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Abstract: OCL 2.0 specifies a standard library of predefined types and
associated operations. A model-level representation of the library is required
to reference its elements within the abstract syntax model created by an OCL
parser. Existing OCL engines build this model in the implementation code
which severely limits reusability, flexibility and maintainability. To address
these problems, we show how a common pivot model with explicit support
for template types can help to externalize the definition of the standard li-
brary and integrate it with instances of arbitrary domain-specific modeling
languages. We exemplify the feasibility of our approach with a prototypical
implementation for the Dresden OCL2 Toolkit and present a tailored EMF
editor for modeling the OCL types and operations. We limit our discussion
to the model level, i.e., we do not consider an implementation of the standard
library for an execution engine.
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1 Introduction

The Object Constraint Language (OCL) [OMG06b] specifies a standard library of types
and associated operations. This includes primitive types such as Integer or String,
collection types like Set or Bag as well as a number of special types which are important
for the OCL type system (OclAny, OclVoid, and OclType). Among the predefined oper-
ations on these types are arithmetic, boolean and set-theoretic operations. All types in
the standard library are instances of abstract syntax classes. These are located one level
above the type definitions in the four-layered meta hierarchy of the OMG MOF archi-
tecture [OMG06a]. Since OCL allows querying of both metamodels and models [SV06,
p. 97], the standard types exist either on the M2 or the M1 layer.

Now, when building the abstract syntax model from a textual OCL expression, an OCL
parser needs to have access to the elements of the standard library. This is necessary, for
instance, to properly locate operations defined for the implicit supertype OclAny or to
create user-defined collection and tuple types. Existing OCL engines, such as the current
release of the Dresden OCL2 Toolkit [WWWa] or the Kent OCL Library [WWWb],
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Model-Level Integration of the OCL Standard Library

usually build an internal representation of the standard library programmatically, e.g,
using the API of a model repository.

Hiding the structure of the standard library inside the implementation code of the
engine triggers a number of problems. Firstly, the reusability of the library definition is
severely impaired, because it is tied to a particular implementation language and plat-
form. Thus, porting the OCL engine to another programming language requires an entire
rewrite of the code that creates the library. Further, the model of the standard library
cannot conveniently be validated, altered, extended, or modularized. This is disadvan-
tageous if the underlying execution platform (i.e., an interpreter or code generator) does
not support some of the standard library types and operations. In this case, adapting the
library definition on the model level by removing the corresponding elements would be
helpful. In essence, the flexibility of the “in-code” approach is relatively low. Lastly, the
implementation of the OCL engine tends to become fairly complex leading to decreased
maintainability. For instance, the Dresden OCL2 Toolkit in its current release contains a
helper class with more than 400 lines of code alone to manage the model of the standard
library.

As an answer to these problems, we propose the novel approach of creating the OCL
standard library as an instance of a so-called pivot model, which can be viewed as a
“universal language covering a certain domain” [KKK+06]. For example, Milanovic et
al. [MGG+06] employ the REWERSE Rule Markup Language (R2ML) as a “pivotal
metamodel” to map between OWL/SWRL and UML/OCL. In this paper, we define a
pivot model as an intermediate metamodel used for aligning the metamodels of arbitrary
domain-specific modeling languages (DSL) with that of OCL. By directly supporting
generics in this metamodel, modeling all of the template types and operations in the OCL
standard library becomes possible. We have implemented this approach using the Eclipse
Modeling Framework (EMF) [BSM+03] which allowed us to build a highly functional
editor for the pivot model and employ EMF’s default XMI serialization capabilities.
Providing the predefined OCL types within an OCL engine therefore reduces to a simple
model file import. Concrete collection types can be created from the corresponding
templates by binding their type parameters with the required element type.

The remainder of this paper is structured as follows: In Section 2, we briefly review
the challenges for a model-level integration of the OCL standard library in the light of
two existing OCL engines. We continue by describing the design of a suitable pivotal
metamodel addressing these issues in Section 3. In Section 4, we present a practical
evaluation of our approach. We highlight the visual editor used for modeling the standard
library and describe an illustrative example. A brief account of related work is provided
in Section 5. Finally, Section 6 concludes on our work and shows up further research.

