined, since m is monic. By definition of εm, m◦εm = g∗(g∗(m))= π
A×(g,g∗(m))g∗(M)

A
which means that εm is a morphism in AΣ ↓MA.

Now, let an object x : X� B ∈AΣ↓MB and a morphism k : g∗(x)→m ∈AΣ↓MA, i. e. m◦k =
π

A×(g,x)X
A be given. We construct k∗ : x → g∗(m) by e 7→ x(e) for every e ∈ X . The map-

pings of k∗ are completely defined: (i) if x(e) /∈ g(A), x(e) ∈ g∗(M) because g−1(x(e)) = /0,
and, otherwise, the existence of k with m ◦ k = π

A×(g,x)X
A enforces that every g-pre-image of

x(e) has a pre-image under m. By definition, g∗(m) ◦ k∗ = x. By definition of the inverse
image functor, g∗(k∗) :

(
A×(g,x) X

)
→
(
A×(g,g∗(m)) g∗(M)

)
maps (a,e) to (a,k∗(e)). Thus,

ε (g∗(k∗)(a,e)) = ε(a,k∗(e)) = c with m(c) = a and k(a,e) = c′ with m(c′) = π
A×(g,x)X
A (a,e) = a.

Since m is monic, c = c′. The morphism k∗ is uniquely determined, since g∗(M)⊆ B and g∗(m)
is monic.

Corollary 1 If g is monic, the co-units of g∗ are isomorphisms.

For every algebra A, the category AΣ ↓MA of all (weak) sub-algebras of A has two important
sub-categories, namely AΣ ↓F A and AΣ ↓C A, i. e. the category of all full respectively closed
sub-algebras of A. A morphism m : M → A is full, if for every e ∈ f A, f ∈ Ow,v, and w,v ∈
S∗ with dA

f (e) = mw(x) and cA
f (e) = mv(y) for some (x,y) ∈ Mw ×Mv there is e′ ∈ f M with

e = m(e′); it is closed, if for every e ∈ f A, f ∈ Ow,v, and w,v ∈ S∗ with dA
f (e) = mw(x) for

x ∈Mw there is e′ ∈ f M with e = m(e′).9 By definition, AΣ ↓CA ⊆AΣ ↓FA ⊆AΣ ↓MA for every
8 Note that every sub-graph of A is a sub-algebra of A, since all monomorphisms in GΣ are regular and epireflective
sub-categories are closed wrt. regular sub-objects.
9 Note that, in the case of total algebras, every inclusion morphism is closed!

Selected Revised Papers from GCM 2015 4 / 21



ECEASST

A ∈ AΣ. The three different sorts of sub-algebras induce three factorisation systems in every
category of partial algebras, namely factorisations in (i) closed epimorphisms10 and arbitrary
monomorphisms, (ii) morphisms with surjective vertex mappings and full monomorphisms, and
(iii) arbitrary epimorphisms and closed monomorphisms.

Since pullbacks preserve full and closed monomorphisms11, we obtain restrictions g∗F : AΣ ↓F

B→AΣ↓FA and g∗C : AΣ↓CB→AΣ↓CA of the inverse image functor g∗ : AΣ↓MB→AΣ↓MA for
every morphism g : A→ B.

Proposition 2 In a category AΣ of partial algebras, every inverse image functor g∗F : AΣ↓FB→
AΣ ↓FA has a right adjoint called gF

∗ : AΣ ↓FA→ AΣ ↓FB. If g is monic, the co-units of gF
∗ are

isomorphisms.

Proof. We show that g∗ : AΣ↓MA→AΣ↓MB maps full monomorphisms to full monomorphisms.
Let m : M� A be full, e ∈ f B with f ∈ Ow,v, and w,v ∈ S∗ such that (i) dB

f (e) = g∗ (m)w (x) and
(ii) cB

f (e) = g∗ (m)v (y). If g(e′) = e, properties (i) and (ii) together with the construction of g∗ in
the proof of Proposition 1 imply dA

f (e
′)=mw(x′) and cA

f (e
′)=mv(y′) for some (x′,y′)∈Mw×Mv.

Since m is full, e′ = mO
f (e
′′). Thus, every e′ with g(e′) = e has a pre-image under mO

f which
implies that e has a pre-image under g∗(m)O

f .

The inverse image functors between closed sub-algebras do not possess right adjoints in gen-
eral as the following examples illustrate:

Example 1 (Missing right adjoint) Consider the signature Σ2 =
(
S2,O2

)
with

S2 = {s} and O2
w,v =

{
{ f} w = ss,v = s
/0 otherwise

, the threealgebras

A ::= As = {2}, f A = /0,

B ::= Bs = {0,1,2}, f B =
(
{ f B}, dB

f ( f B) = (0,1), cB
f ( f B) = 2

)
,

M ::= Ms = /0, f M = /0,

the morphism g : A→ B ::= 2 7→ 2, and the closed monomorphism m : M� A ::= /0. There are
seven closed sub-algebras of B, namely B itself and six algebras ⊆x: Bx→ B, x ∈ {1,2,3,4,5,6}
with completely undefined f and carriers B1

s = /0, B2
s = {0}, B3

s = {1}, B4
s = {2}, B5

s = {0,2},
and B6

s = {1,2} for sort s.12 None of these algebras can be the right adjoint object for m: B itself
and cases x ∈ {4,5,6} are excluded since there is no object in M where the object (2,2) in the
partial product A×(g,⊆x) Bx can be mapped to. The cases x ∈ {1,2,3} provide an empty partial
product of ⊆x with g. Thus, there is the empty morphism from πA : A×(g,⊆x) Bx→ A to m which
can play the role of the co-unit. But there is no morphism from ⊆2 to ⊆1 or ⊆3 and there is
no morphisms from ⊆3 to ⊆2. Thus, having Ow,v 6= /0 for |w| ≥ 2 and |v| ≥ 1 in the signature
prevents the existence of right adjoints in some cases.
10 A morphism h : A→ B is closed, if its image in B is a closed sub-algebra of B.
11 Pullbacks preserve all monomorphisms in a class N , if the underlying category has an epi-mono-factorisation
system (E ,N ).
12 Note that the carrier {0,1} for s is not closed!
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Also constants, i. e. operations in Oε,v with |v| ≥ 1, are harmful. A simple example provides
the signature Σ0 =

(
S0,O0

)
with

S0 = {s} and O0
w,v =

{
{ f} w = ε,v = s
/0 otherwise

, the threealgebras

A ::= As ={ f ,0}, f A =
(
{ f A}, dA

f ( f A) = ∗, cA
f ( f A) = f

)
B ::= Bs ={ f}, f B =

(
{ f B}, dB

f ( f B) = ∗, cB
f ( f B) = f

)
M ::= Ms ={ f ,}, f M =

(
{ f M}, dM

f ( f M) = ∗, cM
f ( f M) = f

)
the morphism g : A→ B ::= f 7→ f ,0 7→ f , and the closed monomorphism m : M� A ::= f 7→
f . There is only one closed sub-algebra of B, namely B itself. But idB cannot be the right
adjoint object for m, since there is no map ε :

(
πA : A×(g,idB) B

)
→ m. The problematic object in

A×(g,idB) B is (0, f ) the A-projection of which provides 0 which has no pre-image under m.

