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Abstract: Software development produces large amounts of data both from the pro-
cess, as well as the usage of the software product. Software engineering data science
turns this data into actionable insights for improving software quality. However, the
processing of this data can raise privacy concerns for organizations, which are obli-
gated by law, regulations and polices, to protect personal and business sensitive data.
Early data privacy studies in sub-disciplines of software engineering found that ap-
plying privacy algorithms often degraded the usefulness of data. Hence, there is a
recognized need for finding a balance between privacy and utility. A survey of data
privacy solutions for software engineering data was conducted. Overall, researchers
found that a combination of data minimization and obfuscation of data, produced
results with high levels of privacy while allowing data to remain useful.

Keywords: Data privacy, Software Engineering Data Science, Cross project defect
prediction, Effort estimation, Test coverage, Debugging.

1 Introduction

Software engineering data scientists turn the large amounts of data into actionable insights for
improving software quality [MZ13, KZDB16]. This data can be personal and business sensitive.
Therefore, data controllers and processors need to vet their data supply chain in order to ensure
that they are in compliance with privacy laws and regulations, prior to processing and sharing
their data (Italic terms are defined in Table 1).

Due to the ‘push’ for open science and reproducibility in scientific experiments, researchers
in academia and industry (controllers and/or processors) are encouraged to share their data and
models when their work is accepted for publication. As a result, their data supply chain will
expand to include recipients (data scientists) who will in turn apply what was learned to their
projects and share their work. However researchers, particularly of proprietary projects are more
cautious about sharing their data. This is because extracting project data from an organiza-
tion is often very difficult due to the personal and business sensitivity associated with the data.
For example, in 2009, Menzies et al. [PM12, PMGZ13, PML15] reported that NASA divided
its independent verification and validation (IV&V) work between multiple contractors who all
worked on similar projects. Every three years, all the contracts were subject to competitive bid-
ding. Hence, those contractors were very reluctant to share data about (say), the effort associated
with finding mission-critical errors in manned spacecraft, as that data could be used against them
during the bidding process [PM12, PMGZ13, PML15].
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Table 1: Definitions of privacy related and other relevant terms.

Terms Definitions

Personal Data (Per-
sonally Identifiable
Information)

Any information relating to an identified or identifiable natural person (data subject); an
identifiable natural person is one who can be identified, directly or indirectly, in particular
by reference to an identifier such as a name, an identification number, location data, an
online identifier or to one or more factors specific to the physical, physiological, genetic,
mental, economic, cultural or social identity of that natural person [Eur16].

Processing Any operation or set of operations which is performed on personal data or on sets of per-
sonal data, whether or not by automated means, such as collection, recording, organisa-
tion, structuring, storage, adaptation or alteration, retrieval, consultation, use, disclosure
by transmission, dissemination or otherwise making available, alignment or combination,
restriction, erasure or destruction [Eur16].

Controller The natural or legal person, public authority, agency or other body which, alone or jointly
with others, determines the purposes and means of the processing of personal data; where
the purposes and means of such processing are determined by Union or Member State law,
the controller or the specific criteria for its nomination may be provided for by Union or
Member State law [Eur16].

Processor A natural or legal person, public authority, agency or other body which processes personal
data on behalf of the controller [Eur16].

Recipient A natural or legal person, public authority, agency or another body, to which the personal
data are disclosed, whether a third party or not [Eur16]. A recipient can be legitimate,
seeking solutions to improve software quality, or malicious, seeking sensitive data to cause
harm.

Data Supply Chain A life-cycle for data that propagates and procures data on behalf of the corporation. The
supply chain looks at data, the inputs and outputs of data across the company, across
systems, across platforms, across organizations and manages it as an asset. (Source:
https://www.inetsoft.com/business/solutions/definition of data supply chain/).