2 Background

Based on observations from two well-known implementations of the OCL standard,
namely the Dresden OCL2 Toolkit and the Kent OCL Library, we can identify two
major challenges for a model-level integration of the standard library in an OCL engine.
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In brief, these are:

1. Operations and parameters in the standard library instantiate the correspond-
ing metaclasses from the UML metamodel [OMG05b]. When OCL is integrated
with domain-specific modeling languages developed within so-called language work-
benches [Fow05] or via UML profiles, we cannot rely on a common format for the
library any more.

2. The standard library contains template types and operations that are parameter-
ized with a type parameter. Most modeling languages do not support a declarative
definition of these generic elements.

In the following, we will discuss these two issues in greater detail.

2.1 OCL for Domain-Specific Modeling Languages

In recent years, the importance of domain-specific languages (DSLs) for describing sys-
tems has increased and a convergence with model-driven approaches such as the OMG
MDA initiative [OMG03a] can be witnessed [BJKV06]. As a result, the original scope of
OCL being an add-on to UML [WK03] has widened to support constraints and queries
over object-based modeling languages in general [AHM06].

An obvious solution to these new challenges is the introduction of a pivotal metamodel
that abstracts over the metamodels of arbitrary domain-specific languages and provides
exactly those features required for an integration with OCL. Both of our reference OCL
engines work this way. The Dresden OCL2 Toolkit in its current version employs a so-
called Common Model [LO04] to adapt the metamodels of UML 1.5 as well as MOF 1.4,
while the Kent OCL Library supports UML 1.4, Ecore (the metamodel used by EMF),
and Java via a central Bridge model [AP04].

Unfortunately, both solutions fail to decouple the model of the OCL standard library
from the adapted metamodel. In the Dresden OCL2 Toolkit, the predefined library oper-
ations and their parameters are instances of the corresponding UML or MOF metaclasses,
while in the Kent OCL Library they instantiate metamodel-specific adapter classes. Both
approaches demand a programmatic creation of the standard library types and opera-
tions. Consequently, to model the standard library externally, we need to find a way to
instantiate these elements independently from any adapted metamodel.

2.2 Generics in the OCL Standard Library

The predefined collection types in the standard library are actually template types with
the type parameter T [OMG06b, p. 144]. As an example, consider the sum operation of
the OCL Collection type whose return parameter is typed with the element type of
the collection. We say that a concrete type Collection(Integer) is created from the
template Collection(T) by substituting, or binding, T with the type Integer. Since
element types may be nested, there is an infinite number of collection types which have
to be dynamically created when parsing a particular OCL expression.
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However, not only types can have type parameters. Consider the product operation of
Collection(T) which returns the cartesian product of two collections and has the signa-
ture product(c2:Collection(T2)):Set(Tuple(first:T,second:T2)). Note that the
return type of this operation not only depends on the binding of the type parameter
T, but also on the type of the argument c2. This is an example of a so-called generic
operation [Bra04]. Further note that the return type of the product operation is itself a
template type, namely Set(T), whose type parameter T is bound with the generic type
Tuple(first:F, second:S). The actual type of the type parameters F and S is deter-
mined at runtime, based on the binding for T and T2, respectively. In this case, we call
T and T2 type arguments for the generic tuple type.

Finally, some of the predefined operations in the library have return types that depend
on the object they are invoked on. Examples are OclAny::asSet (returning a singleton
set containing the object) and OclAny::allInstances (returning the set of all instances
of a type). Both operations have Set(T) as their return type, but the concrete binding
for T cannot be determined until the source type of the operation call is known.

To remove the definition of the standard library from the implementation code and
specify it declaratively, a mechanism to model generic types and operations is required.
Moreover, the engine needs to support the binding of generic elements at runtime to
dynamically create concrete types while parsing an OCL expression.