Definition 1 (Graph Structure) A graph structure Γ= (S,(Ow,v)w,v∈S∗) is a signature with unary
operations only, i. e. Ow,v = /0 if v 6= ε and |w| 6= 1.13

Proposition 3 For a graph structure Γ, the inclusion functor ⊆: AΓ ↓CA→AΓ ↓FA has a right
adjoint.

Proof. (Sketch) Given a graph structure Γ = (S,O) and a full sub-algebra (m : M� A) ∈ AΓ,
construct the following family of carriers:(

M′s = {x ∈Ms :: f A(x) ∈ M′ v forallv ∈ S∗ and f ∈ Os,v}
)

s∈S .

Let M′ be the largest full sub-algebra of A contained in (M′s)s∈S. Since M′ ⊆M, we can use this
inclusion as the required co-unit. It is easy to see, that M′ is a closed sub-algebra of A. And,
by construction, any other closed sub-algebra of A the carriers of which are contained in M is a
sub-algebra of M′.

Corollary 2 Given a graph structure Γ, every inverse image functor g∗C : AΓ↓CB→AΓ↓CA has
a right adjoint called gC

∗ : AΓ↓CA→AΓ↓CB. If g is monic, the co-units of gC
∗ are isomorphisms.

3 Partial Morphisms on Partial Algebras

In order to obtain frameworks for single-pushout rewriting, we proceed from the category of
partial algebras with total morphisms to the categories of partial algebras and partial morphisms.
In this section, we investigate the conditions under which pushouts can be constructed in these
categories.

13 Note that this notion of graph structure is a straightforward extension of the one in [12] to signatures with predicate
symbols and operations with products as co-domain!
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3.1 Pushouts in Arbitrary Categories of Partial Morphisms

Let C be a category and S a sub-class of its monomorphisms such that

(C1) C has a factorisation system (E ,S ) for a class of (epi)morphisms E ,

(C2) S contains all isomorphisms and is closed wrt. composition and prefix14,

(C3) C has pullbacks along S -morphisms which preserve S -morphisms15.

A concrete S -partial morphism is a span of C -morphisms (p : K � P,q : K → Q) such that
p ∈ S . Two concrete S -partial morphisms (p1,q1) and (p2,q2) are equivalent and denote
the same abstract S -partial morphism if there is an isomorphism i such that p1 ◦ i = p2 and
q1 ◦ i = q2; in this case we write (p1,q1) ≡ (p2,q2) and [(p,q)]≡ for the class of spans that are
equivalent to (p,q). The category of S -partial morphisms C S over C has the same objects
as C and abstract S -partial morphisms as arrows. The identity idC S

A for an object A is defined
by idC S

A = [(idA, idA)]≡ and composition of S -partial morphisms [(p : K� P,q : K→ Q)]≡ and
[(r : J� Q,s : J→ R)]≡ is given by

[(r,s)]≡ ◦C S [(p,q)]≡ =
[
(p◦C r′ : M� P,s◦C q′ : M→ R)

]
≡

where (M,r′ : M� K,q′ : M→ J) is an arbitrarily chosen pullback of q and r.
Note that there is the faithful embedding functor ι : C → C S defined by identity on objects

and ( f : A→ B) 7→ [idA : A� A, f : A→ B]≡ on morphisms. We call [d : A′� A, f : A′→ B]≡ a
total morphism, if d is an isomorphism, and, by a slight abuse of notation, write [d, f ]∈C . From
now on, we mean the abstract S -partial morphism [ f ,g]≡ if we write ( f : B� A,g : B→C).

The single-pushout approach defines direct derivations by a single pushout in a category of
partial morphisms. There is a general result for the existence of pushouts in a category C S of
partial morphisms based on the notions final S -triple and S -hereditary pushout in the underly-
ing category C of total morphisms.

Definition 2 (Final S -triple) A S -triple for a pair ((l,r) ,(p,q)) of morphisms in C S with
common domain is given by a collection

(
p, p∗,r, l, l∗,q

)
of C -morphisms such that p∗, p,

l∗, l are in S and (i) (r, p) is pullback of (r, p∗), (ii) (q, l) is pullback of (q, l∗), and (iii) l ◦
p = p ◦ l. A S -triple

(
p, p∗,r, l, l∗,q

)
for ((l,r) ,(p,q)) is final, if, for any other S -triple(

p′, p′ ∗ ,r′, l′, l′ ∗ ,q′
)
, there is a unique collection (u1,u2,u3) of (S -)morphisms such that (iv) p◦

u1 = p′, (v) l ◦u1 = l′, (vi) p∗ ◦u2 = p′ ∗, (vii) u2 ◦ r′ = r ◦u1, (viii) l∗ ◦u3 = l′ ∗, and (ix) u3 ◦q′ =
q◦u1, compare left part of Fig. 1.

In [13], a sufficient condition for the existence of final S -triples is shown.

Proposition 4 A category C S of partial morphisms has all final S -triples, if (i) the inverse
image functor g∗S : AΣ ↓S B→ AΣ ↓S A has a right adjoint for each morphism g : A→ B and
(ii) every S -chain (mi : Ai+1� Ai)i∈N0 has a limit (li : A∗� Ai)i∈N0 .16

14 Closure of S wrt. composition and prefix means that, given g ∈S , g◦ f ∈S ⇔ f ∈S .
15 I. e. g′ ∈S , if ( f ′,g′) is pullback in f ◦g′ = g◦ f ′ and g ∈S .
16 That the chain morphisms are in S is implied by the existence of (E ,S )-factorisations.
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L K R A′ C′

P D P∗ B′ D′

D′ P′ A C

Q K∗ B D

K′

l r qi

pi
i0 p′i

i1
p

q

l

q

p

r

p∗

q′i

i2 i3

p′

r′

q′

l′
u1

p′∗

u2

q

p

p′
l∗

q′

l′∗
u3

Figure 1: Final Triple and Hereditary Pushout

Definition 3 (S -Hereditary pushout) A pushout (q′, p′) of (p,q) in C is S -hereditary if for
each commutative cube as in the right part of Figure 1, which has pullback squares (pi, i0) and
(qi, i0) of (i2, p) and (i1,q) resp. as back faces such that i1 and i2 are in S , in the top square,
(q′i, p′i) is pushout of (pi,qi), if and only if, in the front faces, (p′i, i1) and (q′i, i2) are pullbacks of
(i3, p′) and (i3,q′) resp. and i3 is in S .17

Note that (q′i, p′i) is hereditary pushout of (pi,qi) in Figure 1, if (q′, p′) is hereditary pushout
of (p,q).

