
Electronic Communications of the EASST
Volume 77 (2019)

Interactive Workshop on the Industrial Application of
Verification and Testing,
ETAPS 2019 Workshop

(InterAVT 2019)

Advances in Usability of Formal Methods for Code Verification with
Frama-C

André Maroneze, Valentin Perrelle and Florent Kirchner

6 pages

Guest Editors: Anila Mjeda, Stylianos Basagiannis, Goetz Botterweck
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Advances in Usability of Formal Methods for Code Verification with
Frama-C

André Maroneze, Valentin Perrelle and Florent Kirchner∗

firstname.lastname@cea.fr
CEA, List, Gif-sur-Yvette, France

Abstract: Industrial usage of code analysis tools based on semantic analysis, such
as the FRAMA-C platform, poses several challenges, from the setup of analyses to
the exploitation of their results. In this paper, we discuss two of these challenges.
First, such analyses require detailed information about the code structure and the
build process, which are often not documented, being part of the implicit build chain
used by the developers. Unlike heuristics-based tools, which can deal with incom-
plete information, semantics-based tools require stubs or specifications for external
library functions, compiler builtins, non-standard extensions, etc. Setting up a new
analysis has a high cost, which precludes industrial users from trying such tools,
since the return on investment is not clear in advance: the analysis may reveal itself
of little use w.r.t. the invested time. Improving the usability of this first step is es-
sential for the widespread adoption of formal methods in software development. A
second aspect that is essential for successful analyses is understanding the data and
navigating it. Visualizing data and rendering it in an interactive manner allows users
to considerably speed up the process of refining the analysis results. We present
some approaches to both of these issues, derived from experience with code bases
given by industrial partners.

Keywords: semantic analysis, code analysis, visualization

1 Introduction

While formals methods have gained in maturity during the last decades, they struggle to impose
in standard industrial processes. The efforts needed to get verification tools running on a general
purpose software are demanding, and the cost is often prohibitive. However, with the continuous
increase in software complexity, its widespread application, and emerging safety and security
threats, the stakes for code verification are getting higher than ever.

Current approaches are currently focused on verifying safety-critical code with a well-delimited
perimeter, e.g. without dependencies on external libraries. They are primarily used by teams
which can invest a substantial amount of time in them, and often rely on the presence of formal
methods experts. To reach a wider range of applications, there are countless obstacles to over-
come. The question then stands: what types of improvements can help formal verification apply
to general-purpose code?

∗ This work has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 830892 for project SPARTA.

1 / 6 Volume 77 (2019)

mailto:firstname.lastname@cea.fr


Advances in Usability of Formal Methods for Code Verification with Frama-C

FRAMA-C is an open-source software analysis platform [KKP+15] that implements several
formal methods-based approaches to perform code verification on real-world C programs. In par-
ticular, FRAMA-C includes plugins for abstract interpretation [BBY17], weakest-preconditions
computation [Cor14], model-checking [SP16], invariant generation [OPHB18], and runtime ver-
ification [SKV17]. To this day, FRAMA-C counts more than 40 known plugins, with about half
of them being distributed at frama-c.com/download.html. To try to answer the above question,
our approach is to iteratively expand the FRAMA-C toolkit to address each individual problem
with easy-to-prototype solutions. We design these solutions while experimenting the analysis
process on a wide variety of codes, from industrial applications [Our15, CDDM12] to common
open-source case studies [OSC]. This experience report provides some insights on this process
and its results; while focused on the use of analyses rooted in abstract interpretation, it keeps a
mind toward conclusions that can apply to other types of formal verification.

We begin this paper with a short description of how a typical analysis is conducted with our
tool in section 2. Section 3 describes a few recurring problems during the setup of analyses and
the solutions we gave to these problems. Once an analysis has been completed, the user must
often face a list of several hundreds of alarms, some of them spurious. Section 4 explores the
ways to overcome these alarms. Finally, section 5 discusses possible threats to the validity of our
conclusions.

2 On the anatomy of a formal code analysis

A formal code analysis involves not only the source code itself, but also the build setup (espe-
cially for low-level languages such as C/C++), the target environment (architecture, compiler
and runtime) and external libraries. The initial setup of an analysis consists of retrieving this
information, often available in the build chain or development environment, and exposing it to
the analysis tool.

