
Electronic Communications of the EASST
Volume 076 (2019)

Automated Verification of Critical Systems 2018
(AVoCS 2018)

A Framework for the Formal Verification of Networks of Railway
Interlockings - Application to the Belgian Railway

Christophe Limbrée, Charles Pecheur

17 pages

Guest Editors: David Pichardie, Mihaela Sighireanu
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

A Framework for the Formal Verification of Networks of Railway
Interlockings - Application to the Belgian Railway

Christophe Limbrée1, Charles Pecheur1

christophe.limbree|charles.pecheur@uclouvain.be
Université catholique de Louvain, Louvain-La-Neuve, Belgium

Abstract: Modern railway stations are controlled by computerized systems called
interlockings. In fact the middle size and large size stations usually require to use
several interlockings, then forming a network of interlockings. Much research pro-
pose to verify the safety properties of such systems by means of model checking.
Our approach goes a step further and proposes a method to extend the verifica-
tion process to a network of interlockings. This process is known as compositional
verification. Each interlocking is seen as the component of a larger system (i.e., sta-
tion) and interacts with its neighbours by means of interfaces. Our first contribution
comes in the form of a catalogue of elements that constitute the interfaces (as used
in the Belgian railways) and associated contracts. Each interface can then be bound
to a formal contract allowing its verification by the OCRA tool. Our second contribu-
tion comes in the form of an algorithm designed to split the topology controlled by a
single interlocking into components. The verification of a large station can therefore
be achieved by verifying its constituting components and their interaction thereby
tackling the state space explosion problem while providing guarantees on the whole
interlocking.

Keywords: Interlocking, Model checking, Compositional verification, OCRA, NUXMV,
PDR, ic3

1 Introduction - Interlocking system

In the railway domain, an interlocking is an arrangement of systems that prevents conflicting
train movements in a station. The main component of an interlocking is a safety-critical system
relying on a generic software and application data in order to control the railway traffic in a
station. Figure 1.1 illustrates a toy station controlled by an interlocking.

The application data are the configuration layer needed by the interlocking in order to control
a specific station. In a route-based interlocking, the application data are organized in routes. For
example, the route R C 043 is a path in the station shown in Figure 1.1 granting passage to a
train from signal C to track 043. The main elements/resources used by a route are: the points,
the track circuits, the track, and the signals. A point is a mechanical installation enabling railway
trains to be guided from one track to another. A track circuit is a simple electrical device used
to detect the absence of a train on rail tracks. A track is a position on railway network where a
route starts or ends. A signal is an electrical device used to pass information relating to the state
of the route ahead to train drivers. A route takes different states: it goes from not set to set, to

1 / 17 Volume 076 (2019)

mailto:christophe.limbree$|$charles.pecheur@uclouvain.be

A Framework for the Formal Verification of Networks of Railway Interlockings

T
T_04BM T_02AM
P_01A

P_01B

P_02B

P_02B

S_C

043

S_CX

044

R_CM_043

Figure 1.1: INTERLOCKING - A first toy example of station.

proved, and returns to not set. In ”proved” state, the train is allowed to proceed on the route as
the route origin signal shows green aspect. The resources allocated by the route are freed when
the train runs through the route according to a specific sequence. The route is then released.

1 *Q_R(C_043)
2 if R_C_043 xs
3 P_01A cfn, P_01B cfn, P_02AB cfr, P_02B cfr
4 U_IR(01A) f , U_IR(02B) f
5 then R_C_043 s
6 P_01A cn , P_01B cn , P_02A cr , P_02B cr ,
7 U_IR(01A) l , U_IR(02B) l
8 U_CBSPA(043) l

Listing 1: Example of application data - route - first step.

Listing 1 shows an extract from the application data corresponding to the control of route
Q R(C 043) (line 1). The first part of the code holds the conditions that allow the route control
(line 2 - 4). First the route is checked not being set yet (line 2). Second (line 3) the points
are checked to be movable to the position required by the route. For example, the point P 01A
must be cfn meaning free to move to normal position. The last line (4) refers to the locking of
the points. The second parts of the listing enumerates all the actions taken if the conditions are
fulfilled. Line 6, the points are controlled (e.g., P 01A is controlled left cn). Second, the points
locking variables are put in locked state (line 7). Line 8 refers to the directional locking. Indeed
track 043 can be accessed from the left and from the right. Thereby in order to avoid collisions,
the interlocking shall not grant two routes in opposite direction to 043 at the same time. That’s
the purpose of the U CBSP variable where the suffix A is used from left to right and the suffix
B in the opposite direction.

In our first paper [BCL+15], we presented the model-checking of the interlocking of a small
station of the Belgian network (Namêche) by translating the SSI (Solid State Interlocking) appli-
cation data into a NUSMV model. In our case study, the BDD (Binary Decision Diagram) algo-
rithm provided in NUSMV easily allowed to verify invariants whereas a special algorithm using
PyNuSMV [BP13] was used to verify CTL formulas (Computation Tree Logic). Considering
the fact that a verification process based on a monolithic model would not scale up to stations of
larger size, we proposed a novel method based on compositional verification [Lim16]. This ap-
proach used a compositional verification framework called OCRA [CDT13, CT12, ocr18]. All the
configuration (components and contracts) was done manually as opposed to our new contribution

AVoCS 2018 2 / 17

ECEASST

where our algorithm retrieves both the components and contracts and produces the configuration
files for OCRA.

