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Abstract:  Abstract. Monitoring human-computer interaction aids the analysis for 
understanding how well software meets its purpose.  In particular, monitoring human-
computer interactions with respect to a user’s goal model helps to determine user 
satisfaction.  By formalizing a goal model, runtime monitors can be automatically derived. 
 
The REQMON system monitors the satisfaction of goal models.  Recently, an OCL 
compiler was developed for REQMON.  The OCL was extended slightly to address 
temporal and real-time constraints.  Now, goal models can be represented in the extended 
OCL, from which runtime monitors can be compiled.  The resulting REQMON system 
appears to be easier to use comes the abstract. 
 
Keywords: OCL, message-based temporal logic, goal monitoring 
 

1 Introduction 
Software systems are becoming increasingly complex. It is difficult to know if we have “built 
the system right”; that is, the system has been verified to meet its specification. It is also 
difficult to know if we have “built the right system”; that is, the system meets the user’s needs. 
Software verification has improved with models, formalization, and testing, the latter of which 
is now creeping into runtime. Similarly, software validation occurs mostly towards the end of 
development. However, validation during ‘natural’ usage and continuous validation are gaining 
importance as developers are under increasingly competitive pressures to evolve software to 
satisfy changing customer needs. Generally, system behaviour monitoring is growing in 
importance, whether it is for verification or validation. 

1.1 Monitoring home healthcare 
As an illustration of software monitoring, consider home health care. The population of those 
requiring personalized healthcare is increasing. Cognitive impairments, for example, are 
expected to grow substantially over the next decades. These include autism and various forms 
of dementia, such as Alzheimer’s and trauma-induced brain injury. Many of the cognitively 
impaired (CI) can only function well when assisted in certain activities such as 
communication, travel, and taking medications. Computer-supported monitoring provides a 
cost-effective means to assist those requiring personalized health care. 

In our recent study, software monitoring was used to assess the satisfaction of clinical goals 
for a small group of CI patients[6]. As part of cognitive rehabilitation, the patients were given 
goals of communicating through a very limited and personalized emailing application[21]. 
Software monitoring was used, in part, to track the clinical goals. 



 
 
 Extended OCL for Goal Monitoring 

Proc. Ocl4All 2007 3 / 12 

The cognitive rehabilitation field uses a goal attainment scale to evaluate goal 
satisfaction[20]. Each goal is refined into a set of attainment levels, or milestones, to provide a 
measure of attainment. The goal of communicating through email can be refined as follows: 

• Level 1 (not attained): will not be able to learn how to use email. 
• Level 2: can email, but only with lots of prompting and help. 
• Level 3: can email, with some prompting and help. 
• Level 4: can email with no prompting and help. 
• Level 5 (fully attained): can teach others how to email 
These goal attainment levels can be measured through more refined subgoals, which 

include the following: 
• Gpresence: The period between viewings of the email in-box shall be no more than k days.  
• Gread: After noticing a new email, a user shall read the email, within k hours. 
• Greply: After receiving an email, a user shall read and reply to the sender, within k days.  
Clinicians want to see: (1) a good success-to-failure ratio over sessions, and (2) a constant 

or improving trend of this ratio. This leads to define ratio goals, such as the following: 
Greply-ratio: The ratio of successes vs. attempts for email replies shall be ≥ 75%, with any two-week 

period.  
Representing and monitoring such goals at runtime is a goal of our research. We have achieved 
some successes by applying a goal-oriented requirements engineering approach. Using our 
monitoring system, called REQMON, goals are represented a variant of the UML Object 
Constraint Language (OCL)[16] and monitored at runtime.  

1.2 Goal-oriented requirements engineering 
We use goal modeling to describe and explain behaviors. Other models are useful during 
monitoring—for example, cost models or diagnostic models. Initially, however, we must 
describe the goals of the software system, and later explain the software behavior. Goals 
support description and explanation by providing[24]:  criterion for sufficient 
completeness[29]; criterion for requirements pertinence[29]; rationale—particularly 
traceability—for requirements[3, 28]; a natural mechanism for structuring complex 
requirements documents; abstractions for defining alternatives, detecting and resolving 
conflicts[19]; and a means to drive the identification of supporting requirements[22]. 