After the initial setup, the configuration phase largely consists in obtaining information for
libraries used in the code: standard language libraries, compiler built-ins, or third-party code
libraries. Providing the entirety of this code is often impossible (if the code is not available, e.g.
being hardcoded in the compiler or runtime) or impracticable (e.g. too large). A more efficient
approach consists in providing information on-demand, only for functions which are effectively
reachable in the program under analysis. This information can be a stub – a short piece of
code emulating the actual behavior, in a simplified or abstract way – or an abstract specification
written in a specification language supported by the semantic analyzer. The on-demand approach
means that, whenever new code is analyzed, one must check whether the used functions already
have stubs/specifications, or new ones must be written. This can be part of a collaborative effort,
incrementally improving support for common libraries.

Once setup is done, we enter an iterative process: an analysis is performed, and either new
library functions are called, requiring more stubbing or specification effort, or a more refined
parametrization of the analysis is obtained. The end result is usually a list of alarms, warnings,
and recommendations, and in the case of sound tools, the guarantee of absence of certain alarms
and the proof of certain properties. This iterative process usually requires more computation time
but is less user-intensive, thus several analyses can be run in parallel. Analyses typically begin

InterAVT 2019 2 / 6

frama-c.com/download.html


ECEASST

focused on efficiency (to ensure quick termination) and are then refined towards longer but more
precise results. The non-linearity of the process favors the use of profilers to understand which
functions are taking most of the time. Low-cost profiling can be obtained by integrating existing
tools, such as flamegraphs [fla].

3 Smarter, faster code analysis setups

As mentioned previously, the initial steps of an analysis require an intensive setup effort, com-
pared to the later steps. Even though this initial part has the advantage that results can often be
reused later, for the end user who is interested only in analyzing their source code, the short term
cost is hardly justifiable. Minimizing it is essential to allow semantic tools to be more widely
experimented with.

Practical experience with the setup of new code bases for analyses, both coming from open
source projects and proprietary industrial code, identified the following challenges:

1. Identifying and retrieving build commands. Languages such as C/C++ contain a lot
of complexity in their build systems: the C preprocessor uses information not present in
the source code, such as macros and inclusion directories specified via the command line.
This information is usually defined once and stored in the IDE (e.g. Visual Studio) or in
build files (Makefile, CMakeLists.txt). It is necessary for most analysis tools, since it is a
prerequisite for parsing. The LLVM project defined a JSON Compilation Database format
[JCD], under the form of compile_commands.json files which contain the list of
commands (including all arguments) passed to the compiler during a build. Verification
tools can parse it to obtain the necessary flags. CMake and bear (Build EAR) [BEA], a
wrapper for Makefiles that intercepts compiler calls, are some tools which able to produce
these databases. For IDEs which store this information in a different format (e.g., XML
files with project metadata such as Visual Studio’s .vcxproj files), conversion tools can
be devised to extract the data.

2. Source identification. Another requirement for some semantic tools is the notion of a
whole program: in order to analyze as deeply as possible, source information must be
complete: all sources should be given at once. However, simply concatenating the list
of source files is not always feasible. For instance, the source code of the SQLite library
contains 28 applications in the tool directory, 11 applications in the test directory,
plus several others, all of which can serve as entry points for a semantic analysis and
which redefine the main function. Also, external libraries are typically not included in
the compilation, except for their headers. Transforming the command line to ensure all
information is present, without duplication, requires some extra tooling. A cheap solution
to this issue is an iterative try-and-fail approach, in which the analysis starts with the
minimal amount of sources, and whenever a missing definition is found to be reachable,
its source is added to the compilation. User interaction is often required to decide between
multiple choices.

3. Analysis parametrization based on templates. Semantic analyses can be configured
along several trade-offs between precision and efficiency, as well as several hypotheses

3 / 6 Volume 77 (2019)



Advances in Usability of Formal Methods for Code Verification with Frama-C

concerning the code base and execution environment (can memory allocation fail? Are
floating-point NaNs expected? Should padding bits be considered initialized memory?,
etc.). Extensive help commands, user manuals and tutorials provide a multitude of infor-
mation, but the user might not have time to read everything before trying the tool. Default
values must be provided for the common case, but the very large range of parametrization
options available in such tools (as large as, if not larger, than what compilers provide) is
better suited via the definition of templates coupled with user feedback to provide the most
specific set of parameters relevant for the analysis.

