
Electronic Communications of the EASST
Volume 73 (2016)

Graph Computation Models
Selected Revised Papers from GCM 2015

Proving Correctness of Graph Programs
Relative to Recursively Nested Conditions

Nils Erik Flick

20 pages

Guest Editors: Detlef Plump
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Proving Correctness of Graph Programs
Relative to Recursively Nested Conditions

Nils Erik Flick∗

Carl von Ossietzky Universität, 26111 Oldenburg, Germany,
flick@informatik.uni-oldenburg.de

Abstract: We propose a new specification language for the proof-based approach
to verification of graph programs by introducing µ-conditions as an alternative to
existing formalisms which can express many non-local properties of interest. The
contributions of this paper are the lifting of constructions from nested conditions
to the new, more expressive conditions and a proof calculus for partial correctness
relative to µ-conditions. Most importantly, we prove the correctness of a new con-
struction to compute weakest preconditions with respect to finite graph programs.

Keywords: correctness, graph programs, non-local graph conditions, weakest pre-
condition calculus, proof calculus

1 Introduction

Graph transformations provide a formal way to model the graph-based behaviour of a wide range
of systems by way of diagrams, amenable to formal verification. One approach to verification
proceeds via model checking of abstractions, notably Gadducci et al., Baldan et al., König et al.,
Rensink et al. [GHK98, BKK03, KK06, RD06]. This can be contrasted with the proof-based
approaches of Habel, Pennemann and Rensink [HPR06, HP09] and Poskitt and Plump [PP13].
Here, state properties are expressed by nested graph conditions, and a program can be proved
correct with respect to a precondition c and a postcondition d. The following figure presents a
schematic overview of the approach, which is also our starting point:

precondition
calculus

pr
ov

er

graph program weakest precondition
d (postcondition)
c (precondition)

yes, correct
no
unknown

Figure 1: Overview of the proof-based verification approach

Correctness proofs are done in the style of Dijkstra’s [Dij76] predicate transformer approach
in Pennemann’s thesis [Pen09], while Poskitt’s thesis [Pos13] features a Hoare [Hoa83] logic
for partial and total correctness. Both works are based on nested conditions, which cannot ex-
press non-local properties of graphs, such as connectivity. In this paper, we consider non-local
properties, and we present an extension to the proof calculus from [Pen09]. Our formalism is
an extension of nested conditions by recursive definitions. Several extensions of nested graph
∗ This work is supported by the German Research Foundation (DFG), grant GRK 1765 (Research Training Group –
System Correctness under Adverse Conditions)

1 / 20 Volume 73 (2016)

mailto:flick@informatik.uni-oldenburg.de

Recursively Nested Conditions

conditions to non-local conditions already exist (Radke [Rad13], Poskitt and Plump [PP14]).
We argue that as opposed to the former, ours offers a weakest precondition calculus that can
handle any condition expressible in it. As compared to the latter, which relies more heavily on
expressing properties directly in (monadic second-order) logic, ours is more closely related to
nested conditions and shares the same basic methodology. Thus µ-conditions offer a viewpoint
sufficiently different from existing ones to be worth investigating.

This paper is structured as follows: Section 2 recalls graph programs and conditions. Section 3
introduces µ-conditions and Section 4 defines correctness under µ-conditions and the proof cal-
culus, together with proofs of the results and a (small) exemplary application of the method.
Section 5 provides context by listing related work. Section 6 concludes with an outlook.

2 Graph Conditions and Programs

In this section, we introduce graph conditions and graph programs. We assume familiarity with
graph transformation systems in the sense of Ehrig et al. [EEPT06], and the basic notions of
category theory. For practical approaches to semi-automatic theorem proving in this context, we
also refer the reader to Pennemann [Pen09]. In this paper, all graphs are assumed to be finite.

Notation The domain and codomain of a morphism f : G→ H are denoted by dom(f) = G
and cod(f) = H. Curly arrows f : G ↪→ H denote injective morphisms (monomorphisms) while
double-ended arrows f : G � H denote surjective ones (epimorphisms). M denotes the class of
all graph monomorphisms. An isomorphism of graphs is both a mono- and an epimorphism. A
partial morphism is a pair of monomorphisms with the same domain. /0 denotes the empty graph.

Let us recall nested conditions, initially due to Habel and Pennemann. Finite nested conditions
are known to be equally expressive as graph-interpreted first-order predicate logic.

Definition 1 (Nested Graph Conditions) Let Cond be the class of nested conditions, defined
inductively as follows (where P,C′,C are graphs):

• If J is a countable set and for all j ∈ J, c j is a condition (over P), then
∨

j∈J c j is a condition
(over P). This includes the case J = /0 (for any P).

• If c is a condition (over P), then ¬c is also a condition (over P).

• If a : P ↪→ C′ is a monomorphism, ι : C ↪→ C′ is a monomorphism and c′ is a condition
(over C), then ∃(a, ι ,c′) is a condition (over P).

Notation We call c′ a direct subcondition of ∃(α, ι ,c′), ¬c′ and c′∨c′′ and use subcondition for
the reflexive and transitive closure of this syntactically defined relation. If c is a condition over
P, then P is its type1, denoted c : P, and CondP is the class of all conditions over P. The usual
abbreviations define the other standard operators:

∧
is ¬

∨
¬, ∀ is ¬∃¬. No morphism satisfies

the disjunction over the empty index set. To avoid special cases, we write it as ⊥ (false), and >
(true) for ¬⊥, though technically for each graph P there is one ⊥ : P and one > : P. We write
∃(a) for ∃(a, ι ,>), ∃(a,c) for ∃(a, idcod(a),c) and ∃−1(ι ,c) for ∃(idcod(ι), ι ,c).

1 When we mention “type graphs” in the text, we just mean graphs used as types.

Selected Revised Papers from GCM 2015 2 / 20

ECEASST

With finite index sets, one obtains the finite nested conditions. The morphism ι serves to unse-
lect2 a part of C′. Our extension is similar to lax conditions [RAB+15], but slighter in scope.

Definition 2 (Satisfaction) A monomorphism f : P ↪→ G satisfies a condition c : P, denoted
f |= c, iff c = >, c = ¬c′ and f 6|= c′, or c =

∨
j∈J c j and there is a j ∈ J such that f |= c j, or

c = ∃(a, ι ,c′) (where a : P ↪→C′, ι : C ↪→C′, c′ : C) and there exists a monomorphism q : C′ ↪→G
such that f = q◦a and q◦ ι |= c′.

∃(P C′ C,)

G

a ι

qf q◦ ι

c′

|=

A graph G satisfies a condition c : /0 if and only if the unique morphism /0 ↪→ G satisfies c.

Notation The symbol ≡ denotes logical equivalence, i.e. for conditions c,c′ : P, c ≡ c′ if and
only if for all monomorphisms m with domain P,⇒ m |= c⇔ m |= c′.

Remark 1 (No Added Expressivity) Our conditions with ι are equally expressive as the nested
conditions defined in [Pen09]. The proof, omitted, relies on the transformation A from [Pen09].

Notation As one can see in Fig. 2, the notation for graph conditions often only depicts source
or target graphs of morphisms. The small blue numbers show the morphisms’ node mappings.
We also adopt the convention of representing the morphism ι in a situation ∃(a, ι ,xi) implicitly:
we prefer to annotate the variable’s type graph with the images of items under ι in parentheses.

∃
(

/0 ↪→ 1 2 ←↩ 2
,¬∃

(
2
↪→ 2 ←↩ 2

,>
))

≡ ∃
(

1 2
,¬∃

(
2
))

Figure 2: A nested graph condition, in full and in abbreviated notation (stating the existence of
two nodes linked by an edge, the second node not having a self-loop).

Next, we introduce graph transformations. We follow the double pushout approach with injec-
tive rules and injective matches. For technical reasons, we define graph transformations in terms
of four elementary steps, namely selection, deletion, addition and unselection. Deletion and
addition always apply to a selected subgraph, and selection and unselection allow the selection
to be changed. skip is a no-op used in the definition of sequential composition. The definition
below allows for somewhat more general combinations of the basic steps, which cannot be ex-
pressed as sets of graph transformation rules. Another reason for breaking up rules into more
elementary steps is to make constructions and proofs easier to follow. Its only complication is
that programs can only be composed if they agree on the currently selected subgraph, called the
interface. This ensures that an addition is performed in the same place as the deletion. A graph
transformation rule is then nothing else than a selection; a deletion; an addition; an unselection.