In Section 2 we provide the background for the compositional verification. In Section 3,
we introduce our catalogue of interface and contract definitions. In Section 4, we propose an
algorithm designed to split a station into smaller components in order to tackle the space state
explosion problem. In our case study in Section 5, we apply our algorithm and catalogue in order
to verify the ”no-collision” safety property on a realistic size station of the Belgian network.
Finally we conclude in Section 6.

1.1 Validation of interlocking

The application data are prepared manually and are therefore subject to human errors. For ex-
ample: conditions can be missing in a route control, such as a point condition. This kind of error
could easily be discovered by a code review or by testing on a simulator (e.g., route by route).
A much harder to find and malicious problem is that caused by concurrent actions (e.g., route
or point requests). In this case, the combination of possible concurrent actions explodes quickly
and testing all possible combinations manually is not tractable.

Currently the validation of the application data relies on the combination of different V&V
activities such as functional tests, safety tests, and application data reviewing. The functional
tests ensure that the system responds properly to the commands issued by the traffic controller.
During safety tests, all the conditions that are supposed to impact the routes are tested in their
restrictive states (e.g., a point in the wrong position shall not allow the origin signal of a route
to go green). Those tests are prepared and carried out by an independent tester. Finally, the
application data are reviewed by the technical manager in charge of the project. All anomalies
are traced in a bug management tool and the engineer in charge ensures that they are all closed
before the interlocking is commissioned.

1.2 Formal verification of interlocking

In their paper [FFM12], Fantechi et al. clearly states that the future of model checking for inter-
locking lays in the SAT solvers which is the direction that we have taken in our research by using
the PDR/ic3 (Property Directed Reachability/Incremental Construction of Inductive Clauses for
Indubitable Correctness) algorithm in the NUXMV model checker [Rob14]. Recently Fantechi et
al. [A. 17] proposed a similar approach based on compositional verification by making assump-
tions on the interaction between the connected interlockings in order to ignore them. By opposi-
tion, we formalize the existing connections (interfaces) defined in our interlockings through our
compositional framework (OCRA) as they can’t be ignored. In their research [Win01, Win12],
Winter et al. propose to use abstract state machine to encode the application data before opti-
mizing the ordering of the variables used in the BDD algorithm of NUSMV. The same approach
was used in our first case study [BCL+15] but didn’t permit to verify stations of significant size.
Haxthausen et al. use BMC and induction in order to verify interlocking data with the RT-Tester
tool-box [HPP14]. They also demonstrate how to model the sequential release process of the in-
terlocking [HHP14]. The sequential release is used to increase the capacity of a railway network
and is also implemented in our model whereas we only use BMC to verify liveness properties.

3 / 17 Volume 076 (2019)

A Framework for the Formal Verification of Networks of Railway Interlockings

2 Compositional verification of interlockings

In this section, we explain why we need to use the compositional verification for application data
of interlocking. We also provide the reader with the theoretical basis underlying the proof system
implemented in the OCRA framework.

2.1 A justification for the compositional verification

In the railway domain, the norm [CEN02] defines the safety integrity level (SIL) for the devel-
opment of safety critical systems and imposes to use the highest level (4) for the interlocking.
One of the consequences is that the interlocking must ensure the computation of its outputs and
internal states within a given period of time which in terms restricts the number of objects that
it can control. For example, a SSI (Solid State Interlocking) [F. 13] can control maximum 64
points, 128 signals, 256 tack-circuits, and 256 routes. On the other hand, we want to diminish
the impact of an interlocking failure on the train traffic. That’s why, we wouldn’t never control a
significant size station with only one interlocking but we would use several of them.

All these arguments highlight the fact that an interlocking can’t be seen as an isolated system.
In fact the railway network must be considered as a graph of interconnected interlockings with
borders and interfaces. A border is a boundary between two control areas whereas an interface
is a connection point where interlockings exchange data. Those interfaces and the information
that they carry must guarantee the safety of the railway traffic when trains are heading for a
border.

2.2 Compositional verification

We use the OCRA compositional verification framework in order to verify a connected inter-
locking graph. Practically, OCRA provides: 1) a formal framework to specify a system made of a
hierarchy of connected components 2) a formal language to define the properties to be verified on
the system, and 3) a set of verification tools. In OCRA, the keyword system must be understood
as a graph of interconnected interlockings (composite).

A component represents an interlocking instantiated by its SMV model (NUXMV) and is later
called the leaf model. A component can also be a part of interlocking as it’s sometimes possible to
split an interlocking model into smaller ones in order to tackle the state space explosion problem
(Section 4). The system and its components are described in Othello language proposed by
Cimatti et al. [Cim13]. Othello allows for complex combinations of linear temporal operators,
Boolean connectives, regular expressions, over terms referring to the variables of components
([CT12]). The contracts-refinement proof system for component-based systems was proposed
by Cimatti et al. in the paper [CT15].