Proposition 5 (Pushout in C S ) A given span of partial morphisms (l : K� L,r : K→ R) and
(p : P� L,q : P→ Q) has a pushout ((l∗,r∗) ,(p∗,q∗)) in C S , if and only if there is (i) a fi-
nal S -triple l : D→ P, p : D→ K, r : D→ P∗, q : D→ K∗, p∗ : P∗ → R, l∗ : K∗ → Q for
((l,r) ,(p,q)) and (ii) a S -hereditary pushout (r∗ : K∗→ H,q∗ : P∗→ H) for (q,r) in C , com-
pare sub-diagrams (1) – (3) and (4) resp. in Figure 2.

L K R

P D P∗

Q K∗ H

(1)

l r

(2)p

q

l

q

p

r

p∗

q∗(3)

l∗ r∗

(4)

Figure 2: Pushout in C S

The proof can be found in [16]. A version of the proof that does not presuppose a choice of
pullbacks that is compatible with pullback composition and decomposition is contained in [17].

17 For details on hereditary pushouts see [10, 11]
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3.2 Pushouts of Partial Morphisms on Partial Algebras

With the results of Section 2, we can construct categories with three different types of partial
morphisms over partial algebras, namely A M

Σ
, A F

Σ
, and A C

Γ
where M is the class of all, F the

class of all full, C the class of all closed monomorphisms, Σ is an arbitrary signature, and Γ is
a graph structure. The general results about pushouts of partial morphisms carry over to these
categories as follows:

Proposition 6 (Final triple) In A M
Σ

, A F
Σ

, and A C
Γ

, every pair ((l,r) ,(p,q)) of partial morph-
isms with common domain has a final triple.

Proof. We use the condition of Proposition 4. The existence of right adjoints to inverse image
functors is given by Propositions 1 and 2 as well as Corollary 2. Limits of S -chains exist, since
AΣ has all limits.

Corollary 3 (Pushout) Partial morphisms (l : K� L,r : K→ R) and (p : P� L,q : P→ Q)
have a pushout in A M

Σ
, A F

Σ
, and A C

Γ
, if and only if the pushout of (q,r) is M-, F-, or C-hereditary

respectively, where l : D→ P, p : D→ K, r : D→ P∗, q : D→ K∗, p∗ : P∗→ R, l∗ : K∗→ Q is a
final M-, F-, or C-triple of ((l,r) ,(p,q)), see Figure 2.

Proof. Direct consequence of Proposition 5 and Proposition 6.

Thus, the existence of pushouts in A M
Σ

, A F
Σ

, or A C
Γ

only depends on the involved AΣ-pushout
being M-, F-, or C-hereditary, resp. We start with the analysis of M-hereditary pushouts in AΣ.

Proposition 7 (Sufficient condition for M-hereditariness) If a pushout in AΣ is also pushout in
GΣ, then it is M-hereditary in AΣ.

Proof. Let a commutative cube as in the right part of Fig. 1 in AΣ be given such that the back
faces are pullbacks. Then this is also a situation in GΣ and the back faces are also pullbacks in
GΣ, since AΣ is an epireflection of GΣ.

Let the front faces be pullbacks in AΣ and i3 be a monomorphism. Then the front faces are
also pullbacks in GΣ. Since all pushouts in GΣ are hereditary, D′ together with p′i and q′i is pushout
in GΣ. Since (i) AΣ is closed wrt. sub-algebras, (ii) D is in AΣ, and (iii) i3 is monic, D′ is also in
AΣ and its reflector ηD′ is an isomorphism.18 Thus, D′ together with p′i and q′i is pushout in AΣ.

Let (D′,q′i, p′i) be pushout of (pi,qi) in AΣ. Construct (D′′,q′′i , p′′i ) as pushout of (pi,qi) in GΣ.
We obtain the epic reflector ηD′′ : D′′ � D′ with p′i = ηD′′ ◦ p′′i and q′i = ηD′′ ◦ q′′i . Since D′′ is
pushout, we also get i′3 : D′′� D with i′3 ◦ p′′i = p′ ◦ i1 and i′3 ◦q′′i = q′ ◦ i2. Since i3 ◦ηD′′ ◦ p′′i =
i3 ◦ p′i = p′ ◦ i1 = i′3 ◦ p′′i and i3 ◦ηD′′ ◦q′′i = i3 ◦q′i = q′ ◦ i2 = i′3 ◦q′′i , we can conclude i3 ◦ηD′′ = i′3.
Since all pushouts in GΣ are hereditary, i′3 is monic implying that ηD′′ is monic as well. Thus,
ηD′′ is an isomorphism and D′ is also the pushout in GΣ. This immediately provides monic i3 and
pullbacks in the front faces of the cube in the right part of Fig. 1.

But not all pushouts in AΣ are M-hereditary. Here is a typical example:

18 Note that morphisms in G Σ that are both epic and monic are isomorphisms.
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a c L99 f C

b d L99 f D

a c L99 f C

b L99 f B d L99 f D

qi=q

pi

i0=idA
p′i=p′

i1=idC

q′is=q′s

i2s=idBs i3=idD

q

p

p′

q′

Figure 3: Simple Non-Hereditary Pushout in AΣ

Example 2 Consider the signature Σc = (Sc,Oc) with

Sc = {s} and Oc
w,v =

{
{ f} w = ε,v = s
/0 otherwise,

the three algebras

A ::= As = {a}, f A = /0,

B ::= Bs = {b}, f B =
(
{ f B}, dB

f ( f B) = ∗, cB
f ( f B) = b

)
,

C ::= Cs = {c}, f C =
(
{ f C}, dC

f ( f C) = ∗, cC
f ( f C) = c

)
,

and the two morphisms p : A→ B ::= a 7→ b and q : A→C ::= a 7→ c. The pushout of (p,q) in
A P

Σc consists of the algebra

D ::= Ds = {d}, f D =
(
{ f D}, dD

f ( f D) = ∗, cD
f ( f D) = d

)
and the two morphisms

p′ : C→ D ::= c 7→ d, f C 7→ f D

q′ : B→ D ::= b 7→ d, f B 7→ f D.