The semantics of a graph program is a triple of two monomorphisms and one partial morphism.
The two monomorphisms represent the selected subgraphs before and after the execution of the

2 We will use the term “unselection” anytime a morphism is used in the inverse direction: in Def. 1, the morphism ι

is used to base subconditions on a smaller subgraph, in effect reducing the selected subgraph; it will also appear in
our definition of graph programs as the name of an operation that reduces the current selection, i.e. the subgraph the
program is currently working on – similarly for “selection”. Unselection is an indispensable part of our formalism.

3 / 20 Volume 73 (2016)

Recursively Nested Conditions

program respectively, and the partial morphism records the changes effected by the program.
Our programs are a proper subset of those in Pennemann [Pen09], and use the same semantics.

Definition 3 (Graph Programs) In the following table, x, l, r, y, min and mout are monomorph-
isms, with x, l, r and y arbitrarily chosen to define a program step, while the interfaces min (input)
and mout (output) are universally quantified in the set comprehensions that appear in the defini-
tions below. Each triple (min,mout ,(pl, pr)) has cod(pl)=dom(min) and cod(pr)=dom(mout).

Name Program P Semantics JPK
selection Sel(x) {(min,mout ,x) | mout ◦ x = min}
deletion Del(l) {(min,mout , l−1) | ∃l′,(mout , l,min, l′) pushout}
addition Add(r) {(min,mout ,r) | ∃r′,(min,r,mout ,r′) pushout}
unselection Uns(y) {(min,mout ,y−1) | mout = min ◦ y}
skip skip {(m,m, iddom(m)) | m ∈M}

If P and Q are graph programs, so are their disjunction {P,Q} and sequence P;Q. The seman-
tics of disjunction is a set union JPK∪ JQK and the semantics of sequence is JP;QK = {(m,m′, p)
| ∃(m,m′′, p′) ∈ JPK,(m′′,m′, p′′) ∈ JQK, p = p′; p′′}, where partial morphisms p′ = (l1,r1), p′′ =
(l2,r2) compose as p′; p′′ = (l1 ◦ l′2,r2 ◦ r′1) using the pullback (r′1, l

′
2) of (r1, l2). If P is a graph

program, so is its iteration P∗: JP∗K =
⋃

j∈NJP jK where P j = P;P j−1 for j ≥ 1 and P0 = skip.

Remark 2 The definitions generalise the state transitions in plain graph transformation: a rule
ρ = (L l←↩K r

↪→R) is exactly simulated by the program Sel(/0 ↪→ L);Del(l);Add(r);Uns(/0 ↪→R).

3 µ-Conditions

In this section, we define µ-conditions on the basis of nested graph conditions. As opposed
to nested conditions, the ones defined here can express path and connectivity properties, which
frequently arise in the study of the correctness of programs with recursive data structures, or in
the modelling of networks. We then define and prove the correctness of some basic constructions.
An example is provided at the end of this section to illustrate the constructions step by step.

3.1 Defining µ-Conditions

Nested conditions are a very successful approach to the specification of graph properties for
verification. However, they cannot express non-local properties such as connectedness. Our idea
is to generalise nested conditions to capture certain non-local properties by adding recursion.
The resulting formalism is similar to first order fixed point logics, see e.g. Kreutzer [Kre02].

The reader might want to compare our µ-conditions to a distinct formalism for expressing
non-local properties, the very powerful grammar-based HR∗ conditions of Radke [Rad13]. We
argue that µ-conditions are worth looking into despite the availability of strong contenders for an
extension of nested conditions to non-local properties, such as MSO-conditions [PP14] because
our approach provides a new and different generalisation of nested conditions, also is it not
obvious how the respective expressivities compare.3 Specifically, we show in this section that

3 See Section 5 for a summary of related work on non-local graph condition formalisms.

Selected Revised Papers from GCM 2015 4 / 20

ECEASST

the weakest liberal precondition transformation, core of the Dijkstra-style approach, carries over.

Notation Sequences (of graphs, placeholders, morphisms) are written with a vector arrow ~P,~x,
~f , and their components are numbered starting from 1. The length of a sequence ~P is denoted
by ‖~P‖. Indexed typewriter letters x1 stand for placeholders, i.e. variables. The notation c : P
indicating that c has type P is also extended to sequences: ~c : ~P (provided ‖~c‖= ‖~P‖).

To define fixed point conditions, we need something to take fixed points of, and to enforce
existence and uniqueness. Choosing a partial order on Cond~P, one can define monotonic oper-
ators on Cond~P. The semantics of satisfaction already defines a pre-order: c ≤ c′ if and only if
every morphism that satisfies c also satisfies c′, which is obviously transitive and reflexive. As
in every pre-order, ≤ ∩ ≤−1 is an equivalence relation compatible with ≤ and comparing rep-
resentants via ≤ partially orders its equivalence classes. We introduce variables as placeholders
where further conditions can be substituted4. To represent systems of simultaneous equations,
we work on tuples of conditions. If ~P = P1, . . . ,P‖~P‖ is a sequence of graphs, then Cond~P is the

set of all ‖~P‖-tuples ~c of conditions, whose i-th element is a condition over the i-th graph of ~P.
Satisfaction is defined component-wise: ~f |=~c if and only if ∀k ∈ {1, . . . ,‖~P‖} fk |= ck.

Disjunctions
∧

and conjunctions
∨

of countable sets of CondP conditions, which by definition
exist for any P, are easily seen to be least upper resp. greatest lower bounds of the sets. This
makes Cond≡P a complete lattice. Let Cond~P be ordered with the product order by defining
~f |=~c to be true when the conjunction holds. This again induces a partial order on the set of
equivalence classes, Cond≡~P. Thus, Cond≡~P is also a complete lattice, and a monotonic operator
F has a least fixed point (lfp), given by the limit of ~Fn(

−→
⊥) for all n ∈ N, by the Knaster-Tarski

theorem [Tar55]. This is crucial in the definition of a µ-condition. We extend the inductive
definition Def. 1 by placeholders, and define substitutions of conditions for placeholders:

Definition 4 (Graph Conditions with Placeholders) Given a graph P and a finite sequence ~P of
graphs, a condition with placeholders from ~P over P is a (graph) condition with placeholders is
either ∃(a, ι ,c), or ¬c, or

∨
j∈J c j, or xi, 1≤ i≤ ‖~P‖ where xi is a variable of type Pi.

Definition 5 (Substitution) If F is a condition with placeholders~x of types ~P and ~c ∈Cond~P,
then F[~x/~c] is obtained by substituting ci for each occurrence of xi for all i ∈ {1,...,‖~P‖}.

Satisfaction of such a condition by a morphism f is defined relative to a valuation val, which is
an assignment of> or⊥ to each monomorphism of the type graph of the variable into cod(f), by
f |= xi iff val(xi) => (where dom(f) = Pi and xi : Pi). As discussed above, a lfp shall be defined
only up to logical equivalence. To guarantee its existence, the operator must be monotonic
(~c≤ ~d⇒~F(~c)≤~F(~d) for any~c, ~d ∈Cond~P). The following remark is very useful:

Remark 3 The least fixed point of ~F is equivalent to
∨

n∈N
~Fn(
−→
⊥).

Proof. This is a fixed point because~F(
∨

n∈N
~Fn(
−→
⊥))=

∨
n∈N−{0}~F

n(
−→
⊥)=⊥∨

∨
n∈N−{0}~F

n(
−→
⊥)

4 Note that in our approach variables stand for subconditions, not for attributes or parts of graphs. Wherever confusion
with similarly named concepts from the literature could arise, we use the word “placeholder” for “variable”.

5 / 20 Volume 73 (2016)

Recursively Nested Conditions

=
∨

n∈N
~Fn(
−→
⊥). It is the least fixed point because any other fixed point must also be a least upper

bound of all ~Fn(
−→
⊥) and therefore greater or equal to the one proposed.

Definition 6 (µ-Condition) Given a finite list ~P and conditions {Fi}i∈{1,...,‖~P‖} with placehold-

ers~x : ~P (Fi having type Pi and so on), then µ[~x]~F(~x) denotes the least fixed point (lfp) of the
operator that to any ~c assigns ~F[~x/~c]. A µ-condition is a pair (b, l) consisting of a condition
with placeholders b, and a finite list of pairs l = (xi,Fi(~x)) of a variable xi : Pi and a condition
Fi(~x) : Pi, with placeholders from~x, for some graph Pi, such that ~F is monotonic.