“Goal-oriented requirements engineering (GORE) is concerned with the use of goals for 
eliciting, elaborating, structuring, specifying, analyzing, negotiating, documenting, and 
modifying requirements” [24]. Goal modeling is central to GORE: 

Goals are prescriptive statements of intent whose satisfaction requires the cooperation of 
agents (or active components) in the software and its environment. Goals may be organized 
in AND/OR structures that capture how they are being refined or abstracted. Such structures 
form the skeleton of goal models; goals there range from high-level, strategic objectives to 
fine-grained, technical prescriptions that can be assigned as responsibilities of single agents. 
The latter may be requirements on the software-to-be or expectations on its environment.—
[24] 

GORE modeling includes three major phases: (1) identifying goals, (2) refining and 
formalizing goals, and (3) deriving and assigning operations to agents[25]. Software 
specifications in various formats—describing agents, their operations, and the data model—
can be automatically generated from a GORE model[24].  

An analyst can apply refinement techniques to derive operational descriptions, including 
pre- and post-conditions, from goals[4, 13, 14, 23]. Throughout the process, agent and object 
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models are refined. The resulting specification can be represented in the UML. Table 1 
illustrates the correspondence between the GORE elements and the UML elements.  

 
Table 1: Correspondence of GORE elements to the UML elements. 
KAOS UML 
Agent Class 
Class Class 
Operation Operation 
Goal Extended OCL constraints 
 

The research described here shows how certain properties, derived from goals, can be 
represented within a variant of the OCL. Once represented in the OCL variant, the properties 
can be monitored at runtime. 

2 The monitoring system 
A monitor is a software system that observes and analyzes the behavior of another (target) 
system, determining qualities of interest, such as the satisfaction of the target system’s 
requirements. A monitor determines the requirements status from a stream of inputs (INmon). A 
monitor can be characterized as a function that processes its input data stream to determine the 
status of requirements.  

MON(INmon) → Sat(REQ) 
In practice, the monitored event stream is comprised of complex objects, such as the XML 

objects produced by event management and logging frameworks, such as Common Base Event 
(CBE) or log4j.  

2.1 Monitoring components 
A two-component monitor architecture can be inferred from the preceding characterization. An 
event listener acquires events from the stream of inputs (INmon). The requirements analyzer 
reviews the events to determine requirements satisfaction Sat(REQ). An intervening event 
repository simplifies event acquisition and analysis.  Additionally, a user interface presents the 
results of analysis. 

Figure 1 illustrates the main REQMON components[18]. In the figure, each box is a 
software component, which may be network distributed; alternatively, the whole system can be 
deployed as one embedded program. Figure 1 illustrates component interactions that occur 
when a monitored event is observed. The shaded portions toward the right indicate typical 
process boundaries; thus, the monitored program and event sink typically comprise one 
process, the event listener and repository comprise another process, finally the analyzer, 
presenter and reactor each have their own processes. REQMON defines the components from 
the event sink through the reactor. 
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In this article, we are concerned with the analyzer. That is, we assume that an event stream 

updates the repository. As events arrive, the analyzer executes in response. The analyzer 
contains requirements monitors, which are compiled from a variant of OCL 2.0. 

2.2 Language considerations 
The requirements language has been a consideration for the REQMON monitoring system. The 
REQMON monitor system is language neutral; it only requires a translator from a requirements 
language to its evaluation subsystem. (REQMON includes a Jess rule-based evaluation 
subsystem.) The REQMON research project aims to support GORE. This suggests the 
following expression needs: 

1. Matching and filtering expressions for selecting relevant events from the input stream, 
INmon. 

2. Object expressions for representing the goal, agent, and object models of GORE. 
3. Relational, temporal, and real-time expressions for precisely describing goal, agent, 

and object models. 
4. Meta-requirements for representing expressions about property satisfaction. 

Additionally, practical considerations are important: 
5. User-defined libraries for extending the language.  
6. Well-defined, documented, syntax and semantics that facilitate understanding and 

external tool development. 
7. A large user community, which can apply the monitoring tools. 

 
 Initially, the REQMON requirements language was defined with macros over its 

implementation language (e.g., Jess assertion macros)[6, 17, 18]. This addressed the preceding 
expression needs 1 – 5; however, considerations 6 and 7 were not met. Therefore, the we 
explored compilers for other languages, including Tropos[11] and KAOS [26]. Both met 

Figure 1: Illustration of REQMON component interactions. 

p: Program s:Event Sink l:Event Listener r:Reactor gui:Presenter a:Analyzer r:Repository 

1: \raise\  2: \raise\  3: \assert\  
4: \raise\  

5: \property check\  

6: \query\

7: \update\

8: \doAction\ 
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considerations 1 - 4. One could argue that the remaining needs were only partially met or 
described. 