This pushout is depicted in the bottom of Fig. 3 and is not M-hereditary. We construct the follow-
ing cube of morphisms, compare Fig. 3: A′ = A, i0 = idA, B′ is defined by B′s = Bs and f B′ = /0, i2
maps b in B′s to b in Bs, C′ =C, i1 = idC, qi = q, and pi maps a to b. Note that (i0,qi) is pullback
of (q, i1) and (i0, pi) is pullback of (p, i2). Constructing (D′ = D, p′i = p′,q′i ::= b 7→ d) as the
pushout of (p′,q′), we obtain i3 = idD. But (i2,q′i) is not pullback of (q′, i3): B×(q′,i3) D′ contains
a defined constant for f , since i3( f D) = q′( f B), and B′ does not.

Note that the A
Σ
-pushout of the morphisms p and q in Example 2 does not coincide with the

pushout of p and q constructed in the larger category GΣ. The pushout in GΣ is the graph

G ::= Gs = {g}, f G =
(
{ f G

C , f G
B },dG

f ( f G
C ) = dG

f ( f G
B ) = ∗,cG

f ( f G
C ) = cG

f ( f G
B ) = g

)
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together with the morphisms

p′′ : C→ G ::= c 7→ g, f C 7→ f G
C

q′′ : B→ G ::= b 7→ g, f B 7→ f G
B .

The partial algebra D is the epireflection of the graph G and the reflector ηG : G→ D maps
as follows: g 7→ d, f G

C 7→ f D, and f G
B 7→ f D. The identification ηG( f G

C ) = ηG( f G
B ) = f D of the

reflector provided the possibility to construct the commutative cube in Example 2 that disproves
M-hereditariness of the pushout of (p,q). The following proposition shows that this construction
of a counterexample is always possible if the pushouts in AΣ and GΣ are different.

As a prerequisite, we need the following construction.

Definition 4 (Vertex- and hyperedge-generated sub-span) Let a signature Σ=(S,O) and an AΣ-
span B

p←− A
q−→C be given. For s ∈ S, let ≡p,q

s ⊆ (Bs]Cs)× (Bs]Cs) denote the equivalence
generated by {(ps(z),qs(z)) :: z ∈ As} and, for f ∈ O, let ≡p,q

f ⊆
(

f B] f C
)
×
(

f B] f C
)

denote
the equivalence generated by {(pO

f (z),q
O
f (z)) :: z ∈ f A}.

For a vertex e ∈ Bs, the sub-algebras Be ⊆ B, Ce ⊆ C, and Ae ⊆ A are defined by Be
s = Bs ∩

[e]≡p,q
s

, Ce
s = Cs ∩ [e]≡p,q

s
, Ae

s = {a ∈ As :: ps(a) ∈ [e]≡p,q
s
}, Be

s′ = Ce
s′ = Ae

s′ = /0 for all s′ 6= s, and
f B = f C = f A = /0 for all f ∈ O.

For a hyperedge e ∈ f B with dB
f (e) = (d1, . . . ,dn) and cB

f (e) = (c1, . . . ,cm), the sub-algebras
Be ⊆ B, Ce ⊆ C, and Ae ⊆ A are defined by Be

s =
⋃

x∈e↔ Bx
s , Ce

s =
⋃

x∈e↔Cx
s , Ae

s =
⋃

x∈e↔ Ax
s ,

f Be
= f B∩ [e]≡p,q

f
, f Ce

= f C∩ [e]≡p,q
f

, f Ae
= {n∈ f A :: pO

f (n)∈ [e]≡p,q
f
}, and f ′B

e
= f ′C

e
= f ′A

e
= /0

for all f ′ 6= f ∈ O where e↔ = {d1, . . . ,dn,c1, . . . ,cm}.

Proposition 8 (Necessary condition for M-hereditariness) If a pushout in AΣ is M-hereditary,
it is also pushout in GΣ.

Proof. Let (p : A→ B,q : A→C) be a span of morphisms in AΣ, let (E,q′′ : B→ E, p′′ : C→
E) be its pushout in GΣ, and let (q′ : B→ D, p′ : C → D) be its pushout in AΣ. Since AΣ is
epireflective sub-category of GΣ, we know that D = EA , q′ = ηE ◦ q′′ and p′ = ηE ◦ p′′ where
ηE : E → EA is the reflector for the graph E. Suppose D and E are not isomorphic, then there
are x,y ∈ E such that x 6= y and ηE(x) = ηE(y) = z. Since p′′ and q′′ are jointly epic in GΣ, both
x and y have pre-images under p′′ and/or q′′. Let x′′,y′′ ∈ B]C be these pre-images and suppose,
without loss of generality, x′′ ∈ B.

We construct a cube as in Fig. 1(right part) using the construction of Definition 4 for x′′: Let
B′ = Bx′′ , C′ = Cx′′ , and A′ = Ax′′ , i0 : A′� A, i1 : C′� C, and i2 : B′� B be the sub-algebra
inclusions, and let p′ = p|A′ and q′ = q|A′ . By construction, (pi, i0) and (qi, i0) are pullbacks.
Since x 6= y, we have [x′′]≡p,q 6= [y′′]≡p,q and can conclude that y′′ has neither a pre-image under
i1 nor under i2. Construct the AΣ-pushout (p′i : C′→ D′,q′i : B′→ D′) of (q′, p′) which provides
the morphisms i′3 : D′ → E and i3 = ηE ◦ i′3 : D′ → D making the whole cube commute. By
construction, z = ηE(x) = ηE ◦q′′(x′′) = ηE ◦q′′ ◦ i2(x′′) = ηE ◦ i′3 ◦q′i(x

′′) = i3 ◦q′i(x
′′). Thus, z

has a pre-image under i3 and z = q′(y′′) or z = p′(y′′). Since y′′ has neither a pre-image under i1
nor under i2, one of the front faces of the constructed cube fails to be a pullback.

Theorem 1 A pushout in AΣ is M-hereditary, iff it is also pushout in GΣ.
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Now, we investigate F-hereditary pushouts in AΣ. In Example 2, the morphism i2 is not full,
compare Figure 3. If monomorphisms are restricted to full ones, the situation in Figure 3 cannot
occur. This observation leads to the following characterisation of F-hereditary pushouts in AΣ.

Theorem 2 A pushout (q′, p′) of (p,q) in AΣ is F-hereditary, iff (q′s, p′s) is pushout of (ps,qs)
in the category of sets and mappings for all sorts s ∈ Σ.