We allow µ-conditions with open variables (i.e. not occurring as left-hand sides). For a least
fixed point of a subset of variables to exist, the system of equations must correspond to a mono-
tonic operator under any valuation of the open variables. An operator is said to be monotonic in
a subset of variables when it is monotonic under any valuation of the remaining variables.

Notation We write the list of pairs l = (xi,Fi(~x))i∈{1,...,‖~P‖} as a system of equations~x=~F(~x).
We call b the main body and l the recursive specification of (b, l) (and Fi(~x) the body or right
hand side of the variable xi in l, or the i-th component of ~F), and ~F(~c) is understood as substitu-
tion of conditions~c for the variables~x. ~F is said to define the variables~x.

Such systems of equations may be used in a broader sense, to define nested fixed points:

Definition 7 (Transitive Variable Use) Let {Fi}i∈I} be a list of conditions as in Def. 6. The
use relation of F, ;F, is defined on literals {xi,¬xi}i∈I by xi ;F x j (¬x j) iff x j occurs as a
subcondition under an even (odd) number of negations in Fi. The transitive use paths of F are
all sequences of literals πp1 ...πpm such that ∀1≤ i<m.πpi ;F πpi+1 and ∀1< j<m.πpm 6= πp j .

Lemma 1 (Nested Fixed Points) Given conditions with placeholders {Fi(~x)}i∈I , if there is a
partitioning I = I1] I2 with~x1 = {~xi}i∈I1 and~x2 = {~xi}i∈I2 such that {Fi}i∈I1 does not use vari-
ables of~x2, then if µ[~x]~F(~x) exists it is equivalent to µ[~x1]~FI1(~x1) with~FI1(~x1)= µ[~x2]~FI2(~x2,~x1).

Proof. Immediate from the definition of least fixed point.

Definition 8 (Stratification) F is said to be stratified if there is a decomposition into~FI1 , ...,
~FIn

such that each ~FIm is monotonic in~xIm and there are no variables xi ;
+
F x j, j ∈ I j, i ∈ Ii, j < i.

Such a decomposition is termed a stratification of ~F and the ~FIm are strata of ~F.

Note that the possible decompositions only depend on the strict partial order of transitive variable
use ;+

F . The order and decomposition of fixed points on ;+
F -incomparable subsets of variables

does not matter by Lemma 1. Therefore there is no ambiguity in presenting a nested fixed point
as a system of equations without explicit stratification. Monotonicity and stratification can be
enforced syntactically and we only consider such µ-conditions to be well-formed:

Remark 4 (Positive Variables) If there is no transitive use path starting and ending on the same
variable and comporting an odd number of negations, then ~F is stratified.

Selected Revised Papers from GCM 2015 6 / 20

ECEASST

Proof. We prove by structural induction that Fi(~x) is monotonic in x j under even numbers of
negations and antitonic under odd numbers, i.e. c ≤ d ⇒ Fi[x j/c] ≤ Fi[x j/d] resp. c ≤ d ⇒
Fi[x j/c] ≥ Fi[x j/d]. The base case is either > or x j′ , j 6= j′ (trivial), or x j (monotonic). The
other cases are negation, disjunction and existential quantifiers. Examining Def. 2, negation
interchanges both even/odd and monotonicity/antitonicity. Disjunction, defined via propositional
logic too, is monotonic, quantifiers ∃(a, ι ,c′) are monotonic in c′. Hence the latter two cases do
not affect either property. If all components of ~F are monotonic in x j, then so is ~F . Porting the
argument to stratified systems merely requires checking the monotonicity of each stratum.

Remark 5 (First Example: µ-Conditions are More General than Nested)
1. µ-conditions generalise nested conditions, consequently all examples for nested condi-

tions are examples for µ-conditions (with no variables or equations).

2. µ-conditions are strictly more general than nested conditions: the following expresses the
existence of a path of unknown length between two given nodes.

x1
[

1 2

]
where x1

[
1 2

]
= ∃

(
1 2

)
∨∃
(

1 2

3

,x1
[

1(3) 2(2)

])
It reads as follows: the word “where” stands between main body and equations. The only variable
is x1. Its type graph is indicated in square brackets. The second existential quantifier uses a
morphism to unselect node 1 and the sole edge: its source is the type graph of x1, which is
syntactically required for using the variable in that place. The unselection morphism ι is not
written as an arrow, instead it is expressed in compact notation by appending small blue numbers
in parentheses to the node numbers in its source graph to specify the mapping. To ease reading,
we adopt the convention to always use the same layout for the type graph of a given variable.
Let us motivate the necessity of “unselection”. The nesting depth n : Cond→ N is defined as

n(
∨

j∈J c j) = max({0}∪{n(c j) | j ∈ J}), n(¬c) = n(c), n(∃(a, ι ,c)) = n(c)+1, (n(xi)=0).

Lemma 2 (Absorption) Any condition with placeholders c = ∃(a, ι ,c′) where a and ι are iso-
morphisms is equivalent to a condition of smaller nesting depth (or equal if n(c) = 1).

Proof. Define the reduced condition ra,ι(c′) thus: if c′ =
∨

j∈J c j, then ra,ι(c′) =
∨

j∈J ra,ι(c j). If
c′ = ¬c′′, then ra,ι(c′) = ¬ra,ι(c′′). If c′ = ∃(a′, ι ′,c′′), then ra,ι(c′) = ∃(a′ ◦ ι−1 ◦a,c′). Directly
from Def. 2, ra,ι(c′)≡ c and at the same time, n(ra,ι(c′)) = n(c′) = n(c)−1. The only case where
nesting depth does not decrease is when c′ is a variable, resulting in nesting depth 1.

Remark 6 (Why ι) Any µ-condition b |~x =~F(~x) where ι is the identity in all subconditions of
b and of the components Fi(~x) is equivalent to a nested condition.

Proof. Decompose ~F by Lemma 1 such that each stratum ~FIm only defines variables of the same
type. This is indeed possible since with no non-trivial unselection, a variable may transitively
depend on itself only via a morphism that is both injective and surjective. Induction over the
number of strata: for each~FIm , after each step of the lfp iteration, the nesting level can be reduced
by Lemma 2 whenever ∃(a, ι ,c) with a isomorphism occurs. Hence an equivalent condition of
nesting level 0 or 1 can be reached. It must be a Boolean combination of conditions of the

7 / 20 Volume 73 (2016)

Recursively Nested Conditions

form ∃(a, ι ,xi) with isomorphisms a and ι . Finitely many distinct conditions of this form, hence
finitely many distinct Boolean combinations, exist. The monotonic operator ~FIm thus converges
after finitely many steps to a finitely deeply nested condition with placeholders, for which the
next stratum’s lfp, by induction hypothesis possessing the desired property, is substituted.

Definition 9 (Satisfaction) b |~x=~F(~x) with~x : ~P is satisfied by f iff f |= b[~x/µ[P]F].

This means that the µ-condition b |~x=~F(~x) can be understood by substituting the lfp solution
of the system of equations ~x =~F(~x) in the main body b (for stratified systems, use appropriate
nested fixed points). Satisfaction of µ-conditions with open variables is analogous to satisfaction
of conditions with placeholders, i.e. requires a valuation to be given.

Remark 7 (Finite Nesting) By the “infinite disjunction” characterisation of the lfp, any µ-con-
dition is equivalent to an infinite nested condition. Infinitely deep nesting is not needed because
the characterisation in Rem. 3 yields a countable disjunction of finitely deeply nested conditions.

A morphism satisfies a given µ-condition if and only if it satisfies the finite nested condition
obtained by unrolling the recursive specification up to some finite depth:

Proposition 1 (Satisfaction at Finite Depth) f |= b |~x=~F(~x) iff ∃n ∈ N, f |= b[~x/~Fn(
−→
⊥)].

Proof. The lfp is equivalent to
∨

i∈N
~Fi(
−→
⊥), which is satisfied by f iff at least one~Fn(

−→
⊥) is.

Theorem 1 (Deciding Satisfaction of µ-Conditions) Given a morphism f : P ↪→ G and a µ-
condition c, it is decidable whether f satisfies c.