Sensitive Data Information that is protected against unwarranted disclosure. Protection of sensitive data
may be required for legal or ethical reasons, for issues pertaining to personal privacy, or for
proprietary considerations. (Source: https://its.unc.edu/security/sensitive-data/)

Data Science The knowledge of deriving meaningful outcomes from data [MKP+13]. Examples of data
science projects include software defect prediction and effort estimation.

Anonymization All personal identifiers must be filtered from the datasets to make it unlikely that the data
controller or any other third party would reasonably be able to re-identify the data subject
on the basis of the data at stake [VM14].

The General Data Protection Regulation (GDPR) [Eur16], has fostered privacy research in
software engineering. Some areas of this research include privacy requirements [BA08, SKM14],
cross project defect prediction [PM12, PMGZ13, PML15], effort estimation [QJZ+16], test-
ing [TGX11, LGP14], and debugging [CCM08, BLJL11, CO11]. Researchers have drawn from
the fields of privacy awareness and privacy-preserving data publishing for solutions, which seek
to find the balance between privacy and utility, i.e., reduces the likelihood of recipients learn-
ing specific sensitive values from disclosed data while allowing that data to remain useful.
For example with cross-project defect prediction where models are built with data from other
sources [ZNG+09], the goal of a researcher and a legitimate recipient, is to find defects in a
software system before deployment. While a malicious recipient’s goal is to seek out sensitive
information, which could allow them to learn about the complexity of source code as well as
the level of maintenance required for a software product. Privacy solutions exploit the difference
between the goals of a malicious recipient and the goals of defect prediction. Therefore, data pro-
cessors and/or controllers (Table 1) could defend against malicious recipients while maintaining
the usefulness of the data for legitimate recipients.
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This paper surveys the privacy solutions for various sub-disciplines of software engineering.
We explore how software engineering researchers find the balance between privacy and utility.
In the case of cross-project defect prediction, this question was answered in the book chapter,
“Becoming Goldilocks: Privacy and data sharing in just right conditions” [Pet16]. This paper
expands on the book chapter to include the other sub-disciplines mentioned above.

This paper is organized as follows. Section 2 looks at four principles of data protection from
the GDPR [Eur16]. Section 3 explores the identification and extraction of privacy requirements
for the design and implementation of software products. Section 4 describes the background of
privacy solutions from the field of Privacy-Preserving Data Privacy (PPDP) and briefly shows
how they are applied in the sub-disciplines of software engineering surveyed here. Finally, the
paper concludes in Section 5.

2 Legal Principles of Data Protection

In the article, “Becoming Goldilocks” [Pet16], three lessons were described about how to apply
privacy algorithms to software defect data in single- and multi-controller contexts. These lessons
were as follows:

1. Do not share all your data: It was found that limiting the amount of data shared, did not
significantly reduce the utility of the remaining data.

2. A little change is good: Small changes in the values of the data, did not significantly
reduce the utility of the data.

3. Do not share what others have already shared: If data is being combined among a
group of controllers, and there are similarities in the data, it should only be shared by one
controller. Avoiding duplicates in the resulting data did not significantly reduce the utility.

These lessons are aligned with the legal privacy principle of data minimization, which is in-
cluded in as part of the GDPR [Eur16] and requires that data can only be processed, if the pro-
cessing is adequate, relevant, and not excessive in relation to the specific purpose for which the
data was collected [VM14]. Other legal principles include, purpose limitation, transparency, and
data security and are reflected in the area of privacy requirements (Section 3). Purpose limitation
constrains the secondary use of personal data for purposes incompatible with the specified pur-
pose of the initial processing [VM14]. Transparency means that users must be informed about the
reasons behind the processing, the categories of data being processed about them, and the “des-
tiny” of their data [VM14]. While data security implies that confidentiality, integrity, and avail-
ability should be safeguarded as appropriate to the sensitivity of the information [VM14]. This is
done by including protection against unauthorised or unlawful processing and against accidental
loss, destruction or damage, using appropriate technical or organisational measures [Eur16].