Proof. “⇐”: Let a commutative cube as in the right part of Fig. 1 in AΣ be given such that the
back faces are pullbacks. Let the top be pushout in AΣ. Then, for every sort s, the pushout(
Es, q′′i s : B′s→ Es, p′′i s : C′s→ Es

)
of ( pi s , qi s) provides epic us : Es→ D′s. Since all pushouts

of mappings are hereditary, we obtain monic i′3 s : Es→Ds with i3 s ◦us = i′3 s. Thus, us is monic
and epic which implies, for all sorts s, (D′s, p′i s , q′i s) is pushout, i3 s is monic, and ( p′i s , i1 s) as
well as (q′i s , i2 s) are pullbacks. That i3 is full, follows from p′ and q′ being jointly epic and i1
and i2 being full. Given d ∈ f D with d = i3(d′) and d = p′(c), there is c′ ∈ f C′ with i1(c′) = c
and p′i(c) = d′, since i1 is full. Therefore (p′i, i1) is pullback. An analog argument provides
that (q′i, i2) is pullback. Vice versa, if i3 is full monomorphism and (p′i, i1) as well as (q′i, i2) are
pullbacks, they are pullbacks for each sort mapping. This implies that ( p′i s , q′i s) is pushout for
every sort s. It remains to show that p′i and q′i are jointly epic on hyperedges. But this is a direct
consequence of p′ and q′ being jointly epic and i1 and i2 being full.

“⇒”: We repeat the argument in the proof of Proposition 8: Let there be a sort s, such that the
pushout (Es,q′′s : Bs→ Es, p′′s : Cs→ Es) is different from (Ds,q′s, p′s). Then there are x 6= y such
that us(x) = z = us(y) for the unique morphism us : Es→ Ds with us ◦q′′s = q′s and us ◦ p′′s = p′s.
Without loss of generality, assume y has a pre-image y′′ under p′′ and/or q′′ and x = q′′s (x

′′).
Consider again the sub-span of (p,q) induced by x′′: Let A′, B′, and C′ be the full sub-algebras
of A, B, and C induced by Ax′′ , Bx′′ , and Cx′′ respectively, let pi = p|A′ and qi = q|A′ , and let
i0 : A

′
� A, i1 : C

′
� C, and i2 : B

′
� B be the inclusions. We obtain pullbacks (i0, p′) and

(i0,q′). Constructing the pushout (q′i, p′i) of (pi,qi), z has a pre-image under i3. We also know
z = q′(y′′) or z = p′(y′′). By construction, y′′ has neither a pre-image under i1 nor under i2. Thus,
either (i2,q′i) or (i1, p′i) is no pullback.

The analysis of C-hereditary pushouts in AΓ for a graph structure Γ is more complicated than
the analysis of M- and F-hereditary pushouts as the following example demonstrates.

Example 3 (C-hereditary pushout) Consider the span (p : A→ B,q : A→C) in AΓ where the
underlying graph structure ΓC =

(
SC,OC

)
is defined by

SC = {s} and OC
w,v =

{
{ f} w = s,v = s
/0 otherwise,

the three algebras A, B, and C are given by

A ::= As = {a1;1,a1;3,a3;1}, f A = /0,

B ::= Bs = {b1,b2,b3}, f B ::= b1 7→ b2, b2 7→ b3,

C ::= Cs = {c1,c2,c3}, f C ::= c1 7→ c2, c2 7→ c3,
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and the two morphisms p and q map as follows:

ps : As→ Bs ::= a1;1 7→ b1,a1;3 7→ b1,a3;1 7→ b3

qs : As→Cs ::= a1;1 7→ c1,a1;3 7→ c3,a3;1 7→ c1.

The pushout of (p,q) in AΓ consists of the algebra

D ::= Ds = {d2;2,d1,3;1,3}, f D ::= d2;2 7→ d1,3;1,3,d1,3;1,3 7→ d2;2

and the two morphisms

p′ : C→ D ::= c1 7→ d1,3;1,3,c2 7→ d2;2,c3 7→ d1,3;1,3

q′ : B→ D ::= b1 7→ d1,3;1,3,b2 7→ d2;2,b3 7→ d1,3;1,3.

This pushout in AΓ does not induce a pushout in the category of sets and maps for the sort s,
since p′s(c2) = d2;2 = q′s(b2) without b2 ≡p,q c2. Nevertheless, it is C-hereditary, since the only
possible sub-spans of (p,q) in a commutative cube as in Figure 1(right part) with pullbacks in the
back faces and closed monomorphisms i1 and i2 are ( /0, /0) and (p,q) itself. Having, for example
c2 in C′ requires also c3 ∈C′. This implies b1,b2,b3 ∈ B′ due to p(a1;3) = b1 and q(a1;3) = c3.
Now, p(a3;1) = b3 and q(a3;1) = c1 requires c1 ∈C′. Thus, having one of the elements of B and
C in the sub-span requires having all of the elements in the sub-span. This is due to the cyclic
structure established by f B, f C, and the mapping of a1;3 and a3;1 by p and q.

Definition 5 (Hierarchical span) Given a graph structure Γ = (S,O) and a span (p : A→ B,q :
A→C) in AΓ, its reachability relation R on the disjoint union

⊎
s∈S Bs]

⊎
s∈S Cs of the carriers

of B and C is defined by xRy if (i) x ≡p,q
s y for some sort s, (ii) (z1, . . . ,zn) = f B]C(x) for some

f ∈ Os,v, n ≥ 1, and y = zi for 1 ≤ i ≤ n, or (iii) xRz and zRy.19 A span (p,q) is hierarchical,
if xRy and yRx implies x ≡p,q y. R(x) denotes the elements reachable from x, i. e. R(x) = {z ∈⊎

s∈S Bs]
⊎

s∈S Cs :: xRz}

Theorem 3 A pushout (q′ : B → D, p′ : C → D) of a hierarchical span (p,q) in AΓ is C-
hereditary, iff (q′s, p′s) is pushout of (ps,qs) for all sorts s ∈ Σ.