Proof. The following algorithm CheckMu decides f |= c. For the type graph Pi of each variable
xi, list all monomorphisms mik : Pi ↪→ G. Build a table which records in each column a Boolean
value for each pair (xi,mik). The entries in column j+1 are computed by evaluating satisfaction
of the right hand side corresponding to the row’s variable by the morphism mik associated with
the row, under the valuation given by column j. Stop after producing two adjacent columns with
the same entries. Output the value of the main body under that valuation. The algorithm is cor-
rect because the j-th column corresponds to satisfaction by ~F j(

−→
⊥), by definition. It terminates

because of monotonicity: as values never change back to ⊥ from > while progressing through
the columns, there is a finite number j∗ ∈ N such that ~F j∗ is satisfied by f iff ~F j∗+1 is.

3.2 Weakest Liberal Preconditions of µ-conditions

In this subsection, we present a construction to compute the weakest liberal precondition of a µ-
condition with respect to any iteration-free graph program P (“liberal” means termination of P is
not implied. It is redundant in the absence of iteration, as only iteration causes non-termination).

Definition 10 (Weakest Liberal Precondition) The weakest liberal precondition (wlp) of c with
respect to the program P, Wlp(P,c), is the least condition with respect to implication such that
f ′ |= c⇒ f |= Wlp(P,c) if (f , f ′, p) ∈ JPK for some partial morphism p.

Selected Revised Papers from GCM 2015 8 / 20

ECEASST

We show that under this assumption there is a µ-condition that expresses precisely the weakest
liberal precondition of a given µ-condition with respect to a rule, and it can be computed. The
result is similar to the situation for nested conditions. To derive it, we use the shift transformation
Am(c) from [Pen09] whose fundamental property is to transform any nested condition c into
another nested condition such that m′′ |= Am(c) if and only if m′′ ◦m |= c for all composable pairs
m′′, m of monomorphisms (Lemma 5.4 from [Pen09]). Since this and similar constructions play
an important role in this section, we recall the case c= ∃(a,c′): if (m′,a′) is the pushout of (m,a),
let Epi be the set of all epimorphisms e with domain cod(m′) that compose to monomorphisms
b := e◦a′ and r := e◦m′. Then Am(∃(a,c′)) =

∨
e∈Epi∃(b,Ar(c′)).

With help of the unselection ι in ∃(a, ι ,c), it is at first glance trivial to exhibit a weakest lib-
eral precondition with respect to Uns(y). However, to handle the addition and deletion steps, a
construction becomes necessary that makes the affected subgraph explicit again. This informa-
tion is crucial to obtain the weakest liberal precondition with respect to Add(r) and Del(l) and
must not be forgotten at any nesting level in order to obtain the correct result. To that aim, we
define a partial shift construction which makes sure that the type graph of the main body is never
unselected in the µ-condition but is instead mapped in a consistent way as a subgraph of the type
graph of each variable. The following serves to obtain the new type graphs:

Construction 1 (New type graphs for partial shift) We assume that an arbitrary total order on
all graph morphisms is fixed. If c = b |~x= µ[~K]~F(~x) is a µ-condition, then for a variable xi of
~K, XR,c(xi) is defined as the sequence of morphisms ~f obtained as below, in ascending order.

The new list of variables ~K′ and their respective types ~P′ are obtained by concatenating all
XR,c(xi) of the variables of ~K in order. The morphisms f are obtained from ~P′ by collecting all
epimorphisms that compose to monomorphisms with the pushout morphisms in the diagram:

/0 R

Pi X P′j

f

Lemma 3 (Decomposing “exists”) ∃(a, ι ,c)≡ ∃(a,∃−1(ι ,c))

Proof. f |= ∃(a,∃−1(ι ,c))⇔∃q ∈M, f = q◦a∧q◦ idcod(a) |= ∃−1(ι ,c)
⇔∃q ∈M, f = q◦a∧∃q′ ∈M,q◦ idcod(a) = q′ ◦ idcod(ι)∧q′ ◦ ι |= c′

⇔∃q ∈M, f = q◦a∧∃q′ ∈M,q = q′∧q′ ◦ ι |= c′

⇔∃q ∈M, f = q◦a∧q◦ ι |= c′⇔ f |= ∃(a, ι ,c)

Construction 2 (Partial shift Px,y) Given monomorphisms x : P ↪→H and y : R ↪→H, we define
the partial shift of b | µ[~K]F with respect to (x,y) as Px,y(b | µ[~K]F) := Px,y(b) | µ[~K′]F′, where
the new equations are obtained by applying P f ,y to the variables of the left hand sides with all
possible morphisms f from R, as below, and accordingly to the right hand sides. On condition
bodies, Px,y is defined as follows: Boolean combinations of conditions are transformed to the cor-
responding combinations of the transformed members. Px,y(xi) := x

x,y
i if xi : P, where xx,y

i : H is
a new variable, H = cod(y). Quantification is processed separately from unselection (Lemma 3):
Px,y(∃(P

a
↪→C′,c′)) =

∨
Epi∃(H ↪→ E,Pb,r◦y(c′)), where Epi is the set of all epimorphisms e with

9 / 20 Volume 73 (2016)

Recursively Nested Conditions

domain H ′ that compose to monomorphisms r = e◦x′ and b = e◦h with the pushout morphisms
(diagram below left). Px,y(∃−1(C′

ι←↩ C,c′)) = ∃−1(ι ′,Pi,y′(c′)): form the pullback of r ◦ ι and
b◦ y, then pushout the obtained morphisms to (y′, i) (diagram below right):

P C′

H H ′ E

R

a

y
h

x x′
e

b

r
r ◦ y

C′ C

E J

R

B

x

ι

y

i
ι ′

y′

Remark 8 ((Un)ambiguous Variable Contexts) Note that in a µ-condition it is not necessarily
true that in all contexts where xi is used, it appears with the same morphism R ↪→ Pi (where R is
the type of b). It is however possible to equivalently transform every µ-condition into a “normal
form” that has that property. Applying PidR,idR will by construction result in a µ-condition with
unambiguous inclusions R ↪→ Pi for all variables (namely the morphisms from the sequences
XR,c), and this property is also preserved by the constructions introduced later in this section.
Unreachable variables created by X and P can be pruned to obtain an equivalent µ-condition.

Equivalence of conditions with placeholders (unlike µ-conditions) is defined for conditions
using the same sets of variables, as equivalence in the sense of nested conditions under any
valuation. We extend A to conditions with placeholders by defining Am(x) to be ∃(idcod(m),m,x)
if x : P. We show below that Px,y is equivalent to Ax. The reason for introducing Px,y is to gain
precise control over the types of the variables in the transformed condition, which should all
include the type graph of the main body. Intuitively, as this corresponds to the currently selected
subgraph of a graph program, additions and deletions are applied to that subgraph and one must
ensure that the changes apply to the whole µ-condition. Three minor lemmata are required:

Lemma 4 (Removal of Unselection) If c′ is a condition with placeholders, then ∃(a, ι ,c′) ≡
∃(a,A(ι ,c′)) (A being Pennemann’s shift as described earlier in this subsection).

Proof. Using the fundamental property of A, the nontrivial case being m |= ∃(a, ι ,c′) ⇔ ∃q ∈
M,q◦a = m∧q◦ ι |= c′⇔∃q ∈M,q◦a = m∧q |= A(ι ,c′)⇔ m |= ∃(a,A(ι ,c′)).

Lemma 5 (Shift composition and decomposition) Given two morphisms m′′, m′, if m′′ ◦m′

exists, then Am′′◦m′(c)≡ Am′′(Am′(c)) for all conditions (with placeholders) c.

Proof. f |= Am′′◦m′(c)⇔ f ◦m′′ ◦m′ |= c⇔ f ◦m′′ |= Am′(c)⇔ f |= Am′′(Am′(c)) (Lemma 5.4 in
[Pen09])

Lemma 6 The conditions Px,y(c) and Ax(c) are equivalent.