The verification of the whole system (graph of interlockings) takes place in three steps:

1. checking that the components contracts entail the system contract

2. checking that each component satisfies its contracts

3. checking that the environment of each component satisfies the assumption of that compo-
nent

AVoCS 2018 4 / 17

ECEASST

S

C1 C2

Figure 2.1: SYSTEM represented as a hierarchy of components (C1 and C2) and contracts.

The properties to be verified on a system (e.g., S in Figure 2.1) are expressed by means of the
high-level contracts. A contract C for a system S is an assume-guarantee pair of (LTL Linear
Temporal Logic) assertions 〈A,G〉 where [[A]] and [[G]] are sets of traces over the interfaces of
S. A trace represents the observable part of a run of a component. It consists of the events
and values of data ports (interface variables). The contract 〈A,G〉 applies to the system S and is
refined by contract 〈A1,G1〉 for C1 and contract 〈A2,G2〉 for C2. In the first step, we verify
that the component contracts entail the system contract (Eq. 2.1).

((¬A1∨G1)∧ (¬A2∨G2))→ (¬A∨G) (2.1)

equa 2.1: Components contracts must entail the system contract.

In the second step, we verify that each component properly implements its contract. More
formally we say that I is an implementation satisfying C iff I ∩ [[A]] ⊆ [[G]] (I |= A→ G). In
our example, it means verifying that I1∩ [[A1]] ⊆ [[G1]] and I2∩ [[A2]] ⊆ [[G2]]. I1 and I2 are
respectively implementations for the C1 and C2 components. For the verification of the imple-
mentation, OCRA calls NUXMV.

In the last step, we must verify that the environment of each component satisfies its contract.
More formally, we say that E is an environment satisfying C iff E ⊆ [[A]]. For our example in
Figure 2.1 it is verified by checking the validity of the following formulas 2.2:

A∧ (¬A2∨G2) → A1
A∧ (¬A1∨G1) → A2

(2.2)

equa 2.2: Verification of the environment of each component.

If the three steps of verification are valid, we say that the composition of C1 and C2 forming
S satisfies the system property or more formally I |= A→ G. To be complete, we provide List. 2
which is an example of contracts and interfaces definition in Othello partially covering the toy
example in Figure 3.2. The high level contract (line 6-8) that we want to prove on the system S is:

5 / 17 Volume 076 (2019)

A Framework for the Formal Verification of Networks of Railway Interlockings

Train from XX to 10D → !Train from YY to 10D (line 9). 10D is a location at the interface
between interlockings XX and YY where a collision might happen. The property states that
never a train coming from XX shall head for 10D at the same time as a train coming from
YY. This contract is refined by two contracts at the XX (line 26-28) and YY component level.
Ud 10D B and Ud 10D A are two variables shared among the components XX and YY. The
interfaces and the connections between the components are defined in lines 14 and 15. The
variables Train from XX to 10D, Ud 10D A, and Ud 10D B are declared in the leaf model of
XX and allow the verification of the contract at component level (step 2). Our listing only shows
the definition of the XX component.

1 COMPONENT Ath system
2 INTERFACE
3 OUTPUT PORT Train_from_XX_to_10D: boolean;
4 OUTPUT PORT Train_from_YY_to_10D: boolean;
5 -- #2 Top level contracts
6 CONTRACT Train_10D
7 assume: always TRUE;
8 guarantee: always (Train_from_XX_to_10D -> !Train_from_YY_to_10D

);
9 -- #3 sub-components

10 REFINEMENT
11 SUB SSIXX : XX;
12 SUB SSIYY : YY;
13 -- #4 connections
14 CONNECTION SSIXX.Ud_10D_B := SSIYY.Ud_10D_B;
15 CONNECTION SSIYY.Ud_10D_A := SSIXX.Ud_10D_A;
16 -- #5 contracts refinements
17 CONTRACT Train_10D
18 REFINEDBY VIXLXX.Train_10D, VIXLYY.Train_10D;
19 -- #6 first component
20 COMPONENT XX
21 INTERFACE
22 INPUT PORT Ud_10D_B: boolean;
23 OUTPUT PORT Ud_10D_A: boolean;
24 OUTPUT PORT Train_from_XX_to_10D: boolean;
25 -- #7 contract refinement at component level
26 CONTRACT Train_10D --
27 assume: always TRUE;
28 guarantee: always (Train_from_XX_to_10D -> (!Ud_10D_A & Ud_10D_B

));

Listing 2: Example of OCRA configuration file.

3 Catalogue of interfaces and contracts

In this section, we describe our catalogue of interface and contract definitions which supports
the automatic production of the OCRA configuration file (e.g., List. 2) in order to perform the

AVoCS 2018 6 / 17

ECEASST

compositional verification of graphs of interlockings. Our catalogue is summarized in Table 1
and holds five different types of interface.

GIG
ig_2_3
Is_intergrid
Version: 2

GIG
Name: G_3
Type: Is_grid
Version: 1

GIG
Name: G_2
Type: Is_grid
Version: 2

GIG
Name: ig_1_2
Type: Is_intergrid
Version: 1

GIG
Name: G_1
Type: Is_grid
Version: 1

Figure 3.1: EXAMPLE of decomposition of a railway network into grids and inter-grids.