Proof. (Sketch) For the “⇐”-part, we can repeat the arguments in the “⇐”-part of the proof for
Theorem 2 substituting fullness by closedness. The “⇒”-part also follows the outline given by
the “⇒”-part of the proof for Theorem 2. Having x 6= y ∈ Es and us(x) = us(y) where (Es, p′′s :
Cs→Es,q′′s : Bs→Es) is the pushout of (qs, ps) and us : Es→Ds the mediating map with us◦ p′′s =
p′s and us ◦q′′s = q′s, we know for the pre-images x′′ of x and y′′ of y under p′′ and/or q′′ that either
x′′ is not reachable from y′′ or y′′ is not reachable from x′′. Without loss of generality, suppose
the second case and construct B′ as the full sub-algebra of B induced by B∩R(x′′), C′ as the
full sub-algebra of C induced by C ∩R(x′′), and A′ as the full sub-algebra of A induced by
{a ∈ A :: p(a) ∈ R(x′′)}. Let i0 : A′→ A, i1 : C′→C, and i2 : B′→ B be the corresponding closed
inclusions and pi = p|A′ and qi = q|A′ . Since we know that y′′ neither has a pre-image under i1
nor under i2, either (i1, p′i) or (i2,q′i) is not a pullback.
19 f B]C : Bs]Cs→ Bv]Cv is the uniquely determined co-product of f B and fC.
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L K R

G K∗ t@m

m

l

m〈l〉

r

m〈t〉(1)

l〈m〉 r〈m〉

(2)

Figure 4: Single- versus Sesqui-Pushout Transformation

Definition 6 (Hierarchical graph structure) A graph structure Γ = (S,O) is hierarchical, if the
reflexive/transitive closure of the relation � on S defined by s � s′ if there is f ∈ Os,vs′u with
v,u ∈ S∗ is a partial order.

Corollary 4 For a hierarchical graph structure Γ, a pushout (q′, p′) of a span (p,q) in AΓ is
C-hereditary, iff (q′s, p′s) is pushout of (ps,qs) for all sorts s ∈ Σ.

4 Rewriting of Partial Algebras: Some Theory

In this section, we introduce single-pushout rewriting in the categories of partial algebras. For
a rich theory, we restrict transformations to those that produce total co-matches. All definitions
and propositions in the following presuppose an arbitrary underlying category A M

Σ
, A F

Σ
, and A C

Γ

for a signature Σ or hierarchical graph structure Γ.20

Definition 7 (Rule and transformation) A transformation rule t is a partial morphism t =
(l : K� L,r : K→ R). There is a direct transformation of a host graph G to the result graph
t@m with a rule t : L→R if there are total morphisms m : L→G and m〈t〉 : R→ t@m as well as a
partial morphism t 〈m〉= (l 〈m〉 : K∗→G,r 〈m〉 : K∗→ t@m) : G→ t@m such that (t 〈m〉 ,m〈t〉)
is pushout of (t,m). In a direct transformation, m is called match, m〈t〉 co-match, and t 〈m〉 trace
of the transformation.21

Since we restricted transformations to total co-matches, we obtain a close connection of our
transformations to Sesqui-Pushout Rewritings in the sense of [3], which are composed of final
pullback complements and pushouts.

Theorem 4 (Single- and sesqui-pushout transformation) There is a transformation with rule
t = (l : K� L,r : K� R), match m : L→G, (total) co-match m〈t〉 : R→ t@m and trace t 〈m〉=
(l 〈m〉 : K∗� G,r 〈m〉 : K∗� t@m), if and only if there is a total morphism m〈l〉 : K→K∗ such
that (i) (l,m〈l〉) is pullback of (m, l 〈m〉), (ii) l 〈m〉 = m∗(l), and (iii) (r 〈m〉 ,m〈t〉) is hereditary
pushout of (r,m〈l〉), compare (1) and (2) in Fig. 4.

Proof. Direct consequence of the construction of final triples in [17] and the fact that the match
and the co-match are total.

20 Note that the theory in this section is also valid in A C
Σ

for arbitrary signatures, although existence of a direct
transformation with a rule at a given match is unpredictable in this general case, compare Section 3.
21 The graph t@m is uniquely determined up to isomorphism by the transformation!
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L1 K1 R1 L2 K2 R2

L′1 K′1 M K′2 R′2

G D1 t1@m1 D2 t2@m2

m1

e′′1

m1〈l1〉

e′1

l1 r1

m1〈t1〉

e1

m2

e2

m2〈l2〉

e′2

l2 r2

m2〈t2〉

e′′2

s′1

l′1 r′1

s1 s s2

l′2 r′2

s′2

l1〈m1〉 r1〈m1〉 l2〈m2〉 r2〈m2〉

Figure 5: Hereditary Pushout and Final Pullback Complement

Thus, our set-up of single-pushout rewriting is Sesqui-Pushout Rewriting at left-linear rules
with the additional requirement that the involved pushout on the transformation’s right-hand side
is hereditary. This close connection between Single-Pushout and Sesqui-Pushout Rewriting leads
to a rich theory for Single-Pushout Rewriting with total co-matches in general and in the special
case of partial algebra transformation. In this paper, we present the concurrency theorem. It is a
good example to demonstrate how far the theory for Single-Pushout Rewriting of total algebras
carries over to partial algebras and where the differences are. We additionally presuppose:

(C4) C has all finite co-limits and

(C5) For every morphism g ∈S , all co-units of g∗ are isomorphisms.

Definition 8 (Concurrent rule) Two transformations t1 〈m1〉 : G→t1@m1 and t2 〈m2〉 : t1@m1→
t2@m2 with rules t1 : L1→ R1 and t2 : L2→ R2 constitute a concurrent rule t2 〈m2〉◦t1 〈m1〉 : G→
t2@m2, if the co-match of the first and the match of the second are “jointly epic”, i. e. the co-
product morphisms {m1 〈t1〉 ,m2} : R1+L2→ t1@m1 making the diagram commute is in E .22

Theorem 5 Given two transformations t1 〈m1〉 : G→ t1@m1 and t2 〈m2〉 : t1@m1 → t2@m2,
there is a direct transformation with a concurrent rule t2 〈n2〉 ◦ t1 〈n1〉 at a match n, such that
(t2 〈n2〉 ◦ t1 〈n1〉)〈n〉= t2 〈m2〉 ◦ t1 〈m1〉.

Proof. Consider Figure 5. The first transformation uses rule t1 = (l1 : K1 → L1,r1 : K1 → R1)
at match m1 and produces trace t1 〈m1〉= (l1 〈m1〉 ,r1 〈m1〉) and co-match m1 〈t1〉 and the second
uses rule t2 = (l2 : K2→ L2,r2 : K2→ R2) at match m2 with trace t2 〈m2〉= (l2 〈m2〉 ,r2 〈m2〉) and
co-match m2 〈t2〉. Let (R1 +L2, i1 : R1→ R1 +L2, i2 : L2→ R1 +L2) be the co-product of R1 and
L2 and let {m1 〈t1〉 ,m2} : R1 +L2 → t1@m1 be the unique morphism with {m1 〈t1〉 ,m2} ◦ i1 =
m1 〈t1〉 and {m1 〈t1〉 ,m2}◦ i2 = m2. Construct (e : R1 +L2→M,s : M� t1@m1) as the (E ,S )-
factorisation of {m1 〈t1〉 ,m2} and set e1 = e◦ i1 and e2 = e◦ i2. Now, e1 and e2 are “jointly epic”.