Proof. By induction over the recursion depth, and structural induction over c: If c is a variable
symbol xi, then either recursion depth is 0 and the assertion is proved, since it is ⊥, or it is true
because the right hand side of the equation for xi has the property. The case ∃(a, ι ,c′) of the
structural induction is handled as follows (disjunctions ranging over the suitable epimorphisms

Selected Revised Papers from GCM 2015 10 / 20

ECEASST

e and compositions b, r): m |= Ax(∃(a, ι ,c′))⇔ m |= Ax(∃(a,A(ι ,c′))) according to Lemma 4
⇔ m |=

∨
∃(b,Ae◦x′(Aι(c′))) by Lemma 5.4 from [Pen09]

⇔ m |=
∨
∃(b,Ae◦ι ′(Ai(c′)) by Lemma 5 (twice)⇔ m |=

∨
∃(b,e◦ ι ′,Ai(c′)) by Lemma 4

⇔ m |=
∨
∃(b,e◦ ι ′,Pi,r′(c′)) by induction hypothesis⇔ m |= Px,r′(∃(a, ι ,c′)) by Constr. 2

We introduce two transformations δ ′l(c), α ′r(c) (based on auxiliary transformations δl,y(c)
and αr,y(c)). These are applied to main body and right hand sides and serve to compute the wlp
with respect to addition and deletion, respectively5, of a µ-condition that has already undergone
partial shift. Recall the statement of Rem. 8 that partial shift fixes inclusions from the current
interface to each graph occurring in the condition (as domain or codomain of a morphism a or ι).
When the condition c obtained after partial shift is evaluated on a morphism to check satisfaction,
the current interface is never unselected in the recursion but appears included in each variable
type. The condition α ′r(c) stipulates the existence of cod(r) (the Add(r) step’s input interface)
instead of dom(r) (the output interface), which is intuitively why it yields the correct expression
of the wlp of c with respect to Add(r). It might well be that an occurrence of cod(r) cannot have
been obtained by a rule application because the pushout demanded by the semantics of Add(r)
fails to exist, in which case α ′ eliminates a branch of the condition. Likewise, in δ ′l(c), cod(l)
takes the place of dom(l) since this corresponds exactly to the effect of the step Del(l).6

Definition 11 (Transformations δ ′ and α ′) Let c : P be a condition with placeholders. If r :
K ↪→R and y :R ↪→P (resp. l :K ↪→L and y :K ↪→P) are monomorphisms, then δr,y(c) (αl,y(c)) is
defined as follows: δr,y(¬c) =¬δr,y(c) and δr,y(

∨
j∈J c j) =

∨
j∈J δr,y(c j) (respectively: αl,y(¬c) =

¬αl,y(c) and αl,y(
∨

j∈J c j) =
∨

j∈J αl.y(c j)). For c = ∃(a, ι ,c′), decompose using Lemma 3:7

P C′

R

W X

K ay
y′

h′

r

h

a′

r′r′′

C′ C

R

X V

K ι
y

y′

h′

r

h

ι ′

r′ r′′′

︸ ︷︷ ︸
δr,y(∃(a,c)) and δr,y(∃−1(ι ,c))

P C′

K

W X

L ay
y′

h′

l

h

a′

l′ l′′

C′ C

K

X V

L ιy
y′

h′

l

h

ι ′

l′′ l′′′

︸ ︷︷ ︸
αl,y(∃(a,c)) and αl,y(∃−1(ι ,c))

Case of δr,y(∃(a,c)): if no pushout complement of r and y′ = a ◦ y exists, then δr,y(c) = ⊥.
Otherwise, obtain it as (x′,h′) and pullback (a,r′) to (a′,r′′) with source W ; this yields a unique
morphism h from K to W to make the diagram commute. Apply the special pushout-pullback
lemma [EEPT06] to the compositions h′ = a′ ◦h and y′ = a◦y to see that the left and top squares
in the diagram are pushouts. δr,y(∃(a,c)) = ∃(a′,δr,y′(c′)). Case of δr,y(∃−1(ι ,c)): Pullback
(ι ,r′) to (ι ′,r′′′). The pullback property yields existence and uniqueness of h′ : K→ V to make
the diagram commute. δr,y(∃−1(a,c)) = ∃−1(ι ′,δr,y′(c)).

Case of αl,y(∃(a,c)): pushout (y, l) to (l′,h); pushout (l′,a) to (l′′,a′). h′ is obtained as a′ ◦h

5 The letters were chosen so as to indicate the effect of the transformation: to compute the wlp with respect to
addition, δ ′ needs to delete portions of the morphisms in the condition, and vice versa.
6 In the case of Del(l), it is possible that δ ′l(c) specifies an occurrence of l which cannot be the input of a Del(l) step,
hence to obtain the actual wlp, a nested condition expressing the applicability of Del(l) must be adjoined to δ ′l(c).
7 The morphism y′, just like y, was obtained during the partial shift; the transformations yield corresponding mor-
phisms h′ from the new program interface to each graph occurring in the condition body.

11 / 20 Volume 73 (2016)

Recursively Nested Conditions

and the composed square is a pushout. αl,y(∃(a,c)) = ∃(a′,αl,y′(c′)). Case of αl,y(∃−1(ι ,c)):
let (h, l′′) be the pushout over (y, l) and (h′, l′′′) over (y′, l). The commuting morphism from the
latter pushout object to X is ι ′. αl,y(∃−1(ι ,c)) = ∃−1(ι ′,αl,y′(c′)).

For variables, δr,y(xi) = x′i is a new variable of type K, likewise αl(xi) has type L (see
Rem. 8). Finally, δ ′r(c) = δr,id(Pid,id(c)) and α ′l(c) = αl,id(Pid,id(c)).

In contrast to P, the transformations α ′ and δ ′ leave the number of variables unchanged. Only
the types of the variables are modified. We recall that for any l : K ↪→ L, there is a condition
∆(l) that expresses the possibility of effecting Del(l), i.e. ∆(l) is satisfied exactly by the first
components of tuples in JDel(l)K. We describe ∆(l) only informally: f |= ∆(l) states the non-
existence of edges that are in im(f) but incident to a node in im(f)− im(f ◦ l).

Now we have all ingredients for a weakest liberal precondition theorem for µ-conditions. The
proofs again rely on the general theoretical framework of double-pushout rewriting [EEPT06].

Theorem 2 (Weakest Liberal Precondition for µ-conditions) For each rule ρ , there is a trans-
formation Wlpρ that transforms µ-conditions to µ-conditions and assigns to each condition c
such that m′ |= c another condition Wlpρ(c) such that m |= Wlpρ(c) whenever (m,m′, p) ∈ JρK
and Wlpρ(c) is the least condition with respect to implication having this property.

Proof. We exhibit and prove the transformation in four steps, which compose to the full rule.

1. Wlp(Uns(y),c) = ∃−1(y,c)

2. Wlp(Add(r),c) = δ ′r(b) | µ~x′ = ~F′(~x′) where c = b | µ~x=~F(~x), and~x′, ~F′ are obtained
by applying δ ′r to the main body and the equations (adapting the variable types).

3. Wlp(Del(l),c) = ∆(l)⇒ α ′l(c) | µ~x′ = ~F′(~x′), new equations analogous to Add(r)

4. Wlp(Sel(x,c′),c) = ¬∃(x,(c′∧¬c))

The proof for Sel(x,c′) is exactly as in [Pen09], while correctness of the first step, Uns(y),
is immediate from the semantics. For steps 2 and 3, we proceed by inductively comparing c to
Wlp(Del(l),c) resp. Wlp(Add(r),c), which in turn requires inductively comparing conditions
with placeholders that appear in the main body and right hand sides. The outer induction over
N (see Rem. 3) compares the least fixed points. This takes care of the case of variables. The
induction hypothesis here states that the valuation at the current iteration satisfies the hypothesis.
As the variables satisfy the system of equations, we show by induction over the nesting that the
construction is correct for the right hand sides under any valuation satisfying the hypothesis.

The interesting case of the induction over the nesting lies in comparing satisfaction of ∃(a, ι ,c)
to αl,y(∃(a, ι ,c)), resp. δr,y(∃(a, ι ,c)). The goal is to obtain bi-implications in both cases. The
diagrams depict the situation in each case (deletion and addition). The names of the morphisms
are as in Def. 11. Dotted arrows represent the morphisms whose existence must be shown. In all
four cases, the induction hypothesis asserts correctness of the weakest precondition construction
for the morphisms named a◦y and a′ ◦h in Def. 11 and the induction step concludes correctness
at y and h; the ι part is much easier: composition is unequivocal and the appropriate morphisms
from the program interface to the graphs P,C′... (W,X ...) again exist to advance the induction.

Selected Revised Papers from GCM 2015 12 / 20

ECEASST

G D

P C′
W X

L
K

l′h
y

a

d

G D

P C′
W X

L
K

l∗

g
D G′

P C′
W X

K
R

D G′

P C′
W X

K
R

Case JDel(l)K / α ′ Case JAdd(r)K / δ ′

(min,mout , l−1)∈ JDel(l)K, mout : K ↪→D, min : L ↪→G (as depicted in the diagram) and mout |=
∃(a, ι ,c) via d: consider αl,y(c), where y is the morphism K ↪→ P obtained from the partial shift
construction. Build the pushout over (l′,d) and compose it with the lower pushout square, which
yields the outer pushout by uniqueness. The morphism g : W ↪→ G obtained in the pushout and
the unique commuting morphism q : X ↪→ G yield satisfaction.