3 The Design of a Pivot Model with Generics Support

We are currently reengineering the Dresden OCL2 Toolkit to increase its reusability
and flexibility and to provide the foundations for future research into the integration
of OCL with arbitrary domain-specific languages. To this end, we have redesigned and
reimplemented large parts of the toolkit’s infrastructure [Brä07]. The new architecture
features a more flexible model repository adaptation mechanism. It is based on a pivot
model that results from a careful analysis of previous approaches (cf. Subsection 2.1)
and the Core::Basic package of UML 2.0. So far, we have integrated both EMF and
the Netbeans Metadata Repository [Net03] and implemented bindings for Ecore, MOF
and UML. The main elements of the new pivot model are shown in Figure 1.

A comprehensive discussion of the new architecture is outside the scope of this paper.
However, for a better understanding of the following paragraphs we would like to draw
attention to one noteworthy feature that sets it apart from existing OCL implementa-
tions: A layered architecture now eliminates any dependencies from the pivot model to
the OCL metamodel. Thus, the support for model-level generics, which we will describe
below, is only an enabling technology for modeling the template types in the OCL stan-
dard library. All necessary functionality is already contained in the implementation of
the pivot model metaclasses and can easily be leveraged for alternative model querying
languages.

Figure 2 summarizes how the pivot model introduces template types and operations
as first-class model entities. The design is loosely based on the generics support in EMF
2.3 [MP07] which closely mirrors the generic capabilities of Java 5 [Bra04]. The key idea
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Figure 1: The main elements of the pivot model

is to introduce a new abstraction called GenericElement which classifies elements that
may contain one or several TypeParameters.
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Operation ParameterGenericType

TypeParameter
0..*

1 ownedTypeParameter

0..*genericElement

1

1 typeParameter1

TypedElement

TypeArgument

ComplexGenericType

0..*
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owningGenericType

1
Type

unboundType 1

                      

Figure 2: Generics in the pivot model

The type parameters of a generic element may be bound with a concrete type, which
means that all occurrences of the parameter in the definition of the generic element are
replaced with this type (Figure 3). In the case of a Type instance, this will affect all
properties and operations (including their parameters) declared for this type.

GenericElement

bindTypeParameter(parameters : Sequence<TypeParameter>, types : Sequence<Type>) : NamedElement

                       

Figure 3: Binding the type parameters of generic elements
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In line with other metamodels, the pivot model generalizes properties, operations
and parameters with an abstract metaclass TypedElement that declares a reference to a
type. Now, as illustrated in Figure 4, we allow typed elements to alternatively reference a
GenericType. Generic types exist in two flavours (Figure 2). A ParameterGenericType
simply references a TypeParameter, as in the case of the return parameter of the sum op-
eration mentioned in Subsection 2.2. A ComplexGenericType, on the other hand, refer-
ences another Type with unbound type parameters as well as a number of TypeArguments
that will replace the type parameters during binding. In the example of the product op-
eration, the return parameter contains a complex generic type referencing the unbound
type Tuple(first:F,second:S) and defining two type arguments T and T2. This ex-
ample shows nicely that type arguments, being typed elements themselves, can have a
generic type as well. Through this design, an unlimited nesting of generic types becomes
possible.

GenericType

TypeTypedElement

0..10..1

genericType

0..1

0..* 0..10..*

type

0..1

0..1

                        

Figure 4: Typed elements and generic types

It turns out that supporting generic types for typed elements does not suffice yet. Con-
sider the OCL collection type Sequence(T). This template type extends Collection(T).
Intuitively, binding type parameter T of Sequence(T) with a concrete type, say String,
should result in Sequence(String) extending Collection(String). Yet, the design de-
veloped so far does not cover this special case. The key observation here is that the two
type parameters T are not the same. In fact, it is perfectly legal to label the type parame-
ter of the sequence type with S instead of T. Correctly binding both subtype Sequence(S)
and supertype Collection(T) requires S to be a TypeArgument of Collection(T). This
intuition leads to the introduction of a new association between Type and GenericType
denoting the generic supertypes of a type (Figure 5). Then, binding a type will cause all
generic supertypes to be bound as well. If all type parameters of a generic super type are
bound (i.e., it is not generic any more), it can be safely added to the regular superType
reference list (cf. Figure 1).