REQMON now supports a variant of the OCL 2.0 as a requirements language. The OCL 
meets needs 1 - 7 with the exception of 3. In particular, temporal and real-time expressions are 
not native to the OCL. To fulfill those needs, we have provided language extensions. 

2.3 OCL temporal assumptions 
As a requirements language, REQMON supports a variant of OCL 2.0, which we call OCLTM—
meaning OCL with Temporal Message logic. The OCL standard has been extended to include 
temporal operations based on state[8, 9] and event[2, 12, 30, 31] semantics. Flake[7] addresses 
temporal expressions over the events of sending and receiving messages. The OCL 2.0 
specification allows for the specification of sent messages, but not received messages. 
Moreover, the syntax can be considered confusing: ^message() returns true if the message is 
sent, where as ^^message() returns a Sequence of OclMessage objects. Such syntax has led to 
errors—for example, in the examples of the OCL 2.0 specification itself[7]. 

Flake’s message notation simplifies the message syntax and allows for the specification of 
received messages. His definitions include sentMessages and receivedMessages defined for 
the general type, OclAny. 

In OCLTM, we apply Flake’s approach to messages[7]. Both sentMessages and 
receivedMessages return a Sequence of OclMessage objects, and sentMessage and 
receivedMessage returns the last, most recent message in the sequence. 

Over the Flake OCL messages, we apply linear temporal logic semantics. The temporal 
operators include[3, 15] the following (the OCLTM keyword is bold): 
o   (the next state) ●   (the prior state) 
◊    (some time in the future, eventually)  (some time in the past, previously) 

  (always in the future)   (always in the past, constantly) 
W (always in the future unless) U  (always in the future until) 

Using the operations, one can express “eventually class object obj will receive message 
msg”. In OCLTM, this would be as follows: 
 
context Class 
  inv:  msgArrives: 
         eventually(self.receivedMessage(msg())) 

 

2.4 Temporal patterns 
Generalized from an empirical study[5], Dwyer et. al. defined five temporal scopes over eight 
temporal patterns. 

In all, we collected 555 specifications from at least 35 different sources. The specifications collected 
were in many forms. … The specifications came from a wide variety of application domains, including: 
hardware protocols, communication protocols, GUIs, control systems, abstract data types, avionics, 
operating systems, distributed object systems, and databases. …Of the 555 example specifications we 
collected, 511 (92%) matched one of our patterns.–Dwyer et. al.[5] 

Their property patterns include universal, absence, existence, bounded existence, 
response, precedence, chained precedence, and chained response. Their scope patterns 
include global, before R, after Q, between Q and R, and after Q until R. 
Distinguishing scoping properties from other properties seems to simplify property 
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specifications through modularization. These patterns have been formalized in linear temporal 
logic (LTL) and other logics.  

OCLTM includes standard temporal operators, the Dwyer patterns, and timeouts. Figure 2 
shows these extensions. The expressions extend OclExpression  of the OCL 2.0 specification 
[16]. In so doing, these extensions allow for nested expressions.  

 

2.5 Timeouts 
Timeouts are associated with scope, as Figure 2 shows. The @ character precedes a sequence of 
comma separated timeouts. Thus, after@0d:3h:0m:0s (Q) P specifies a timeout that begins 
with an after(Q) scope activation. The scope activation closes early if the timeout occurs 
before the satisfaction of P, the scoped property. 

Timeouts are also associated with response property sequences. Consider, for example, the 
expression: global response@1s,2s (A,B,C). The response property has global scope, and 
is satisfied when properties A, B, and C are satisfied in sequence. Moreover, the two response 
timeouts specify, in order, that maximum time between property satisfactions: 1 second 
between A and B, and 2 seconds between B and C. If property A is satisfied, and subsequently 
either timeout occurs before the associated property is satisfied, then the whole response 
property is violated.  

2.6 Event and scope sharing 
Input data sharing is a monitor design issue[1]. By default, a single event can satisfy multiple 
properties, unless no sharing is specified. Sharing applies to both properties and scopes; by 
default, a single event, property evaluation, or scope activation can satisfy multiple properties, 
unless no sharing is specified. 

As an illustration, consider the following constraints on a Buffer class, where Si specifies 
the sharing, with either # or nothing. 