Construct (s1,r′1) as the pullback of (r1 〈m1〉 ,s) and let e′1 be the morphism making the dia-
gram commute. Since pullbacks preserve morphisms in S , s1 ∈S . Now, (r′1,e1) is hereditary
pushout of (e′1,r1), since (i) (r1 〈m1〉 ,s◦e1) is hereditary pushout of (r1,m1 〈l1〉), (ii) (e1, idR1) is

22 Compare (C1) on page 7!
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pullback of (m1 〈t1〉 ,s), (iii) (e′1, idK1) is pullback of (m1 〈l1〉 ,s1), and (iv) (r1, idK1) is pullback
of (idR1 ,r1). Properties (ii) and (iii) are implied by s and s1 being monic. Construct (s′1, l

′
1) such

that (l′1,s1) is pullback of (l1 〈m1〉 ,s′1) and s′1 = l1 〈m1〉∗ (s1) and e′′1 as the morphism making
the diagram commute. Since also (e′1, idK1) is pullback of (m1 〈l1〉 ,s1), (e′′1, idL1) is pullback of
(m1,s′1), (l1, idK1) is pullback of (idL1 , l1), and final pullback complements are stable under pull-
backs, l′1 = e′′1 ∗ (l1). Thus, (l′1,r

′
1) and e1 constitute a pushout of (l1,r1) and e′′1 in C S . This

implies that (t1 〈m1〉 ,s) is pushout of (l′1,r
′
1) and s′1.

Construct (s2, l′2) as the pullback of (l2 〈m2〉 ,s) and let e′2 be the morphism making the dia-
gram commute such that s2 ∈ S . Since also (e′2, idK2) is pullback of (m2 〈l2〉 ,s2), (e2, idL2)
is pullback of (m2,s), and (l2, idK2) is pullback of (idL2 , l2), l′2 = e2 ∗ (l2). Finally, let (r′2,e

′′
2)

be the pushout of (r2,e′2) and s′2 the morphism making the diagram commute. Since the push-
out (r2 〈m2〉 ,m2 〈t2〉) is hereditary, (e′2, idK2) is pullback of (l′2,s2), and (idK2 ,r2) is pullback of
(idR2 ,r2), we conclude that (e′′2,r

′
2) is hereditary pushout of (e′2,r2). Thus, (l′2,r

′
2) and e′′2 consti-

tute a pushout of (l2,r2) and e2 in C S , and (t2 〈m2〉 ,s′2) is pushout of (l′2,r
′
2) and s.

Since pushouts compose, we found the concurrent rule t2 〈e2〉 ◦ t1 〈e′′1〉 and the match s′1 such
that (t2 〈e2〉 ◦ t1 〈e′′1〉)〈s′1〉= t2 〈m2〉 ◦ t1 〈m1〉.

The opposite of Theorem 5, i. e. that every transformation with a concurrent rule at a match in
S can be decomposed into transformations with the component rules, is true in suitable categor-
ies of total algebra where all pushouts are hereditary. This is no longer the case in categories of
partial algebras as the following example demonstrates.

Example 4 (Hidden “element”) Consider again the signature Σc of Example 2, the category
A M

Σc , the partial algebras

A ::= As = {a}, f A = /0and

B ::= Bs = {b}, f B =
(
{ f B}, dB

f ( f B) = ∗, cB
f ( f B) = b

)
,

and the total morphism p : A→ B ::= ps(a) = b. Instantiate the diagram in Fig. 5 by L1 = L′1 =
K1 = K′1 = K2 = K′2 = R2 = R′2 := A, R1 = L2 = M := B, l1 = l′1 = e′′1 = e′1 = r2 = r′2 = e′2 =
e′′2 := idA, e1 = e2 = idB, and r1 = r′1 = l2 = l′2 := p. These definitions result in t2 ◦ t1 : L1 →
R2 = (idA, idA). Now let G = B and s′1 = p. Then t2 ◦ t1 is applicable at s′1 and produces the trace
t2 ◦ t1 〈s′1〉 = (idB, idB) and the co-match s′1 〈t2 ◦ t1〉 = p. But t1 is not applicable at s′1 ◦ e′′1 = p,
since the transformation in G M

Σ
results in a pushout as in Figure 3 which is not hereditary in A M

Σ
.

Thus, the fact that not all pushouts in categories of partial algebras are hereditary hinders
transfer of some theoretical results from the total case to partial algebras. This disadvantage in
theory pays off in practical applications as the examples in the next section will show.

5 Rewriting of Partial Algebras: Some Applications

Given a signature Σ, rewriting in A M
Σ

, A F
Σ

, and A C
Γ

differs in the possibilities for a rule’s left-
hand side to delete hyperedges23 and the concrete application conditions stipulated by the fact
23 In A M

Σ
, arbitrary hyperedges (operation and/or predicate definitions) can be deleted without deleting any vertex,

in A F
Σ

, deletion of a hyperedge requires simultaneous deletion of at least one vertex adjacent to the hyperedge (in the
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that a transformation requires a hereditary pushout on its right-hand side. In this section, we
consider examples in A M

Σ
only, since the application conditions can easily be checked.

Proposition 9 For rule t = (l,r) and match candidate m in A M
Σ

, there is a morphism m〈l〉 such
that (l,m〈l〉) is pullback of (m∗(l),m), if and only if m is conflict-free, i. e. m(x) = m(y) and t
defined for x implies that t is defined for y.24

Proof. Using the construction of the right adjoint in Proposition 1, it is easy to check that the
co-unit of m∗ for l is an isomorphism, iff this condition holds.