Type GenericType
0..*0..1

genericSuperType

0..*0..1

                          

Figure 5: Generic supertype

On a side note, it is worth highlighting that in contrast to EMF, our pivot model
does not know the notion of a raw type, i.e., a “fallback” type that is assumed to ex-
ist for any type parameter in an unbound generic type. This directly stems from the
fact that we aimed to avoid any dependencies from the pivot model to the OCL meta-
model. Otherwise, OclAny as the root of the OCL type system would have been a logical
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choice. To guarantee proper type conformance checking, we have suitably extended the
implementation of the OCL collection metaclasses instead.

4 Practical Evaluation

The previous section presented the design of a pivot model with explicit support for
generics. Now, we can proceed with showing its application. We have realized the
new infrastructure of the Dresden OCL2 Toolkit as a set of Eclipse plug-ins. To create
implementation classes for the pivot model elements, we employed the metamodeling and
code generation facilities of the Eclipse Modeling Framework. This yielded the following
advantages:

1. Except for some behavioral features that have to be implemented manually, the
pivot model implementation generated by EMF is already fully functional and
can be instantiated. Contrary to previous approaches, we do not depend on an
integration with a particular DSL to create an instance of the OCL standard library.
By realizing the same interfaces, our standard library model is compatible with any
metamodel binding that is created for the pivot model.

2. The XMI serialization capabilities of EMF enable us to effectively save and load
the standard library which improves reusability.

3. EMF can generate a highly customizable tree editor for a metamodel. In the next
section, we show how a heavily adapted version of the default pivot model editor
allows the user to conveniently view, edit and alter the model of the standard
library.

4.1 Visually modeling the OCL standard library

Figure 6 shows the model of the standard library in the adapted pivot model editor. This
model, which contains all types and operations defined in the OCL 2.0 specification, is
part of the new toolkit infrastructure. Users may, however, replace the default library
with a modified version when integrating a new domain-specific language with the engine.
For instance, if a DSL does not know the concept of an ordered set, the OrderedSet type
can be safely removed from the library model. This ensures that all valid abstract syntax
models created by a parser will indeed execute on the domain-specific target platform.

The look and feel of the pivot model editor resembles that of the EMF Ecore editor.
However, we have simplified the modeling of generics to hide complexity from the user.
When creating typed elements (properties, operations, and parameters), declared type
parameters of the containing generic element show up in the list of possible types. The
editor automatically creates the necessary ParameterGenericType instance in this case.
If a template type is selected (e.g., for the c2 parameter of the product operation), a
complex generic type and corresponding type arguments are added. Similarly, the editor
allows to specify the type arguments when extending generic supertypes.
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Figure 6: The model of the OCL standard library

The root of the model is an instance of a special facade interface called OclLibrary.
Its definition is outlined in Figure 7. The OclLibrary interface provides the necessary
means for an OCL parser to retrieve the predefined standard library types when building
the abstract syntax model from an OCL expression.
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Figure 7: The facade interface for the OCL standard library types

4.2 Binding template types during OCL parsing

In the following, we demonstrate the feasibility of our approach with a simple example
that involves the binding of generic OCL collection types while parsing an OCL expres-
sion. Figure 8 depicts the model we will base the example scenario on.

name : String
/totalBalance : int

Person

id : String
balance : int

Account
owner

1

      accounts

 

 

                                                                      0..* {ordered}

  

Figure 8: The example model

Now, consider the following OCL expression which specifies the derived attribute
totalBalance in class Person. Note that the second invocation of the dot operator
(accessing the property balance of all elements in the accounts reference list) repre-
sents an implicit collect iterator.

context Person :: totalBalance : int
derive : self. accounts .balance ->sum ()

Parsing this expression triggers the following template type bindings: First, the type of
the property call expression referring to accounts is evaluated to be OrderedSet(Account).
This directly stems from the multiplicity specification and declared type of the property.
The actual binding of the OrderedSet template with the element type Account is facili-
tated within the getOrderedSetType operation of the OclLibrary facade. As shown in
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Section 3, this solely requires a call to the bindTypeParameter operation implemented
in the Type metaclass of the pivot model.