OclExpression::  Temporal-scoped-pattern
Temporal-scoped-pattern:: [Temporal-scope] Temporal-pattern 
Temporal-scope::  after TSE [until] TSE | before TSE | between TSE | global TSE 
Temporal-op::   next | prior | eventually | previously | constantly 
Temporal pattern:: Temporal-op TE | always TE [unless | until] TE | Response-exp | Precedence-exp 
Response-exp::  response [#] [@timeout+]  ‘(’ expression (, expression)*  ‘)’ 
Precedence -exp:  precedence [#]  ‘(’ expression (, expression)*  ‘)’ 
TSE:   [#] [@timeout] expression 
TE:   [#] expression 
Expression::   OclExpression-primitives | ‘(’  OclExpression ‘)’ 
 
Dywer specifies synonyms terms, some of which are used here: global is the default scope; absence becomes 
never, universal becomes always, existence becomes eventually and is the default pattern; Dywer’s modifying term 
chained is unnecessary because response and precedence accept sequences; Dywer’s modifying term bounded is 
addressed by the standard OCL size() operation on collections. 
 
Figure 2: Syntax of extended OCL 2.0 expressions. 
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-- Event and property sharing affects matching. 
context Buffer 
  def: clear : OclMessage = self.receivedMessage(clear()) 
  def: addObject : OclMessage =  
       receivedMessage(addItem(?: Object)) 
  def: addTransaction : OclMessage = 
       receivedMessage(addItem(?: Transaction)) 
  inv: eventualObject:  
    after S1(clear) eventually S2(addObject) 
  inv: eventualTransaction:  
    after S3(clear) eventually S4(addTransaction) 

 
If sharing is allowed by both S2 and S4, then a single message (addItem(? 

:Transaction)) will satisfy both eventually clauses, because Transaction is a subclass of 
Object, and thus both addObject and addTransaction will be satisfied. Conversely, if either 
S2 or S4 specify no sharing (denoted by #) then it will require two addItem messages to satisfy 
both eventually clauses. Similarly, a single scope activation can be shared by both invariants 
if S1 and S3 specify sharing; conversely, no sharing requires two clear messages. Although it 
is possible to specify sharing relationships directly in the property expression (e.g., addObject 
<> addTransaction), like Bates[1], we have found it useful to support sharing directly in the 
property language. 

2.7 Compiling monitors 
Compilation is outside the scope of this article. However, a concise overview may be helpful. 
In short, each monitor specification is compiled into an property evaluation tree, where each 
node is a rule set[10]. The compiler is written using Antlr 3.0 (a parser generator) and 
StringTemplate (a template engine). The resulting monitor rules run in Jess 7.0[10]. 
Consider the following simple property as an illustration. 
 
context ContextClasss 
  def: m1 : OclMessage =  
            self.receivedMessage(message1()) 
  def: m2 : OclMessage =  
 self.receivedMessage(message2()) 
  inv: prop: after(eventually m1) eventually m2 

 
Each temporal expression of prop is compiled to one main rule, and possibility some 

auxiliary rules. A simple compilation of prop generates three main rules: (1) 
evaluate(eventually m1), (2) evaluate(eventually m2) and (3) the root of the tree: 
evaluate(after(eventually m1) (eventually m2)).  

As events arrive on the input stream, rules evaluate node satisfaction in the property 
evaluation trees. For example, for the leaf node eventually m1, a rule’s left-hand-side (LHS) 
matches a repository assertion representing a received message1 by an instance of the 
ContextClass; other LHS expressions may further constrain the evaluation. As nodes are 
satisfied, their values are propagated up the tree, until finally the entire prop expression is 
evaluated.  

3 Discussion 
Rather than defining our own custom monitoring language we have chosen to (slightly) extend 
the standard OCL. The language supports typical GORE models. Additionally, specification 
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and tool support for monitoring has been simplified. Moreover, simplified usage has been an 
unanticipated benefit. 