Sharing data with recipients in some cases can be incompatible with the initial purpose of
data processing. To avoid this concern, techniques for data anonymization, and/or, data obfus-
cation [VM14] is applied to data. Any data which is anonymized is excluded from having to
comply with GDPR and so, many of the solutions surveyed use data obfuscation methods in
combination with data minimization in order to prevent the disclosure of sensitive data. In the
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remainder of this paper, we explore how each of the software engineering sub-disciplines incor-
porated the data protection principles to balance privacy and utility. Note, that the use of the term
privacy in this paper covers both personal and business sensitive data.

3 Identifying and Extracting Privacy Requirements

Dealing with privacy concerns in software engineering data science begins with privacy require-
ments [OCS+13]. It is difficult to specify what a privacy requirement is when designing and
building a system [SKM14]. According to a survey done by Sheth et al. [SKM14], this may
be due to a mismatch between how users and developers perceive privacy and the mitigation of
privacy concerns. It is therefore important to ensure that the elicitation of privacy requirements,
considers multiple sources, i.e., users, laws and regulations, and software developers, in an effort
to reduce privacy concerns. In addition, the survey also showed that users tended to map privacy
with security, while data sharing and data breaches were their biggest concerns. In contrast,
developers preferred technical measures such as data anonymization and thought that privacy
laws and policies were less effective. As shown in this paper, the sub-disciplines in software
engineering research cover both areas separately.

Studies range from systematically extracting privacy requirements from natural language reg-
ulations [BA08], to eliciting them from data subjects [TBP+12, TBPN14]. In the latter case the
privacy technique used is selective disclosure. This tends to focus on giving the data subject
more control over their data in terms of who, when and how they share their data in order to
receive benefits such as discounts or directions to an unoccupied parking spot.

In the former case, data protection laws and regulations are put in place in order to prevent
the unauthorized use and disclosure of personal and sensitive information. Since these laws and
regulations tend to be expressed in complex and ambiguous language, they need to be refined
and analysed before they are implementable. Breaux et al. [BA08], presented a methodology
to help elicit security and privacy requirements from these laws and regulations. Their solution
extracted the access rights and obligations from regulation text. In addition, the access rights
and obligations were seen as actions which stakeholders are allowed to or required to perform
respectively. Therefore to support these actions developers must ensure that these systems also
satisfy the constraints on the actions [BA08].

Regulations require software engineers to specify, design and implement systems that are ac-
countable to and in compliance with laws and regulations. The goal of Breaux et al. [BA08] was
to provide the software engineering community with a systematic method for specifying system
requirements, which are accountable and compliant with the law. The systematic approach re-
duces susceptibility to security breaches and gives organizations the ability to demonstrate the
transparency of their system, in other words, how their software systems comply with policies
and regulations.

4 Privacy Preservation for Software Engineering Data

As mentioned in Section 1, there are many areas of research in software engineering. In this paper
we focus on the subset, which studies data privacy. These are cross-project defect prediction,
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effort estimation, test coverage, and debugging. Each of these are considered to be the utility
of a software engineering data science task. Cross project defect prediction allows a project to
build prediction models with data from other sources. This is because the project may be new
and therefore little or no data has been collected [ZNG+09]. Effort estimation using algorithmic
models, seeks to estimate in advance, the effort/staff resources required to complete a project on
time [SSK96]. The last two areas of research studied here, testing and debugging, are concerned
with the correctness and maintenance of software respectively. The data required to provide
these insights may be considered as sensitive by data collectors.

The following sections offer a short primer on privacy-preserving data publishing, which de-
tails methods used for data privacy research in software engineering.

4.1 Privacy-Preserving Data Publishing

Privacy-preserving data publishing provides methods and tools for sharing useful data while
preserving privacy [FWCY10]. The different aspects involved in PPDP research are: 1) privacy
threats, 2) privacy techniques and algorithms, 3) privacy metrics and 4) utility [FWCY10]. The
first two are described in Section 4.1.1 and Section 4.1.2 respectively. Privacy metrics are covered
in Section 4.4, while throughout Section 4.2 and Section 4.3 there are examples of utility. Before
elaborating on threats and techniques, it is important to know how data is defined in PPDP
research. Consider the data in Table 2. Each row contains a record for a single individual or
data subject. Each attribute in the set of attributes could have one or more of the following
descriptions:

• Direct-identifiers: Attributes that explicitly identify an individual or project such as a
name, social security number or filename.