First, we define the notion of grid and inter-grid. A grid is a part of the railway network where
absolute signals (route origin signal), points, and treadles (wheel sensors installed on the rail) are
found. Three grids can be found in Figure 3.1: G 1, G 2, and G 3. The inter-grids are found
between the grids and don’t hold any points nor any absolute signals. In Figure 3.1, there are two
inter-grids: ig 1 2 and ig 2 3. In order to avoid train head-on collisions in an inter-grid, we use a
mutual exclusion mechanism called directional locking (first three entries in Table 1). To put it
briefly, this mechanism ensures, as an example, that the interlocking controlling G 1 cannot send
a train towards G 2 if the interlocking controlling G 2 is sending a train towards G 1 through
ig 1 2 at the same time.

T S_C

S_CX

S_KX

S_K

043

044

10D 11D

int.XX

int.YY

R_10D_044

R_CM_10D A

B

Figure 3.2: SECTIONING point at the border between interlocking XX and YY (second toy
example).

Second in order to better understand what a contract materialize, we provide a second toy
example of a grid controlled by two interlockings separated by the blue line: int.XX and int.YY.
At the border between the interlockings, we find two sectioning points (orange diamonds): 10D
and 11D. An itinerary from signal C to track 044 requires to command two routes: R C 10D
in int.XX and R 10D 044 in int.YY. An itinerary can involve several routes in different inter-
lockings to form an end to end path in a station. The sectioning point has two ends: end A on
its left side and end B on its right side. This translates in the application data by two variables:
U 10D A and U 10D B. The first one is controlled by int.XX and the second one by int.YY.

7 / 17 Volume 076 (2019)

A Framework for the Formal Verification of Networks of Railway Interlockings

These variables are used to formalize a contract between the components representing int.XX
and int.YY guaranteeing that the two interlockings shall never command a route towards the
shared sectioning point 10D (fourth entry in Table 1).

Third, we apply conventions to the OCRA configuration files. Firstly we restrict the hierar-
chy of the connected components to two layers: the system (station) and the components (in-
terlockings) as in Figure 2.1. This saves forwarding the connections between different layers
(system → component → sub-component). After we define the high level contracts as a ”no
collision” property that, for our toy example, would be written as: !(Train from XX to 10D &
Train from YY to 10D). The generic form is Train from CCC to III where CCC is the com-
ponent and III the interface point. The contracts at component level (column 3 in Table 1) refine
the top level contract and are verified on the SMV model. The generic form of the interface
is defined as TTT SSS III where TTT is the type of interface, SSS the side/direction (A, B, or
signal), and III the interface name. We argue that our table covers all possible cases of interface
used in the Belgian signalling principles.

Table 1: CATALOGUE of interfaces and contracts.

Type Variable Contract
BSI U BSI[AB] III Train f rom CCC1 to III→ (¬U BSIA III∧

U BSIB III)
Train f rom CCC2 to III→ (¬U BSIB III∧
U BSIA III)

BSP L BSP[AB] III Train f rom CCC1 to III→ (¬L BSPA III∧
L BSPB III)
Train f rom CCC2 to III →
(¬L BSPB III∧L BSPA III)

BSRM L VAS III,
L VSD III

Train f rom CCC to III → (¬L VAS III ∧
L V SD III)

Spoint U 10D [AB] Train f rom XX to 10D → (¬U 10D A ∧
U 10D B)
Train f rom YY to 10D → (¬U 10D B ∧
U 10D A)

Dpoint U RSU III [AB] Train f rom CCC1 to III →
(¬U RSU III A∧U RSU III B)
Train f rom CCC2 to III →
(¬U RSU III B∧U RSU III A)

The first three entries of Table1 apply to the directional locking (i.e.,blocking) that comes in
three varieties : BSI, BSP, and BSRM. The BSI applies to the platforms and is identified by
the variable U BSI[AB] III where [AB] gives the direction (→ or ←) and III the name of the
platform. The BSP applies to the tracks inside a grid where a level crossing is encountered for
example. It’s identified by the variable U BSP[AB] III where [AB] gives the direction and III
the name of the track. The BSRM is used between two stations. Two variables are used: L VAS
and L VSD. As explained previously these three interfaces are used in the inter-grids. The last

AVoCS 2018 8 / 17

ECEASST

two types of contracts are related the Sectioning points (Spoint as explained in the toy example)
and the distribution point (Dpoint). The Distribution points are used for rail yards. Their usage
is very similar to that of the Spoint except that the variable is U RSU. Our catalogue is based on
the Belgian signalling principles but could be extended for other countries (e.g., France). It has
the advantage of being readable by the railway experts.

4 An algorithm to split the interlocking topology

The concept of compositional verification relies on 1) the definition of the components/inter-
faces and 2) the definition of contracts connecting the components through their interfaces. We
define an algorithm that takes a railway grid data (as represented by SSI) and decomposes into
components and interfaces with corresponding contracts.