3.1 The OCL for Requirements 
To illustrate usage, consider the following expressions, which include two invariants 
(readEmail and replyEmail) that represent the Gread and Greply goals introduced in section 1.1. 
Additionally, two meta-goals track the number of their satisfied evaluations during a two week 
window, represented by readEmailProp and replyEmailProp. Finally, goodReadReplyRatio 
represents the Greply-ratio goal of section 1.1.  These expressions illustrate how typical GORE 
goals can be represented in the OCLTM. 
 
context EmailClient 
  def: eArrival: OclMessage =  
 receiveMessage(NewEmail) 
  def: eReads: OclMessage =  
 receiveMessages(ReadEmail) 
  inv: readEmail:  
     after@8h(a = eArrival)  
     eventually (eReads->select(m |  
     m.arguments('ID') = a.arguments('ID')) 
 .size() > 0) 
  inv: replyEmail:  
     response@8h(cSends->select(m |  
   m.arguments('ID') = a.arguments('ID')) 
   .size() > 0,a = eArrival) 

-- evaluations is the collection of all  
-- properties, access from  the Property class 
  def: readEmailProp:  
     Property->evaluations(p| p.name='readEmail'  
     and p.satisfied = true 
     and (new Date() 
     .difference(p.dateTime,DAYS) <= 14)) 
  def: replyEmailProp:  
     Property->evaluations(p|p.name='replyEmail' 
     and p.satisfied = true 
     and (new Date() 
     .difference(p.dateTime,DAYS) <= 14)) 
  inv: goodReadReplyRatio:  
     always((replyEmailProp.size() /  
   readEmailProp.size()) >= 0.75) 

 
The logical expressions of the OCLTM are similar to other languages that support some form 

of predicate calculus and temporal logic over an object model (e.g., Tropos[11], KAOS [26]).  
This kind of model is an improvement over prior REQMON expressions, based on Jess macros 
(cf. [6]).  Moreover, the OCLTM makes use of the OCL library mechanism.  Object models can 
be referenced, including the Java and other runtime models. For example, the preceding Date 
class is defined in the Java runtime, and loaded into REQMON for property evaluation. 

3.2 Monitor hierarchies 
Goal hierarchies are the core modeling approach in GORE, as introduced in section 1.2.  
Ideally, the monitoring model mirrors the goal model.  Thus, monitored properties should be 
specified in a hierarchy.  This approach is supported in the OCLTM through the standard UML 
class inheritance mechanism. 
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Inheritance can simplify the expression of monitors. Consider two classes, where Child is a 
subclass of Parent. Each class has an associated property as illustrated below. 
 
context Parent 
  inv: propA: -- ... 
context Child 
  inv: propB: -- ... 

 
Because of inheritance, both child and parent properties apply to child objects. The 

monitoring system supports such inheritance. Each property is individually compiled to a 
property evaluation tree. The evaluation system, running as Jess rules, matches objects 
according to the class hierarchy. Thus, when instances of the child object are observed, then its 
properties and ancestor properties are evaluated. Inheritance simplifies specification and 
compilation of requirements monitors. 

Analysts benefit from requirements on abstract classes. Subclasses can be checked for 
requirements compliance, with little additional effort. Of course, subclasses can add 
specialized requirements, in which case both the abstract and specialized requirements are 
checked. More generally, a requirements annotated class hierarchy provides a means to 
describe requirements at multi-levels of abstraction. Thus, hierarchical requirements support 
the definition, refinement, and analysis of requirements monitors. 

3.3 Tool Support 
Simplified tool support is a consequence of fulfilling the practical considerations of §2.2. Early 
development of REQMON required custom tool support for a custom language (c.f. [18]). 
Although OCLTM is yet another custom language, it is only a slight extension of the standard 
OCL. Thus, it has been relatively simple to extend existing OCL tools to support it. In 
particular, we have developed plugins for the Eclipse platform. Currently, three basic plugins 
types are being developed. 

• An editor, which supports OCLTM 
• A compiler, which translates OCLTM into a rule-based runtime system 
• A pattern library, which supports instantiation and transformations of OCLTM 

properties 
Each of these plugins is based on an existing plugin for the OCL or the UML.  

3.4 Simplified usage 
REQMON has a small user base (about 10 off-site users). In reviewing our communications 
over the past few years, we find that since the introduction of an OCL compiler have been a 
decreasing number of requests for clarification. This supports our practical considerations of 
§2.2—although, the user base provides little statistical significance. By minimally extending a 
well-defined, documented, and widely used language, we gained many of the advantages of 
the language itself (as well as its shortcomings[27].) On balance, we are encouraged that our 
OCLTM gains from the OCL (semantics and user community). Alternatives, such as KAOS and 
TROPOS, include temporal semantics, but have smaller user communities, and less 
development of associated documentation, tutorials, and tools.  

Simplified validation is a consequence of simplified usage.  Of course, we have not solved 
the software validation problem.  However, use of the OCL has simplified the formal 
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expression of user and system goals, which has simplified the runtime monitoring provided by 
REQMON. 
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