• Quasi-identifiers: Attributes that in combination can be used to re-identify an individual
target in a data set, for example, occupation, gender, and age.

• Sensitive Attributes: Attributes that we do not want an adversary to associate with an
individual, in a data set.

• Dependent Attributes: Attributes used when evaluating the utility of data via classification.

Table 2: Example of personal data collected from data subjects.

Direct Identifier Quasi Identifiers Dependent Attribute Sensitive Attribute
Name Occupation Gender Age Salary Disease
Dawn Lawyer Female 35-40 100,000 Hepatitis
Jenny Teacher Female 20-25 45,000 HIV
Mary Teacher Female 20-25 37,000 Hepatitis
Joan Teacher Female 20-25 20,000 None
John Nurse Male 41 60,000 HIV
Stan Mayor Male 56 150,000 Hepatitis
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4.1.1 Privacy Threats

Privacy threats are based on the top three attributes described above and are categorized as
re-identification, membership disclosure, and sensitive attribute disclosure [BS08, FWCY10,
GLS14]. When protecting data from privacy threats, the goal is to block malicious adversaries
from uncovering personal and business sensitive data.

Re-identification occurs when an adversary with external information such as a voters list, can
identify a data subject from data, which has been stripped of personally identifiable information.
For example, in Table 1, the name column would be removed before release. Popular examples
of this are the re-identification of William Weld from released health-care data [Swe02b] and
Thelma Arnold from the AOL search data [BZH06].

Membership disclosure focuses on protecting a data subjects micro data. This privacy threat
manifests itself if an adversary is able to confirm that the subjects data is contained in a particular
dataset. For example, if an application only collects data, which contains information only on
HIV patients, then it can be inferred that a target is HIV-positive [GLS14].

Finally, sensitive attribute disclosure occurs when a data subject is associated with information
about their sensitive attributes, such as a disease. For example, from Table 2, we see that John is
the only 41-year-old male nurse in the dataset, therefore an adversary with access to this data can
infer with 100 percent certainty that John is HIV positive. While Jenny has a 33 percent chance
of being disease free. Sensitive attribute disclosure is the main privacy threat addressed in the
software engineering data science tasks explored in this paper.

4.1.2 Privacy Techniques

Techniques resulting in obfuscation are meant to “satisfy specified privacy requirements” [FWCY10].
There are six basic techniques for data obfuscation: 1) generalization, 2) suppression, 3) bucketi-
zation, 4) anatomization, 5) permutation, and 6) perturbation. Most PPDP methods and tools use
one or more of these techniques and each one has its advantages and disadvantages. This section
describes the three techniques (1, 2, and 6) used for data obfuscation in software engineering
research to share data for data science tasks.

Generalization and Suppression: Generalization works by replacing exact numeric values
with intervals that cover a sub-range of values; e.g., 17 might become 15...20 or by replacing
symbols with more general terms; e.g., “date of birth” becomes “month of birth”. While suppres-
sion, replaces exact values with symbols such as a star or a phrase like “dont know” [VBF+04].
According to Fung et al. [FWCY10], generalization and suppression tend to hide potentially
important details in the quasi-identifiers, which can confuse classification.