The algorithm relies on a collection of route objects holding their characteristics like their
name (unique for an area), the origin signal, and a finite set of elements (resources used by the
route). Different types of elements are defined, such as: points, track-circuits, signals, and lock-
ing variables. Those types are categorized into two subtypes: the internal resources used to set
the route (e.g., points) and the interface elements which are typically encountered at the interface
between components (e.g., directional locking). For the route R C 043 of Figure 1.1, the internal
resources are {P 01A, P 02B,U IR 01A, U IR 02B, S C, T 01, T 02} whereas {U BSPA 043}
is an external element preventing collision between the routes in opposite direction leading to
the same destination point: Track 043. Two routes are said to be in opposite direction if one goes
from left to right and the second one from right to left.

The generation of the components can be automated following alg. 4.1 which takes the list of
routes belonging to the grids of the station as input (line 1). The intermediate output comps has
a map from component’s name → list of routes. For example, one entry of the resulting map
could be: ”component 236” → List{R C 043, R C 044, R CX 043, R CX 044}. Another in-
termediate map is used to map the routes to their component (e.g., compName entry: ”R C 043”
→ ”component 236”). The core of the algorithm is a nested loop (line 2-3) where the lists of
routes are compared pairwise (rt1 and rt2 - line 6). The method Elements(rt) returns the internal
elements of the route as defined previously. If the rt1 and rt2 are disjoint (line 19), the two routes
are inserted into separated components, a new component is created if needed. If the element
lists are not disjoint and if the two routes already belong to two different components, the two
components are merged (line 11). Otherwise if either rt1 or rt2 already belongs to a component,
the other route is added to its routes list (lines 13-14). Finally if neither rt1 nor rt2 belongs to a
component, a new component is created and both routes are added to it (lines 15-18).

In the second part of the algorithm, we process comps in order to produce the configuration
file for OCRA (lines 28-34). For each component (line 29) of comps and for each of their routes
(line 30), we extract the interfaces in the elements list of the route. The interfaces are easily ex-
tracted as they were classified as interface elements. We attach a contract to each interface based
on the mapping interface ↔ contract defined in our catalogue. For the example in Figure 1.1,
the algorithm would discover U BSPA 043 as an interface of type BSP for route R C 043. The
routes of a component can have different interfaces. For the example in Figure 1.1, the algorithm
would discover the interface U BSPA 044 for the route R C 044. In the component definition,

9 / 17 Volume 076 (2019)

A Framework for the Formal Verification of Networks of Railway Interlockings

Algorithm 4.1: Retrieve components and produce OCRA config. file

1 Data: RT route list
2 forall rt1 ∈ RT do
3 forall rt2 ∈ RT if rt2 6= rt1 do
4 comp1 = compName[rt1]
5 comp2 = compName[rt2]
6 if Elements(rt1) ∩ Elements(rt2) 6=∅ then
7 if comp1 6=⊥ AND comp2 6=⊥ then
8 if comp1 6= comp2 then
9 comp = new component

10 routes = comps[comp1] ∪ comps[comp2]
11 comps = comps -comp1 - comp2 + comp→ routes
12 compName[rt1] = compName[rt2] = comp

13 else if comp1 6=⊥ then
comps[comp1] = comps[comp1] + rt2

14 else if comp2 6=⊥ then
comps[comp2] = comps[comp2] + rt1

15 else Create new component
16 comp = new component
17 comps[comp] = {rt1, rt2}
18 compName[rt1] = compName[rt2] = comp

19 else Add rt1 and rt2 in components if needed
20 if comp1 6=⊥ then
21 comp = new component name
22 comps[comp] = {rt1}
23 compName[rt1] = comp

24 if comp2 6=⊥ then
25 comp = new component name
26 comps[comp] = {rt1}
27 compName[rt1] = comp

28 Data: comps
29 forall comp ∈ comps do
30 forall rt ∈ comp do
31 interfaces = interfaces + externalElements[rt]
32 contracts = contracts + contractCatalogue[interfaces]

33 PrintComponent(Name, interfaces, contracts)

34 PrintHightLevelContracts

AVoCS 2018 10 / 17

ECEASST

we print its name, its list of interfaces and its contracts (line 33). We also collect all the inter-
faces and contracts of all the components (Allcontracts and Allinterfaces) and write the contract
refinement at system level (line 34).

After completion of Alg.4.1, we get a file written in Othello usable by OCRA in order to
perform the compositional verification of our graph of interlockings. Another benefit of our
algorithm is that it can split a large interlocking into smaller components. This means that we
can perform the verification of a large interlocking though the verification of smaller components
by applying the compositional verification. The splitting doesn’t happen for every interlocking
but is more likely to happen on larger ones where the state space explosion problem is a major
obstacle. An example of splitting is provided in our case study.

5 Verification strategy and case study

In this section, we briefly describe the generic complete verification process applied to the com-
position of interlocking components. We explain the results obtained after applying our algo-
rithm to the station of Ath on the Belgium railway.

5.1 Verification method

The property verified in the framework of this paper is the ”no-collision” property. In order to
verify a network of interlockings, we proceed in two steps. First we verify that no collision can
happen at the interfaces between the components (i.e., interlockings or part of interlockings).
This is illustrated by the I between C1 and C2 of Figure 5.1. Second we verify that no collision
can happen inside each component C1 and C2.