Similarly, the type of the collect iterator expression, which returns the list of individual
balance values, results from binding Sequence(T) with Integer. The engine automat-
ically maps the domain-specific int type to the corresponding OCL standard library
type. As a result, the return type of the sum operation becomes Integer. To sum up
this discussion, Figure 9 shows the abstract syntax model of the example expression as
it is visualized in the DSL-agnostic model browser that is part of the new toolkit in-
frastructure. Notice that not only the Sequence template has been bound, but also its
generic supertype Collection(T).

Figure 9: The abstract syntax model of the example expression

It is worth highlighting here that the method presented in this paper solely addresses
the static structure of the OCL standard library. To realize the dynamic semantics
and actually execute the expression in Figure 9, we still rely on an instance-level (M0)
implementation of the predefined types and operations. To this end, we have redesigned
the existing Java library of the Dresden OCL2 Toolkit to support a flexible integration
of arbitrary DSLs via a set of factory interfaces. Currently, an OCL interpreter based on
the new infrastructure is being developed to complement the components on the model
level.

5 Related Work
To the best of our knowledge, there is no published work that deals with the model-
level integration of the OCL standard library as described in this paper. Akehurst
et al. [AHM06] hint at this possibility, but simply suggest to import a UML package
containing the standard library types. Therefore, they do not address the problems
outlined in Section 2. However, they propose a mechanism to detach the implementation
of the standard library types and operations on the instance level. The ideas from this
work may complement our approach and further simplify the integration of different
domain-specific languages.

Another technique that aims at aligning OCL with custom domain-specific languages

Proc. Ocl4All 2007 10 / 14



ECEASST

on the instance level has been presented in [KPP06b]. Unfortunately, the authors employ
a custom expression language that is akin but not equal to OCL [KPP06a]. Furthermore,
they build on top of a model management framework and execution engine which does
not support a model-level integration of the standard library.

Lastly, the latest release of the Eclipse MDT OCL project [Ecl] features a highly
innovative way of integrating OCL with different modeling languages. Instead of a pivot
model, a generic environment interface defines type parameters for all metamodeling
concepts required by OCL. Unfortunately, this otherwise elegant approach necessitates a
concrete specialization of the entire OCL metamodel as well as the OCL standard library
for each custom DSL binding. The predefined operations of the standard types have to
be created within the implementation code yielding the disadvantages highlighted in
Section 1.

6 Conclusions and Future Work

In this paper, we have presented a novel technique for integrating the OCL standard
library on the model level. Contrary to previous approaches, we support a declarative
rather than a programmatic definition of the predefined types and operations thereby
improving reusability, flexibility, and maintainability. In addition, our method eases the
integration of different domain-specific languages with OCL, because the pivot model
provides an intermediate abstraction layer for a variety of metamodels. Therefore, in-
stantiating elements of the library model is independent of a particular DSL binding
and solely requires a suitable implementation of the pivot model interfaces. We have
demonstrated the feasibility and usefulness of our approach through an example that
was realized using newly developed components of the Dresden OCL2 Toolkit.

We are currently working on porting the tools of the Dresden OCL2 Toolkit to the new
infrastructure. Our aim is to leverage the increased flexibility provided by our approach
for other OCL-based languages defined by the OMG. Examples are the Query/View/-
Transformation (QVT) [OMG05a] language and the upcoming Production Rule Repre-
sentation (PRR) [OMG03b] standard. This may open up interesting perspectives for
areas as diverse as model transformation and business rule execution.

Finally, our solution still faces some limitations that are worthwhile to address. For
instance, our pivot model currently lacks the expressive power to model the dynamic
semantics of iterator expressions for the OCL collection types. In fact, detaching the
definition of iterators requires a different approach altogether since the corresponding
well-formedness rules for the abstract syntax are currently heavily intertwined with the
concrete syntax. Similarly, we have not yet found a satisfying answer to the problem of
binding generic operations whose return type depends on contextual information (e.g.,
allInstances and asSet in OclAny or flatten in the collection types). Even though
we are able to model the signature of these operations, we still have to check for them
explicitly in the code. Thus, the implementation of the OCL abstract syntax elements
(M2) still contains a few details of the standard library structure (M1).
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