Privacy models such as k-anonymity, l-diversity, and, t-closeness use generalization and sup-
pression. With k-anonymity, each instance in the table is indistinguishable with k-1 other in-
stances [SS98, Swe02a]. The limitations of k-anonymity are many-fold. It does not hide whether
a given individual is in the database. In addition, in theory, k-anonymity hides uniqueness (and
hence identity) in a data set, thus reducing the certainty that an adversary has uncovered sensi-
tive information. However, in practice, k-anonymity does not ensure privacy if the adversary has
background knowledge for a subject in a dataset [BS08]. The aim of l-diversity is to address the
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limitations of k-anonymity by requiring that for each QID group 1, there are at least l distinct
values for each sensitive attribute value. In this way, an adversary is less likely to “guess” the
sensitive attribute value of any member of a QID group [MGKV06, MKGV07].

Work by Li et al. [LLV07], later showed that l-diversity was vulnerable to skewness and sim-
ilarity attacks, making it insufficient to prevent attribute disclosure. Hence, they proposed t-
closeness to address this problem. With t-closeness the distance between the distributions of a
sensitive attribute in a QID group and that of the whole table are no more than a threshold t
apart. The intuition is that even if an adversary could locate the QID group of a data subject,
as long as the distribution of the sensitive attribute was similar to the distribution in the whole
table, any knowledge gained by the adversary could not be considered as a privacy breach be-
cause the information would be considered as public. However, with t-closeness, information
about the correlation between QIDs and sensitive attributes is limited and so causes degradation
of data utility [LLV07]. Research in test coverage, and debugging use k-anonymity, extended
with methods to mitigate its drawbacks [GCFX10, BLJL11].

Perturbation: The perturbation technique replaces original data values with synthetic data
values, so that the statistical information computed from the perturbed data does not differ sig-
nificantly from the statistical information computed from the original data. It is important to
note that the perturbed data do not correspond to real world data subject. Also, methods used for
perturbation include, additive noise, data swapping and synthetic data generation [FWCY10].
The drawback of these transforms is that they may not guarantee privacy. For example, suppose
an adversary has access to multiple independent samples from the same distribution from which
the original data was drawn. In that case, a principal component analysis could reconstruct the
transform from the original to the perturbed data [GLK09]. Data swapping and synthetic data
generation are the perturbation techniques used in defect prediction, effort estimation and test
coverage [PM12, PMGZ13, TGX11, LGP14].

4.2 Data Obfuscation in Defect Prediction and Effort Estimation

Obfuscation offers privacy by simply changing data enough so that it is different from its orig-
inal. Section 4.1.2 describes some basic techniques for obfuscation such as generalization and
perturbation. Some studies chose to combine data minimization and obfuscation methods as part
of a framework to preserve the privacy of personal and business sensitive data. Three of these
are described in this section.

Data minimization reduces the dimensions of a data set via feature selection and instance
selection. The result is a representation which best describes the entire data set. The repre-
sentation is a collection of exemplars, which are used for data science tasks. The advantage of
data minimization is that it avoids the drawbacks of large data set analysis such as large storage
requirements and high computational expense. An additional benefit is that in the context of
privacy, since only the exemplars are used for analysis, a data collector can decide not to share
non-exemplars.

To accomplish minimization, filtering using Bayes rule and data clustering has been used. For
cross-project defect prediction, Peters et al. [PMGZ13] presented CLIFF, an instance selection

1 A QID group is a set of instances whose quasi-identifier values are the same because of generalization or suppres-
sion.
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algorithm which used Bayes rule to rank instances in a dataset. CLIFF assumes that tables
of data can be grouped-by the values of the dependent attribute. For example, for a table of
defect data containing code metrics, instances are grouped according to defective or not defective
dependent values. For each group, CLIFF finds the probability of each attribute value in defective
and non-defective instances. The product of each resulting probability is calculated for each
instance and those with the highest are selected as exemplars. With CLIFF, data minimization
was achieved while maintaining utility. In terms of privacy, the authors used CLIFF as part of
a framework, which combines it with another instance selection method and a data obfuscation
method [PMGZ13, PML15].