For the first step, we specify the ”no-collision” property by means of a contract: ”No train
coming from C1 shall reach a position corresponding to the interface between C1 and C2 at
the same time as a train coming from C2. This high level contract (i.e., system level) must
be refined by component contracts at C1 and C2 level. The refinement is verified by means
of OCRA whereas the implementation is verified at the leaf level (i.e., implementation of each
component in SMV). Each contract is taken from the catalogue defined in Section 3 and automat-
ically identified by our algorithm. Second, in order to verify the ”no-collision” property inside
each component, the SMV interlocking modules are composed with two different instances of
the same train module (e.g., C1‖ins11‖ins12 for C1). The train is also a SMV module that is
configured based on the topology of the station. When an origin signal of a route turns green
(a.k.a.permissive aspect), the train starts in front of that signal and follows the topology of the
railway by taking the points according to their commanded position. The train also actuates the
track-circuits (a.k.a.track segments) which trigger the releasing of the route resources in a prede-
fined sequence. The train module is extracted from the GRAFFITI XML file that is a fork from
the railML standard [rai15] developed by the Belgian railways. This file holds the topology of
the station as well as a description of all its resources (e.g., points, signals, . . .).

11 / 17 Volume 076 (2019)

A Framework for the Formal Verification of Networks of Railway Interlockings

C1
xx routes

C2
yy routes

I

II

system

TRAIN
ins11

TRAIN
ins12

TRAIN
ins21

TRAIN
ins22

Figure 5.1: GENERIC case of network of interlockings composed with train simulation.

5.2 Case study - Application of the verification process

Our case study comes from a fairly large station of the Belgian railway: the Ath station. This
station is controlled by three VIXL: fty 7, fty 8, and fty 9 with respectively 48, 68, and 34 routes
(Fig 5.2). A VIXL is a virtual interlocking running in a central interlocking (a.k.a.CIXL). fty is
the telegraphic identification of the station.

fty_9
34 routes

fty_7
48 routes

fty_8
68 routes

system

3

4

4

2 2

1
3

1

Figure 5.2: ATH station - Components breakdown structure according corresponding to the in-
terlocking VIXL structure.

Figure 5.3 shows the result of the splitting (decomposition) with our algorithm. fty 9 could
not get decomposed further and remains one monolithic model. Indeed the algorithm could not
identify any interface defined in our catalogue. fty 8 was decomposed into five components
(sub-interlocking modules): A, B, C, D, and E. However, we decide to keep two groups: A+B
and C+D+E. This reduces the number of interfaces to be defined while allowing a substantial
benefit in terms of the size of the models to be verified. The two sub-models are isolated from
the original model of interlocking fty 8: one with 22 routes and a second one with 46 routes.
Finally fty 7 was split into two components. However, as the size of component fty 7B was not
significant, the verification was achieved on the complete model.

Table 2 summarizes the performance of the two steps process of verification of our case study.
The computer that we used was a HP Elite i5-6200U - 2.3GHz - 4 processors - 8GB running
Xubuntu 18.04. The verification of the refinement of the 12 contracts (e.g., lines 18-19 of List. 2)

AVoCS 2018 12 / 17

ECEASST

fty_9
34 routes

system
3

4

4

3

2

fty_8A
14 routes

fty_8B
8 routes

fty_8C
22 routes

fty_8D
10 routes

fty_8E
14 routes

fty_8A+B

fty_8C+D+E

fty_7B
4 routes

fty_7A
44 routes

fty_7A+B

Figure 5.3: ATH station - Components breakdown structure after refinement by the splitting
algorithm.

was performed in one run by OCRA in a matter of seconds. The verification of the proper imple-
mentation of the contracts in the SMV leaf components was achieved by NUXMV. The verifica-
tion of the ”no-collision” property on the leaf components (step 2) was performed by four concur-
rent instances of NUXMV by means of the PDR/ic3 algorithm [Bra11b, Bra12, Bra11a, SB11].
Prior to the verification, we validated our model. First we seeded faults inside the application
data and checked that the ”no-collision” property got violated. Second we verify some liveness
properties like: every route can be commanded and ran through by the train or each track-circuit
can be occupied by a train. Examples of traces can be provided on demand.

Table 2: DURATION of the verification process.

Steps Verification Duration
1.1 System Contracts refinement 12 contracts 65.5 s
1.2 Contracts implementation for fty 7A+B 5 contracts 24.6 s

Contracts implementation for fty 8A+B 8 contracts 79.2 s.
Contracts implementation for fty 8C+D+E 8 contracts 76.7 s.
Contracts implementation for fty 9 3 contracts 10.1 s.

2 No collision in fty 7A+B 42.85 h
No collision in fty 8A+B 8.64 h
No collision in fty 8C+D+E 37.61 h
No collision in fty 9 36.21 h

As can be seen from the result table, the verification of the leaf SMV model is the hardest as
it can take up to 43 hours to prove the ”no collision” property in the application data of an inter-
locking with 48 routes (fty 7 = 586 Boolean variables). Before splitting the interlocking fty 8,

13 / 17 Volume 076 (2019)

A Framework for the Formal Verification of Networks of Railway Interlockings

we tried to verify the ”no collision” property on the monolithic model with NUXMV but it had
not terminated after three (3) days. The decomposition with our algorithm allowed to performed
its verification at the price of defining two components with their interfaces and contracts. As
this process is automatic and quick (± 3 minutes) thanks to our algorithm and catalogue, we
think that it’s a solution for the verification of fairly big stations.