This result leads to the following procedure for rule application at a given match candidate:

Algorithm 1 Application of rule (l : K � L,r : K → R) at match candidate m : L → G is
performed in five steps:

1. Check the condition of Proposition 9! Proceed, if valid, abort otherwise!

2. Construct (m∗(l) : K∗→G) and l 〈m〉 : K→K∗, such that (l 〈m〉 , l) is pullback of (m,m∗(l))!

3. Construct the pushout (r 〈m〉 : K∗→ H,m〈t〉 : R→ H) of r and l 〈m〉 in GΣ!

4. Check uniqueness condition (1) on page 3 for H!

5. Finish transformation if the check in 4 is positive, rollback otherwise!

sorts O, Int

opns  i:O --> Int (    )

      +:Int,Int --> Int
    o i o i    setset o

i

i'
o
    

  changechange    
i

i'

Figure 6: Setting and Changing an Attribute

The application condition in Algorithm 1(4), can be usefully exploited in many practical ap-
plications as a condition that prevents rule application. Our first example is a simple integer
attribute i that can be set or changed for objects of type O. Figure 6 shows the underlying signa-
ture25 and the two rules. Note that, due to the check in Algorithm 1(4), the set-rule can only be
applied in a situation where the i-attribute of o has not been set yet. If there is an old value, the
change-rule must be applied.

sorts O

opns  ≤:O,O (    )    
o o      reflexivereflexive   transitivetransitive

o    o    o
    

o    o    o

Figure 7: Reflexive/Transitive Closure

domain or codomain), and, in A C
Γ

, deletion of a hyperedge is only possible, if the domain vertex of this hyperedge is
deleted as well.
24 This condition is called conflict-freeness in [12] and [3] as well.
25 In the signature, we declare the visualisations for the operations in brackets.
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The next example handles the reflexive and transitive closure of a relation on the set O. We just
apply the two rules reflexive and transitive as long as there are matches. Note that the
algorithm terminates, since the rule reflexive cannot add loops to objects that possess a loop
already. This is again due to the application condition in Algorithm 1(4). If all “abbreviations”
are added, also the rule transitive is not applicable any more.

The next example in Figure 8 shows a typical copying process, here for a structure that is
built up by the partial dyadic operation t. The unary predicate r marks the root of the structure
to be copied. The start and the three copy rules perform the actual copy process. And
the operation c keeps track of already built copies. Again, the application condition of single
pushout rewriting for partial algebras guarantees that exactly one copy is made. Note that this
copy mechanism works for hierarchical and even cyclic structures.

sorts N           (     )

opns  t:N,N --> N (     )

      c:N   --> N (     )

      r:N         (     )

    

    startstart

    
    
    

copycopy11

    

  
  

  
  

  
  

    

  
  

  
  

  
  

    

copycopy11

  
  

  
  

  
  

  
  

  
  

  
  

        

    

copycopy11

    

  
  

  
  

  
  

    

  
  

  
  

  
  

    

copycopy22

  
  

  
  

  
  

  
  

  
  

  
  

        

    
copycopy11

    

  
  

  
  

  
  

    

  
  

  
  

  
  

    

copycopy33
  
  

  
  

  
  

  
  

  
  

  
  

        

    
    

  
  

  
  

  
  

    
    

Figure 8: Copying

A situation as in the preceding example often occurs in the software engineering area of model
transformation where objects in a source model must be mapped to objects in a target model.
The transformation process starts with a completely undefined mapping and stops if the map-
ping is sufficiently defined. Uniqueness of the mapping has to be guaranteed during the whole
transformation process. This is a perfect application scenario for our new rewriting approach.
As an example consider the mapping of (small) object-oriented models to relational database

MT = OO + DB +

     opns  to: Class --> Table       (     )

           to: Attribute --> Column  (     ) 

           to: Association --> Table (     )

    
    
    

Figure 9: Object-oriented Model, Relational Schema, and Inter-Model Mapping

schemata. The underlying signature is depicted in Figure 9. Here, an object-oriented model
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(OO-part in Fig. 9) consists of classes, (untyped) attributes, and binary associations. A relational
schema (DB-part in Fig. 9) comprises tables and columns. Columns can be marked as primary
and/or foreign keys. The transformation signature is completed by the inter-model mapping in
the MT-part in Figure 9. It specifies that classes shall be mapped to tables, attributes to columns,
and associations to (junction) tables. The three rules that implement this transformation process
are depicted in Figure 10. The condition in Algorithm 1(4) guarantees that the process stops if
everything is mapped.

Figure 10: Transformation of Classes, Attributes, and Associations

The mapping of classes, attributes, and associations is one-to-one (up to some implementation
details). It becomes more intricate, if inheritance comes into play. Figure 11 shows the extended
object-oriented model and two variants MTI1 and MTI2 for the extension of the mapping.

OOI = OO  +      opns super: Class --> Class (     )

MTI1= MT + OOI + opns to: Class, Class --> Table (     )

MTI2= MT + OOI + opns to: Class, Class --> ForeignKey (     )                                            
    

    

    

Figure 11: Object-Orientation with Inheritance

The first variant can be used to realise the pattern called Single Table Inheritance in [6], which
puts a complete inheritance hierarchy into one table. The corresponding transformation rule
single is depicted in Figure 12(left part).26 The second variant is appropriate for the pattern
called Class Table Inheritance in [6], which implements inheritance by a foreign key constraint
on the primary key of the table for the sub-class referencing the primary key of the table for the
super-class. The transformation rule join for this pattern can be found in Figure 12(right part).

Figure 12: Handling Inheritance

26 Note that the right-hand side of the rule is not injective!
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All examples in this section demonstrate that the built-in application condition in Single-
Pushout Rewriting for Partial Algebras is useful to control termination in transformations.

6 Related Work and Conclusions

We have introduced single-pushout rewriting of arbitrary partial algebras. As usual, transform-
ations are defined by a single pushout of partial morphisms. Thus, general composition and de-
composition properties of pushouts can be exploited for a rich theory. The new approach is built
on a category of partial morphisms that does not have all pushouts. We provided a good char-
acterisation of the situations which admit pushouts by hereditariness of underlying pushouts of
total morphisms, compare Theorems 1, 2, and 3. Informally, pushouts can be built if the applied
rule does not try to define operations where they are defined already. This application condition
can easily be checked in every concrete situation. By some examples, we showed the practical
relevance of the application condition for system design and the termination of derivation se-
quences. Within our approach, we do not have to distinguish between graph structures (objects
and links) and data structures (base-types and -operations). We can easily model associations
and attributes with at-most-one-multiplicity.

There are only a few articles in the literature that address rewriting of partial algebras, for
example [2] and [1] for the double- and single-pushout approach resp. But both papers stay in the
framework of signatures with unary operation symbols only and aim at an underlying category
of partial morphisms that is co-complete. Aspects of partial algebras occur in all papers that
are concerned with relabelling of nodes and edges, for example [9], or that invent mechanisms
for exchanging the attribute value without deleting and adding an object, for example [7]. Most
of these approaches avoid “real” partial algebras by completing them to total ones by some
undefined-values. Thus, our approach is new, seems promising wrt. theoretical results, and shows
some application potentials.
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