(min,mout , l−1)∈ JDel(l)K, mout : K ↪→D, min : L ↪→G and min |=αl,y(∃(a, ι ,c)) via g: pullback
l∗ and g with object P′, consider the universal morphism from K to P′ and conclude that since a
canonical isomorphism P′∼= P exists by uniqueness of the pushout complement (since h : L ↪→W
is a monomorphism [EEPT06]) yielding a morphism d : P ↪→ D to complete the pushout square
by the special PO-PB lemma.
(min,mout ,r) ∈ JAdd(r)K, mout : R ↪→ G′, min : K ↪→ D and mout |= ∃(a, ι ,c) via g′: pullback

D ↪→ G′ and P ↪→ G′ with object W ′, then use the unique commuting morphism K ↪→W ′ which
yields a decomposition of the pushout square from the semantics, which by the special PO-PB
lemma consists of pushouts and by uniqueness of M-pushout complements implies W ∼=W ′.
(min,mout ,r) ∈ JAdd(r)K, mout : R ↪→ G′, min : K ↪→ D and min |= δr,y(∃(a, ι ,c)) via g, in the

same way as the opposite direction of the Del(l) case.
In the case of Del(l), the condition for the pushout complement required by the semantics

to exist is precisely ∆(l). In the case of Add(r), the construction of δ ′ asserts the existence of
the pushout. From the induction hypothesis and universality of the morphisms constructed to
complete the diagrams, the diagrams must commute and we conclude that mout |= c⇔ min |=
Wlp(Del(l),c), resp. mout |= c⇔ min |= Wlp(Add(r),c) under the given circumstances.

3.3 A Weakest Liberal Precondition Example

In this subsection, we construct a weakest liberal precondition of a µ-condition step by step.
Fig. 3 shows a single-rule graph program which matches a node with exactly one incoming and
one outgoing edge and replaces this by a single edge. The effect of the rule is to contract paths,
and it can be applied as long as no other edges are attached to the middle node. Fig. 4 shows
a µ-condition whose weakest liberal precondition we wish to compute. It is a typical example
of a µ-condition, which evaluates to > on those graphs that are fully (directed-) connected, i.e.
where any pair of nodes is linked by a directed path. In Fig. 7 and Fig. 8, a partial shift has been
applied to the condition (Wlp(Unsc,c4)) of Fig. 5, and the modifications the condition undergoes
in the computation of the weakest precondition with respect to Addc and Delc are highlighted in
various colours (see Fig. 6 for a legend). Constr. 1 has yielded a new list of variables8, x1, ...,x7,

8 Although the original µ-condition had only one variable, partial shift usually yields one with multiple variables.

13 / 20 Volume 73 (2016)

Recursively Nested Conditions

Sel
(

/0 ↪→
)

;Del
(

1

3

2
←↩

1 2

)
; Add

(
↪→

)
;Uns

(
←↩ /0

)
Figure 3: A path-contracting rule ρcontract = Selc;Delc;Addc;Unsc.

∀
(

1 2
,x1
)

where x1
[

1 2

]
= ∃
(

1 2

)
∨∃
(

1 2

3

,x1
[

1(3) 2(2)

])
Figure 4: A µ-condition c4 = (b, l) expressing connectedness.

∃
(

3 4
←↩ /0,∀

(
1 2

,x1
))

where x1
[

1 2

]
= ∃
(

1 2

)
∨∃
(

1 2

3

,x1
[

1(3) 2(2)

])
Figure 5: Wlp(Unsc,c4). The nodes under the universal quantifier are not the same as those of
the existential one, as these have been unselected: the type of the subcondition ∀(...) is /0.

the corresponding equations are shown in Fig. 8, in abbreviated notation: variable types are
suppressed in subconditions ∃(a, ι ,xi) if the mapping ι from the type graph to the target of a is
the identity. No other simplifications were applied. We have highlighted the type of the main
body of Wlp(Unsc,c4) throughout Fig. 7: edges drawn in red are deleted to compute Wlp(Addc
,Wlp(Unsc,c4)) as per Def. 11; the green edges and nodes, not present initially, are added to
compute Wlp(Delc,Wlp(Addc,Wlp(Unsc,c4))) as per Def. 11, which is obtained by adjoining
∆(l)⇒ to the main body (∆(l) omitted in Fig. 7 as it is straightforward to compute); the yellow
nodes belong to both the red and green sets. A universal quantifier with /0 ↪→ L completes the
weakest precondition with respect to the rule, as for nested conditions [Pen09].

When following the construction through the nesting levels, please keep in mind that one may
sometimes choose among isomorphic pushout objects and that the numbers of new nodes are
arbitrary, but the nodes 1, 2 and (as created by the transformation α ′) 5 are never “unselected”
and therefore present in every type graph occurring in the weakest preconditions, similarly for
the edges (not numbered because their mapping is unambiguous in the example).

4 Correctness Relative to µ-conditions

In the previous section, we have shown how the weakest liberal precondition construction for
nested conditions carries over to µ-conditions. The next task, for which we offer a partial solution
in this section, is to develop methods for the deduction of correctness relative to µ-conditions by
extending Pennemann’s proof calculus K. We recall that K works on nested conditions which
are in conjunctive normal form at each nesting level; it features rules called (supporting) lift and
(partial) resolve: the former serve to lift a member of a conjunction to a deeper nesting level,
conjoining its shift to the subcondition of an existential quantifier, while the latter seek to derive
contradictions. The rule descend allows a member ∃(a,⊥∧ c) of a clause to be replaced by ⊥.

4.1 A Proof Calculus for µ-conditions

The soundness of K in the context of nested conditions has been established in the publications
introducing them; recently a tableaux based completeness proof of K has been published [LO14].
The resolution-style proof rules of K are clearly sound for µ-conditions as well. In our calculus

Selected Revised Papers from GCM 2015 14 / 20

ECEASST

node/edge decoration meaning
items (nodes and edges) selected for Wl p(Uns(y),c)
items to be deleted to obtain Wl p(Add(r),c)
items to be added to obtain Wl p(Del(l),c)

Figure 6: Legend for the partial shift and weakest precondition example.

∃
(

1 2
5

,∀
(

1 2

3 4

5

,x7

)
∧∀
(

1 2

3

5

,x6

)
∧∀
(

1 2

3

5

,x4

)
∧

∀
(

1 2

3

5

,x5

)
∧∀
(

1 2
5

3
,x3

)
∧∀
(

1 2
5

,x1

)
∧∀
(

1 2
5

,x2

))
Figure 7: Construction of Wlp(Delc;Addc;Unsc,ρc): application of δ ′r and α ′l to the main body.

x1

[
1 2

5

]
= ∃

(
1 2

5

)
∨∃
(

1 2
5

)
∨∃
(

1 2
5

3

,x6

[
1(1) 2(2)

3(3)

5(5)

])
x2

[
1 2

5

]
= ∃

(
1 2

5

)
∨∃
(

1 2
5

3
,x5

[
1(1) 2(2)

5(5)

3(3)
])

x3

[
1 2

3

5

]
= ∃

(
1 2

3

5

)
∨∃
(

1 2

3
4

5

,x7

[
1(1) 2(2)

5(5)

3(3) 4(4)
])
∨∃
(

1 2
5

3(3)

,x4

[
1(1) 2(2)

5(5)

3(3)])
∨

∃
(

1 2
5

3(3)

,x4

[
1(1) 2(2)

5(5)

3(3)])
x4

[
1 2

5

3
]
= ∃

(
1 2

5

3
)
∨∃
(

1 2

3
4

5

,x7

[
1(1) 2(2)

5(5)

3(3) 4(4)
])
∨∃
(

1 2
5

3(3)

,x3

[
1(1) 2(2)

5(5)

3(3)])
x5

[
1 2

3

5

]
= ∃

(
1 2

3

5

)
∨∃
(

1 2
5

3 4
,x5

[
1(1) 2(2)

5(5)

3(4)
])
∨∃
(

1 2
5

3
,x2

[
1(1) 2(2)

5(5)

])
x6

[
1 2

5

3
]
= ∃

(
1 2

5

3
)
∨∃
(

1 2
5

3 4
,x6

[
1 2

5

3(4)])
∨∃
(

1 2
5

3

,x1

[
1(1) 2(2)

5(5)

])
x7

[
1 2

5

3 4
]
= ∃

(
1 2

5

3 4
)
∨∃
(

1 2
5

6
3 4

,x7

[
1(1) 2(2)

5(5)

3(6) 4(4)
])
∨∃
(

1 2
5

3 4
,x4

[
1(1) 2(2)

5(5)

3(4)])
∨

∃
(

1 2
5

3
4
,x3

[
1(1) 2(2)

5(5)

3(4)])
Figure 8: Construction of Wlp(Delc;Addc;Unsc,ρc): equations for the variables.