4 Exploiting code analysis results

Code analyses are typically able to report dozens if not hundreds of issues, which often drive the
user away, due to the amount of work they seem to imply. Prioritization of warnings and alarms
is one of the essential features that semantic analyzers must provide to their users. However,
when it is not possible to define such priorities, other means must be provided to the user. One
important feature that has not been observed in current tools is the visualization of stack traces
and analysis contexts, in a scalable way (to be able to handle the thousands of possibles paths
present in existing code bases) while also providing useful insight to the user as to the origin of
alarms, and which measures are more likely to reduce the number of false alarms.

Origin of alarms. The identification of the origin of alarms is related to program slicing: high-
lighting the statements which the alarm depends on allows the user to focus on a smaller subset
of the program. Interprocedural aspects must be taken into account: filtering of callstacks, code
navigation between functions, and the kinds of dependencies related to the alarm: data depen-
dencies, control dependencies, and analysis-specific dependencies (e.g. abstract analyses might
include over-approximations as possible causes of alarms). Some of these sources are more
amenable to textual descriptions than others; most analysis tools include graphical interfaces
with code display features allowing for natural mappings (e.g. code highlighters and gutter indi-
cators for statements, filetree viewers for callstacks and interprocedural dependencies). However,
complex analyses involve a multitude of call contexts and variable values, leading to information
overflow that requires advanced filtering capabilities to ensure it remains manageable by the user.

Reduction of false alarms. Semantic analyses resorting to approximations (either to avoid
missing potential alarms, or to improve the efficiency of the analysis) may produce false alarms.
The information associated with these alarms, as well as the way they are displayed, allow the
user to more efficiently tune the analysis and add assertions to eliminate them. For instance, if a
given function contains too many alarms, the user may decide to stub it with a more abstract ver-
sion or specification. Clustering alarms by locality (either temporal or spatial) may help identify
common causes. Interactive dependence graphs, with an initial overview and on-demand zoom-
ing and unfolding of details, offer a way to present hierarchical information without overloading
the user. The extra effort spent in presenting these graphs is compensated in the long term by the
time savings in understanding the analysis results.

InterAVT 2019 4 / 6



ECEASST

5 Threats to validity

The challenges presented here come from our experience as direct users of the semantic analyses
available in FRAMA-C, as well as from feedback from users of the platform, several of which
are formal method practitioners. Feedback is not necessarily representative of the developer
community at large. The solutions mentioned in this paper, some of them in preliminary stages,
were tested mostly by ourselves, with a few of them having been tested by platform users at large.
Usability improvements are continuously deployed in the development version, but there might
be a long delay between their introduction and external user feedback about their efficiency. Also,
many of the issues concern difficulties present in C/C++ (e.g. preprocessor), but not always as
prominent in other languages.

6 Conclusion

Semantic analysis tools, due to their complexity and the amount of trade-offs they allow, need
better usability to enable a more widespread adoption. The integration of existing tools, autom-
atization of the initial setup, and use of templates complemented with user feedback are first
steps in this direction. Collaborative development of semantic annotation/stubbing for standard
libraries should improve the applicability of such analyses towards more code bases. Templates
with user feedback, graph visualization for understanding of analysis results and profiling are
all complementary techniques which offer improved ease of use at a low development cost. To
incentivize application of semantic tools, formal methods scientists and engineers can use open
source code bases both as source of input data for future development of the analysis, as well as
examples of parametrizations to be reused in other codes.

Bibliography

[BBY17] S. Blazy, D. Bühler, B. Yakobowski. Structuring Abstract Interpreters Through State
and Value Abstractions. In Bouajjani and Monniaux (eds.), Verification, Model
Checking, and Abstract Interpretation - 18th International Conference, VMCAI
2017, Paris, France, January 15-17, 2017, Proceedings. Lecture Notes in Com-
puter Science 10145, pp. 112–130. Springer, 2017.
doi:10.1007/978-3-319-52234-0 7
https://doi.org/10.1007/978-3-319-52234-0 7

[BEA] Build EAR Github Page. https://github.com/rizsotto/Bear. Accessed: 2019-01-25.