6 Conclusions

Medium and large stations are controlled by a network of interlockings due to the limitations of
the current technology and due to some availability constraints. In this article, we have shown
that the compositional verification is a perfect fit for the formal verification of such a network.
This principle can be further used to split the interlocking entity thereby allowing to tackle the
state space explosion problem.

Our contribution is twofold. First we proposed an algorithm that can automatically split an
interlocking entity into smaller entities called components. Second we proposed a catalogue
containing an exhaustive list of interfaces/contacts allowing the compositional verification of all
our graph of interlockings. This catalogue holds all the templates of the formal definitions needed
to declare the interfaces and contracts binding the components. Our algorithm thus produces the
components, identifies the interfaces with other components, and infers the contracts ruling the
interfaces. This output can then be directly used by the OCRA tool to perform the compositional
verification of the system (i.e., group of components/interlocking).

In our case study, we demonstrated the benefits of the use of the algorithm on a realistic size
station of the Belgian railways controlled by three interlockings. We developed our two-steps
process and showed that it allows to get the prove of the ”no-collision” property for the 150
routes station.

References

[A. 17] A. Fantechi and A. E. Haxthausen and M. B. R. Nielsen. Model Checking Geograph-
ically Distributed Interlocking Systems Using UMC. In 2017 25th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Processing (PDP).
Pp. 278–286. March 2017.
doi:10.1109/PDP.2017.66

[BCL+15] S. Busard, Q. Cappart, C. Limbrée, C. Pecheur, P. Schaus. Verification of railway in-
terlocking systems. In Proceedings 4th International Workshop on Engineering Safety
and Security Systems, ESSS 2015, Oslo, Norway, June 22, 2015. Pp. 19–31. 2015.
doi:10.4204/EPTCS.184.2
http://dx.doi.org/10.4204/EPTCS.184.2

[BP13] S. Busard, C. Pecheur. PyNuSMV: NuSMV as a Python Library. In Brat et al. (eds.),
Nasa Formal Methods 2013. LNCS 7871, pp. 453–458. Springer-Verlag, 2013.

AVoCS 2018 14 / 17

http://dx.doi.org/10.1109/PDP.2017.66
http://dx.doi.org/10.4204/EPTCS.184.2
http://dx.doi.org/10.4204/EPTCS.184.2

ECEASST

[Bra11a] A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI.
LNCS 6538, pp. 70–87. Springer, 2011.

[Bra11b] A. Bradley. SAT-Based Model Checking without Unrolling. In Jhala and Schmidt
(eds.), Verification, Model Checking, and Abstract Interpretation. Lecture Notes in
Computer Science 6538, pp. 70–87. Springer Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-18275-4 7
http://dx.doi.org/10.1007/978-3-642-18275-4 7

[Bra12] A. R. Bradley. Understanding IC3. In Theory and Applications of Satisfiability Testing
– SAT 2012. Pp. 1–14. Springer Science + Business Media, 2012.
doi:10.1007/978-3-642-31612-8 1
http://dx.doi.org/10.1007/978-3-642-31612-8 1

[CDT13] A. Cimatti, M. Dorigatti, S. Tonetta. OCRA: A tool for checking the refinement of
temporal contracts. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). Institute of Electrical & Electronics Engineers (IEEE),
nov 2013.
doi:10.1109/ase.2013.6693137
http://dx.doi.org/10.1109/ase.2013.6693137

[CEN02] CENELEC. IEC61508 - Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems. 2002.

[Cim13] Cimatti, Alessandro and Roveri, Marco and Susi, Angelo and Tonetta, Stefano. Vali-
dation of Requirements for Hybrid Systems: A Formal Approach. ACM Trans. Softw.
Eng. Methodol. 21(4):22:1–22:34, Feb. 2013.
doi:10.1145/2377656.2377659
http://doi.acm.org/10.1145/2377656.2377659

[CT12] A. Cimatti, S. Tonetta. A Property-Based Proof System for Contract-Based Design.
In 2012 38th Euromicro Conference on Software Engineering and Advanced Applica-
tions. Institute of Electrical & Electronics Engineers (IEEE), sep 2012.
doi:10.1109/seaa.2012.68
http://dx.doi.org/10.1109/seaa.2012.68

[CT15] A. Cimatti, S. Tonetta. Contracts-refinement proof system for component-based em-
bedded systems. Science of Computer Programming 97:333–348, jan 2015.
doi:10.1016/j.scico.2014.06.011
http://dx.doi.org/10.1016/j.scico.2014.06.011

[F. 13] F. M. Spowart. SSI – Solid State Interlocking : Basic guide. Brochure, 2013.
http://nremployee.yolasite.com/resources/SSI%20basic%20system%20notes%
20(PDF).pdf

[FFM12] A. Fantechi, W. Fokkink, A. Morzenti. Some Trends in Formal Methods Applications
to Railway Signaling. Pp. 61–84. John Wiley & Sons, Inc., 2012.