To accomplish obfuscation, the authors presented MORPH, an instance mutator algorithm
[PM12, PMGZ13, PML15] based on the perturbation privacy technique (Section 4.1.2). MORPH
changes the numeric attribute values of each instance by replacing the original values with MOR-
PHed values. MORPH did not change an instance such that it moves across the boundary be-
tween the original instance and instances of another dependent attribute value. For example,
if the original instance is defective, its obfuscated version will not become non-defective. The
overall results of the combination of CLIFF and MORPH showed that high levels of privacy was
possible without damaging defect prediction [PM12, PML15].

For data privacy in effort estimation [QJZ+16], minimization occurs as a side-effect of for-
matting data into sub-classes or clusters. In other words, Qi et al. [QJZ+16], allowed for outliers
to either be discarded or assigned to its nearest sub-class. Their method works as follows: Using
effort estimation values, the authors first computed upper- and lower-bounds for each one. The
bounds were determined by a tolerance error of 0.25. Since its possible for an instance to be
covered by multiple sub-classes, the assignment of each instance is done in ascending order to
avoid data imbalance. If there were sub-classes with a single instance, they were either assigned
to their nearest sub-class or discarded. The instances which remained were then obfuscated using
a modified version of MORPH for effort estimation.

The modified version of MORPH has two main differences from the original algorithm. First,
Qi et al. [QJZ+16], used a nearest unlike neighbor selector to determine the boundary up to
which an instance can be obfuscated. Because there were multiple sub-classes (more than 2),
the selector used the ones which were just before and after as unlike neighbors. These were
determined by the effort values. Second, in order to mitigate the possible influence of larger
values from one attribute, the authors mapped the original data to intrinsically dimensional space.
It is from this space that the nearest unlike neighbor is chosen. The overall results showed
that these minimization and obfuscation methods provided privacy for effort estimation while
maintaining comparable utility to the original data.

4.3 Data Obfuscation in Software Testing and Debugging

Other data privacy studies in software engineering focus on software testing and debugging
[BLJL11, TGX11, LGP14, CCM08, CO11]. In this research area, two privacy concerns were
raised: a subject’s data was collected in the form of bug reports to guide maintenance after
software is deployed and the outsourcing of software testing, which requires test-cases. Work
published by Castro et al. [CCM08] sought to provide a solution to the problem of software
vendors who need to include sensitive user information in bug reports in order to reproduce a

SOFSEM SRF 2017 8 / 14



ECEASST

bug. To protect sensitive user information, they used symbolic execution along the path followed
by a failed execution to compute path conditions. Their goal was to compute new input values
unrelated to the original input. These new input values satisfied the path conditions required to
make the software follow the same execution path until it failed.

As a follow-up, Clause et al. [CO11] presented an algorithm, which anonymized input sent
from users to developers for debugging. Like the previous work by Castro et al. [CCM08],
Clause et al. [CO11] aimed to supply the developer with anonymized input, which would cause
the same failure as the original input. To accomplish this, they first used a novel “path condition
relaxation” technique to relax the constraints in path conditions thereby increasing the number
of solutions for computed conditions.

In the case of companies who did not wish to release actual cases for testing [BLJL11, TGX11,
LGP14], they anonymize the test cases before releasing them to testers. Taneja et al. [TGX11]
proposed PRIEST, a privacy framework. The privacy algorithm in PRIEST is based on data
swapping where each value in a data set is replaced by another distinct value of the same attribute.
This is done according to some probability that the original value will remain unchanged. This
study [TGX11] followed the work done by Budi et al. [BLJL11]. Similarly, their work focused
on providing obfuscated data for testing and debugging. They were able to accomplish this with
a novel privacy algorithm called kb-anonymity. This algorithm combined k-anonymity with
the concept of program behavior preservation, which guided the generation of new test-cases
based on known cases and made sure that new test-cases satisfied certain properties [BLJL11].
The difference with the follow-up work by Taneja et al. [TGX11] was that the data-swapping
algorithm maintains the original data and offered individual privacy by swapping values.