Kµ we adopt all rules of K. However dealing with recursive definitions requires an extension.
The strategy used in Pennemann’s PROCON theorem prover [Pen09] (converting the condition

to be refuted to a conjunctive normal form at each nesting level and deducing contradictions at
the innermost nesting levels) is not applicable in the presence of recursion. Instead, we add all
Boolean manipulations as rules, and propose an induction rule to deal with situations involving
fixed points. This proved to be sufficient to handle all situations encountered in the examples.

We employ a sequent notation: the inference rules manipulate sequents F,Γ ` ∆, where F is a
system of equations, Γ and ∆ are sets of µ-condition bodies, with the intended meaning that the
disjunction of ∆ can be deduced from the conjunction of Γ where the least fixed point solution of
F is substituted for the variables. Additionally, variables are annotated with an arithmetic expres-

15 / 20 Volume 73 (2016)

Recursively Nested Conditions

sion over natural numbers and identifiers n1, ..., which serve the important purpose of ensuring
well-foundedness in the recursive refutation rule. Note that it is always sound to increment an
annotation in an inference because by monotonicity, Fn

i (
~⊥)⇒ Fn+1

i (~⊥). The context rule al-
lows access to any subcondition. Ctx is a µ-condition syntactically monotonic (or antitonic) in a
distinguished open variable x of same type as c, c′:

F : c ` c′ (c′ ` c)
F]F′ : Ctx[x/c] `Ctx[x/c′] if Ctx is monotonic (antitonic) in x

(CTX)

Note that variables used in x and x′ may have to be renamed in order not to conflict with those in
Ctx, hence we write]. Soundness is then immediate. Another auxiliary rule, sound by the fixed
point semantics, allows unrolling xi to the i-th component Fi(~x). When used inside a nested
context via Rule CTX, it replaces a specific occurrence of a variable by its right hand side:

F : Γ ` ∆,x
(n)
i

F : Γ ` ∆,Fi(~x
(n−1)) Fi(~x) is the right hand side for xi in F

(UNROLL1)

In this rule, the annotations of the variables in the new expression are decremented: when
f |= F

(n)
i (~⊥), then it satisfies xi in the next step of the fixed point iteration (cf. Th. 1), hence

in the conclusion the variables used in the right hand side are all annotated with (n−1). We
detect absurdity by exploiting the annotations (~n′<~n: whatever numbers are substituted for the
identifiers of ~n′ and~n, the comparison must hold) in a recursive refutation rule:

∀i ∈ I.Hi(~x
(~n)) `~G(~H(~x(

~n′))) ~G(~⊥) = ~⊥∨
i∈I .Hi(~x) =⊥ ~n′ <~n;~G monotonic; < well-founded.

(EMPTY)

Rule EMPTY is sound: if one can to find suitable I, ~H,~G, then induction over~n shows that at any
level of the fixed point iteration, the expressions Hi(~x) imply absurdity.

A useful instantiation is based on defining conjuncts Hi, j := ∃−1(ιi,xi)∧¬∃−1(ι j,y j) where
xi and x j range over the variables of two µ-conditions whose main bodies have been combined
as b∧¬b′ (this situation is frequently encountered when attempting to prove that a specified
precondition implies a weakest precondition in the Dijkstra approach). The goal is to express the
Hi, j in terms of (annotated versions of) each other and then to apply Rule EMPTY to deduce that
in the lfp, the chosen variable combinations Hi, j(~x) are unsatisfiable.

Several details require attention: Boolean operations must be extended to µ-conditions, which
entails variable renaming and union of the systems of equations; rules for exploiting logical
equivalences between different Boolean combinations are needed to rewrite conditions into a
form suitable for the application of the rules of K ([Pen09] instead puts each Boolean combina-
tion appearing as a subcondition into conjunctive normal form prior to the application of rules).
Proof trees in our sequent-style calculus Kµ start with instances of the axiom (A ` A with no
antecedents), and make use of all the classical sequent rules [Gen35] not involving quantifiers.

As well as the major rules presented above, we use rules from K: the partial resolve rule is
unchanged (¬∃(a)∧∃(b,d)∃(m∗) for a = m◦b and (m∗,b∗) the M-pushout complement of (b,m), d 6≡ ⊥),

the (supporting) lift rules without automatic application of shift are merely ∃(a,c)∧d
∃(a,c∧∃−1(a,d)) . We also

Selected Revised Papers from GCM 2015 16 / 20

ECEASST

use the classical rules for Boolean logic [Gen35], structural rules for morphism decomposition
and removal of trivial nesting (∃(a◦a

′,c)
∃(a,∃(a′,c)) ,

∃(a,ι◦ι ′,c)
∃(a,ι ′,∃−1(ι ,c)) and vice versa, ∃(id,id,c)c) (all of these are

upgraded to operate on a single condition body on the right side of a sequent). The other rules
from K are adapted: the descent rule ∃(a,⊥∧c)

⊥ is replaced by a more versatile absorption rule
∃(a,c)
ra(c)

(mirroring Lemma 2, ra is defined as in the proof of that lemma except that a need not be

an isomorphism); a partial shift rule (∃
−1(ι ,c)
A(ι ,c)) which is correct by Lemma 4.

Theorem 3 The calculus Kµ :=K∪{EMPTY,UNROLL1}∪(classical+structural rules) is sound.

Proof. The soundness of the K rules has been established in [Pen09], the supplementary rules
have been established in the text above.

4.2 A Proof Example

For this subsection, we have opted for a new minimal example without the blowup from the
weakest liberal precondition in Subsection 3.3. The example (Fig. 9) uses a minimal number
of variables to show the calculus Kµ and its inductive refutation rule at work. We examine the
µ-condition x1∧¬x2, whose main body has type

[
1 2

]
. Consider the following system F:

x1
[

1 2

]
= ∃
(

1 2

)
∨∃
(

1 2

3

,x1
[

1(3) 2(2)

])
; x2

[
1 2

]
= ∃
(

1 2

)
∨∃
(

1 2

3

,x2
[

1(3) 2(2)

])
While the equations are syntactically identical up to variable renaming, this is not exploited by

Kµ , hence the proof is not a one-liner: it starts by defining a suitable list of auxiliary conditions

F : xn
1∧¬xm

2 ` F1(~x
(n−1))∧¬F2(~x

(n−1)) (H1,2(~x) = x1∧¬x2)
(1)

F : x(n)1 ∧¬x
(n)
2 `

(
∃
(

1 2

)
∨∃
(

1 2

3

,x
(n−1)
1

[
1(3) 2(2)

]))
∧¬∃

(
1 2

)
∧¬∃

(
1 2

3

,x
(n−1)
2

[
1(3) 2(2)

])
(2)

F′ : ... ` ∃
(

1 2

3

,x
(n−1)
1

[
1(3) 2(2)

])
∧¬∃

(
1 2

3

,x
(n−1)
2

[
1(3) 2(2)

])
(3)

F′ : ... ` ∃
(

1 2

3

,x
(n−1)
1

[
1(3) 2(2)

]
∧¬∃

(
1 2

3

,x
(n−1)
2

[
1(3) 2(2)

]))
(4)

F′ : x(n)1 ∧¬x
(n)
2 ` ∃

(
1 2

3

,x
(n−1)
1

[
1(3) 2(2)

]
∧¬x(n−1)

2

[
1(3) 2(2)

])

∃
(

1 2

3

,⊥
)
`

∃
(

1 2

3

,⊥
)

∃
(

1 2

3

,⊥
)
` ⊥

F : x1∧¬x2 ` ⊥

Figure 9: Deducing a contradiction from x1 ∧¬x2 under the system of equations F. Multiple
steps have been contracted into single inference lines for the sake of brevity.