[CDDM12] P. Cuoq, D. Delmas, S. Duprat, V. Moya Lamiel. Fan-C, a Frama-C plug-in for data
flow verification. In Embedded Real Time Software and Systems (ERTS’12). 2012.

[Cor14] L. Correnson. Qed. Computing What Remains to Be Proved. In Badger and Rozier
(eds.), NASA Formal Methods - 6th International Symposium, NFM 2014, Houston,
TX, USA, April 29 - May 1, 2014. Proceedings. Lecture Notes in Computer Sci-
ence 8430, pp. 215–229. Springer, 2014.

5 / 6 Volume 77 (2019)

http://dx.doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://github.com/rizsotto/Bear


Advances in Usability of Formal Methods for Code Verification with Frama-C

doi:10.1007/978-3-319-06200-6 17
https://doi.org/10.1007/978-3-319-06200-6 17

[fla] Flame Graphs. http://www.brendangregg.com/flamegraphs.html. Accessed: 2019-
01-25.

[JCD] JSON Compilation Database Format Specification. https://clang.llvm.org/docs/
JSONCompilationDatabase.html. Accessed: 2019-01-25.

[KKP+15] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, B. Yakobowski. Frama-C: A
software analysis perspective. Formal Asp. Comput. 27(3):573–609, 2015.
doi:10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7

[OPHB18] S. de Oliveira, V. Prevosto, P. Habermehl, S. Bensalem. Left-Eigenvectors Are Cer-
tificates of the Orbit Problem. In Potapov and Reynier (eds.), Reachability Problems
- 12th International Conference, RP 2018, Marseille, France, September 24-26,
2018, Proceedings. Lecture Notes in Computer Science 11123, pp. 30–44. Springer,
2018.
doi:10.1007/978-3-030-00250-3 3
https://doi.org/10.1007/978-3-030-00250-3 3

[OSC] Open Source Case Studies Github Page. https://github.com/Frama-C/
open-source-case-studies. Accessed: 2019-01-25.

[Our15] A. Ourghanlian. Evaluation of static analysis tools used to assess software important
to nuclear power plant safety. Nuclear Engineering and Technology 47(2):212 –
218, 2015. Special Issue on ISOFIC/ISSNP2014.
doi:https://doi.org/10.1016/j.net.2014.12.009
http://www.sciencedirect.com/science/article/pii/S1738573315000091

[SKV17] J. Signoles, N. Kosmatov, K. Vorobyov. E-ACSL, a Runtime Verification Tool for
Safety and Security of C Programs (tool paper). In Reger and Havelund (eds.),
RV-CuBES 2017. An International Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime Verification Tools, September
15, 2017, Seattle, WA, USA. Kalpa Publications in Computing 3, pp. 164–173. Easy-
Chair, 2017.
http://www.easychair.org/publications/paper/t6tV

[SP16] S. Shankar, G. Pajela. A Tool Integrating Model Checking into a C Verification
Toolset. In Bosnacki and Wijs (eds.), Model Checking Software - 23rd International
Symposium, SPIN 2016, Co-located with ETAPS 2016, Eindhoven, The Nether-
lands, April 7-8, 2016, Proceedings. Lecture Notes in Computer Science 9641,
pp. 214–224. Springer, 2016.
doi:10.1007/978-3-319-32582-8 15
https://doi.org/10.1007/978-3-319-32582-8 15

InterAVT 2019 6 / 6

http://dx.doi.org/10.1007/978-3-319-06200-6_17
https://doi.org/10.1007/978-3-319-06200-6_17
http://www.brendangregg.com/flamegraphs.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
http://dx.doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/978-3-030-00250-3_3
https://doi.org/10.1007/978-3-030-00250-3_3
https://github.com/Frama-C/open-source-case-studies
https://github.com/Frama-C/open-source-case-studies
http://dx.doi.org/https://doi.org/10.1016/j.net.2014.12.009
http://www.sciencedirect.com/science/article/pii/S1738573315000091
http://www.easychair.org/publications/paper/t6tV
http://dx.doi.org/10.1007/978-3-319-32582-8_15
https://doi.org/10.1007/978-3-319-32582-8_15

	Introduction
	On the anatomy of a formal code analysis
	Smarter, faster code analysis setups
	Exploiting code analysis results
	Threats to validity
	Conclusion