For Li et al. [LGP14], data clustering forms the basis of the combination of minimization and
obfuscation in test coverage. The authors used a weight-based data-clustering algorithm, which
partitions data according to information from program analysis. The information gained from
program analysis, indicates how data is used by an application [LGP14]. Once the clusters were
formed, centroids and associative rule mining computed and used as constraints to ensure that
the centroids were representative of the general population of data in the cluster. The overall
results showed that test coverage stayed within a close range of the level of coverage offered by
the original data [LGP14].

4.4 Measuring Privacy

Privacy is not a binary step function where something is either 100 percent private or 100 per-
cent not private. Rather it is a probabilistic process where we strive to decrease the likelihood
that an adversary can uncover something that they should not know. Privacy metrics allows data
collectors to know how easy it is for an adversary to “guess” the original data given the obfus-
cated data. There are two categories of privacy metrics in the literature: syntactic and seman-
tic [BS08]. Algorithms such as k-anonymity and l-diversity use the syntactic measures. They
consider the distribution of attribute values in the obfuscated data set. In comparison, the seman-
tic metrics measure what an adversary may learn or the incremental gain in knowledge caused
by the obfuscated data and uses distance measures such as the Earth Movers Distance, KL-
divergence and JS-divergence to quantify this difference in an adversary’s knowledge [BS08].
Semantic privacy metrics dominate in the sub-disciplines of software engineering. They include
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Increased Privacy Ratio (IPR) [PM12, PMGZ13, PML15], entropy [CCM08, CO11] and guess-
ing anonymity [TGX11, LGP14].

IPR is based on the adversarial accuracy gain, Aacc from the work of [BS08]. According to
the authors definition of Aacc, it quantifies the ability of an adversary to predict the sensitive
attribute value of a data subject. Aacc measures the increase in the adversary’s accuracy after
s/he observes an obfuscated dataset and compares it to the baseline from a trivially obfuscated
dataset, which offers perfect privacy by removing either all sensitive attribute values or all the
other quasi-identifiers. IPR, assumes the role of an adversary armed with some background
knowledge from the original dataset and the obfuscated version of that data. When the adversary
predicts the sensitive attribute value of a data subject, the original data is used to see if the
prediction is correct. If it is, then this is considered to be sensitive attribute disclosure, otherwise
it is not [PM12, PMGZ13, PML15].

Other privacy studies in software engineering data science [CCM08, CO11] have used entropy
to measure privacy. Entropy (H) measures the level of uncertainty an adversary will have in trying
to associate a target to a sensitive attribute [Sha01]. For example, if querying a dataset produces
two instances with the same sensitive attribute value then the adversary’s uncertainty level or
entropy is zero. However, if the sensitive attribute values were different, the adversary had a 50
percent chance of associating the target with the correct sensitive attribute value. The entropy
here is one bit, if there are only two possible sensitive values. In general, the entropy of a data
set is H = ∑

|S| p(si)|log2 p(si)|, where i=1, which corresponds to the number of bits needed to
describe the outcome [Sha01]. Here S is the set of sensitive attribute values.

Guessing anonymity of an instance in an obfuscated dataset, is the number of guesses that the
optimal guessing strategy of the adversary requires to correctly guess an instance used to generate
the final obfuscated instance [TGX11]. This is measured as follows: First, a similarity matrix was
used to show the similarity between instances in the original data and its final obfuscated version.
The similarity is measured as the fraction of attributes whose values are the same between the
original and obfuscated instances. A fraction of zero means that there is no similarity between
instances, whereas one means that they are the same [TGX11, LGP14].

5 Conclusion

This article suggests that to find the balance between privacy and utility in different sub-disciplines
of software engineering, data collectors need to consider two privacy solutions in combination:
data minimization and obfuscation. This “marriage” maintains comparable utility and helps data
collectors to back-up their data sharing decisions with the knowledge that a large percentage of
their data is not shared and what is released, bares little resemblance to the original data. As more
and more data is mined from the software engineering process, the combination of minimization
and obfuscation can be used to confidently share data with other projects and organizations.
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