17 / 20 Volume 73 (2016)

Recursively Nested Conditions

~H (in this case actually a single one, which we name H1,2
9), unrolling both variables once (1),

then uses distributivity of conjunction over disjunction to resolve the base case of the right hand
side of x1 (2), then shifts the other branch of x2 over the corresponding branch of x1. In a lift and
shift step (3), a conjunction of two subconditions is obtained (depending on whether the nodes
3 are identified). In step (4), one of these is dropped and the other is used to obtain x1 ∧¬x2,
with lower annotations, as a subcondition. Finally we show that the context of this subcondition
(monotonic by virtue of being syntactically positive) has lfp ⊥, and apply Rule EMPTY.

5 Related Work

A summary overview of graph conditions for non-local properties is attempted below (a proof
calculus is presented in [PP14] but completeness of a proof calculus has only recently been
obtained by Lambers and Orejas [LO14] for nested conditions and remains to be researched
for the other approaches). Note that while HR∗ conditions are known to properly contain the
monadic second-order definable properties [Rad13] and nested conditions are a special case of
each of the other three, we have not yet been able to separate µ-conditions from MSO or HR∗:

reference [Pen09] (here) [Rad13] [PP14]
conditions Nested µ- HR∗ MSO-
wlp yes yes incomplete10 yes
theorem prover yes future work
complete proof calculus yes future work

Recently, Poskitt and Plump [PP14] have presented a weakest precondition calculus for an-
other extension of nested conditions (monadic second-order conditions) and demonstrated its
use in a Hoare logic. The method is arguably closer to reasoning directly in a logic and less
graph condition like, but seems successful at solving some of the same problems in a different
way. HR∗ conditions [Rad13] are another approach towards the same goal; they have already
been mentioned in the main text; there is an ongoing effort at extending the weakest precondition
calculus to a subclass including path expressions. Strecker et al. [Str08, PST13] have performed
verification of graph transformation system within general-purpose theorem proving environ-
ments, with positive path conditions. Dyck and Giese [DG15] automatically check certain kinds
of inductive invariants of graph transformation systems. Verification of graph transformation
systems via abstract model checking, as opposed to the prover-based approach, can be found in
Gadducci et al., Baldan et al., König et al., Rensink et al. [GHK98, BKK03, KK06, RD06].

6 Conclusion and Outlook

We have introduced µ-conditions and achieved a weakest liberal precondition transformation
(Th. 2) and a sound proof calculus (Th. 3) for correctness relative to µ-conditions, which seems
a fruitful ground for further investigations. In analogy to the equivalence between first-order

9 Note that a larger example would likely have required more than one branch to handle each conjunct.
10 Radke, personal communication: construction only partially defined.

Selected Revised Papers from GCM 2015 18 / 20

ECEASST

graph logic and nested graph conditions, we conjecture that µ-conditions have the same expres-
sivity as fixed point extensions to first-order logic on finite graphs. Also, the expressivity of HR∗

conditions [Rad13] or MSO likely differs from µ-conditions, but this remains to be examined.
As the examples show, our weakest precondition calculus (still a research question for HR∗ con-
ditions [Rad13] but readily available by logical means in the MSO-conditions formalism [PP14])
produces unwieldy expressions due to partial shift. The blowup is exponential in the interface
size (a related blowup is inherited from the weakest precondition calculus of [Pen09]). We can
heuristically simplify the expressions and hope that many cases can be resolved automatically.

Future work includes more proof theory and tool support with special attention to semi-auto-
mated reasoning, based on the reasoning engine ENFORCE implemented in [Pen09]. To extend
the wlp construction to programs with iteration, one would have to provide (or have the prover
attempt to find) an invariant, as in the original work of Pennemann; for termination, one could
proceed as in [Pos13] and prove termination variants. It appears that µ-conditions might readily
generalise to temporal properties, even with the option to nest temporal operators inside quanti-
fiers, which would allow properties such as the preservation of a specific node to be expressed
(but require further proof rules). This could be achieved via a next operator parameterised on
atomic subprograms (the basic steps of Def. 3) and since in the semantics of programs the rela-
tionship between the interfaces is deterministic, this would again confer an unambiguous type to
such an expression and make it suitable for use as a subcondition, and allow the expression of
eventualities as in the modal µ-calculus[BS07]. Whether this offers any new insights remains to
be seen. We plan to deal with algebraic operations on attributes and extend our work to a verifi-
cation method that separates the graph specific concerns from other aspects and allows proofs of
properties that depend on both, for example involving data structures with ordered elements.

Acknowledgements: We thank Annegret Habel, many other members of SCARE as well as
several anonymous reviewers for providing valuable criticism of the approach and the text.

Bibliography

[BKK03] P. Baldan, B. König, B. König. A logic for analyzing abstractions of graph transfor-
mation systems. In Static Analysis. Pp. 255–272. Springer, 2003.

[BS07] J. Bradfield, C. Stirling. Modal µ-calculi. Studies in Logic and Practical Reasoning
3:721–756, 2007.

[DG15] J. Dyck, H. Giese. Inductive Invariant Checking with Partial Negative Application
Conditions. In ICGT. LNCS 9151, pp. 237–253. 2015.

[Dij76] E. W. Dijkstra. A discipline of programming. Prentice Hall, 1976.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Monographs in Theoretical Computer Science. Springer, 2006.

[Gen35] G. Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift 39(1):176–210, 1935.

19 / 20 Volume 73 (2016)

Recursively Nested Conditions

[GHK98] F. Gadducci, R. Heckel, M. Koch. A Fully Abstract Model for Graph-Interpreted
Temporal Logic. In TAGT’98. LNCS 1764, pp. 310–322. 1998.

[Hoa83] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM 26(1):53–56, 1983.

[HP09] A. Habel, K.-H. Pennemann. Correctness of High-Level Transformation Systems
Relative to Nested Conditions. Math. Struct. in Comp. Sci. 19(2):245–296, 2009.

[HPR06] A. Habel, K.-H. Pennemann, A. Rensink. Weakest Preconditions for High-Level
Programs. In ICGT 2006. LNCS 4178, pp. 445–460. 2006.

[KK06] B. König, V. Kozioura. Counterexample-Guided Abstraction Refinement for the
Analysis of Graph Transformation Systems. LNCS 3920, pp. 197–211. 2006.

[Kre02] S. Kreutzer. Pure and Applied Fixed-Point Logics. PhD thesis, Dissertation thesis,
RWTH Aachen, 2002.

[LO14] L. Lambers, F. Orejas. Tableau-Based Reasoning for Graph Properties. In Graph
Transformation. LNCS 8571, pp. 17–32. 2014.

[Pen09] K.-H. Pennemann. Development of Correct Graph Transformation Systems. PhD
thesis, Universität Oldenburg, 2009.

[Pos13] C. M. Poskitt. Verification of Graph Programs. PhD thesis, University of York, 2013.

[PP13] C. M. Poskitt, D. Plump. Verifying Total Correctness of Graph Programs. Electronic
Communications of the EASST 61, 2013.

[PP14] C. M. Poskitt, D. Plump. Verifying Monadic Second-Order Properties of Graph Pro-
grams. In Graph Transformation. LNCS 8571, pp. 33–48. 2014.

[PST13] C. Percebois, M. Strecker, H. N. Tran. Rule-Level Verification of Graph Transforma-
tions for Invariants Based on Edges’ Transitive Closure. In SEFM 2013. LNCS 8137,
pp. 106–121. 2013.

[RAB+15] H. Radke, T. Arendt, J. Becker, A. Habel, G. Taentzer. Translating Essential OCL
Invariants to Nested Graph Constraints Focusing on Set Operations. In Proc. ICGT.
LNCS 9151, pp. 155–170. 2015.

[Rad13] H. Radke. HR* Graph Conditions Between Counting Monadic Second-Order and
Second-Order Graph Formulas. Electronic Communications of the EASST 61, 2013.

[RD06] A. Rensink, D. Distefano. Abstract graph transformation. ENTCS 157:39–59, 2006.

[Str08] M. Strecker. Modeling and Verifying Graph Transformations in Proof Assistants.
ENTCS 203(1):135–148, 2008.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math.
5(2):285–309, 1955.

Selected Revised Papers from GCM 2015 20 / 20

	Introduction
	Graph Conditions and Programs
	-Conditions
	Defining -Conditions
	Weakest Liberal Preconditions of -conditions
	A Weakest Liberal Precondition Example

	Correctness Relative to -conditions
	A Proof Calculus for -conditions
	A Proof Example

	Related Work
	Conclusion and Outlook