15 / 17 Volume 076 (2019)

http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-31612-8_1
http://dx.doi.org/10.1007/978-3-642-31612-8_1
http://dx.doi.org/10.1109/ase.2013.6693137
http://dx.doi.org/10.1109/ase.2013.6693137
http://dx.doi.org/10.1145/2377656.2377659
http://doi.acm.org/10.1145/2377656.2377659
http://dx.doi.org/10.1109/seaa.2012.68
http://dx.doi.org/10.1109/seaa.2012.68
http://dx.doi.org/10.1016/j.scico.2014.06.011
http://dx.doi.org/10.1016/j.scico.2014.06.011
http://nremployee.yolasite.com/resources/SSI%20basic%20system%20notes%20(PDF).pdf
http://nremployee.yolasite.com/resources/SSI%20basic%20system%20notes%20(PDF).pdf

A Framework for the Formal Verification of Networks of Railway Interlockings

doi:10.1002/9781118459898.ch4
http://dx.doi.org/10.1002/9781118459898.ch4

[HHP14] L. V. Hong, A. E. Haxthausen, J. Peleska. Formal Modeling and Verification of In-
terlocking Systems Featuring Sequential Release. In Formal Techniques for Safety-
Critical Systems - Third International Workshop, FTSCS 2014, Luxembourg, Novem-
ber 6-7, 2014. Revised Selected Papers. Pp. 223–238. 2014.
doi:10.1007/978-3-319-17581-2 15
https://doi.org/10.1007/978-3-319-17581-2 15

[HPP14] A. E. Haxthausen, J. Peleska, R. Pinger. Applied Bounded Model Checking for In-
terlocking System Designs. In Revised Selected Papers of the SEFM 2013 Collocated
Workshops on Software Engineering and Formal Methods - Volume 8368. Pp. 205–220.
Springer-Verlag New York, Inc., New York, NY, USA, 2014.
doi:10.1007/978-3-319-05032-4 16
http://dx.doi.org/10.1007/978-3-319-05032-4 16

[Lim16] Limbrée, Christophe and Cappart, Quentin and Pecheur, Charles and Tonetta, Stefano.
Verification of railway interlocking-compositional approach with OCRA. In Interna-
tional Conference on Reliability, Safety and Security of Railway Systems. Pp. 134–149.
2016.

[ocr18] OCRA Tool - Home Page. May 2018.
https://ocra.fbk.eu/

[rai15] The XML-Interface for Railway Applications. March 2015.
http://www.railml.org

[Rob14] Roberto Cavada and Alessandro Cimatti and Michele Dorigatti and Alberto Griggio
and Alessandro Mariotti and Andrea Micheli and Sergio Mover and Marco Roveri and
Stefano Tonetta. The nuXmv Symbolic Model Checker. In Computer Aided Verifica-
tion - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Pp. 334–342. 2014.
doi:10.1007/978-3-319-08867-9 22
http://dx.doi.org/10.1007/978-3-319-08867-9 22

[SB11] F. Somenzi, A. R. Bradley. IC3: Where Monolithic and Incremental Meet. In Proceed-
ings of the International Conference on Formal Methods in Computer-Aided Design.
FMCAD ’11, pp. 3–8. FMCAD Inc, Austin, TX, 2011.
http://dl.acm.org/citation.cfm?id=2157654.2157657

[Win01] K. Winter. Model Checking Abstract State Machines. It, Von der Fakultat IV - Elek-
trotechnik und Informatik der Technischen Universitat Berlin, July 2001.

[Win12] K. Winter. Optimising Ordering Strategies for Symbolic Model Checking of Railway
Interlockings. In Proceedings of the 5th International Conference on Leveraging Appli-
cations of Formal Methods, Verification and Validation: Applications and Case Studies

AVoCS 2018 16 / 17

http://dx.doi.org/10.1002/9781118459898.ch4
http://dx.doi.org/10.1002/9781118459898.ch4
http://dx.doi.org/10.1007/978-3-319-17581-2_15
https://doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-319-05032-4_16
http://dx.doi.org/10.1007/978-3-319-05032-4_16
https://ocra.fbk.eu/
http://www.railml.org
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dl.acm.org/citation.cfm?id=2157654.2157657

ECEASST

- Volume Part II. ISoLA’12, pp. 246–260. Springer-Verlag, Berlin, Heidelberg, 2012.
doi:10.1007/978-3-642-34032-1 24
http://dx.doi.org/10.1007/978-3-642-34032-1 24

17 / 17 Volume 076 (2019)

http://dx.doi.org/10.1007/978-3-642-34032-1_24
http://dx.doi.org/10.1007/978-3-642-34032-1_24

	Introduction - Interlocking system
	Validation of interlocking
	Formal verification of interlocking

	Compositional verification of interlockings
	A justification for the compositional verification
	Compositional verification

	Catalogue of interfaces and contracts
	An algorithm to split the interlocking topology
	Verification strategy and case study
	Verification method
	Case study - Application of the verification process

	Conclusions

