
Electronic Communications of the EASST
Volume 77 (2019)

Interactive Workshop on the Industrial Application of
Verification and Testing,
ETAPS 2019 Workshop

(InterAVT 2019)

AskTheCode: Interactive Call Graph Exploration
for Error Fixing and Prevention

Robert Husák, Jan Kofroň and Filip Zavoral

6 pages

Guest Editors: Anila Mjeda, Stylianos Basagiannis, Goetz Botterweck
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

AskTheCode: Interactive Call Graph Exploration
for Error Fixing and Prevention

Robert Husák1, Jan Kofroň2 and Filip Zavoral3

1 husak@ksi.mff.cuni.cz
2 jan.kofron@d3s.mff.cuni.cz

3 zavoral@ksi.mff.cuni.cz
Charles University

Faculty of Mathematics and Physics, Prague, Czech Republic

Abstract: In order to prevent and fix errors in program code, developers need to
understand its semantics to a significant extent. For this purpose, they use various
approaches, such as manual call graph exploration or dynamic analysis with a de-
bugger. However, these techniques tend to be cumbersome in a larger codebase,
because they provide either underapproximate or overapproximate results and it is
often hard to combine them. Therefore, we present AskTheCode, a Microsoft Vi-
sual Studio extension enabling to interactively explore a call graph, ensuring that
only feasible execution traces are taken into consideration. AskTheCode is based
on control flow analysis and backward symbolic execution. We show its potential to
significantly improve developers’ experience on a complex code example.

Keywords: control flow analysis, symbolic execution, call graph, interactive, de-
bugging

1 Introduction

When developers want to fix and prevent errors by understanding the semantics of the source
code, they usually use manual call graph exploration and debugging. However, call graphs are
often complicated and the calls can be constrained by various conditions. Debugging, on the
other hand, might be misleading and incapable of capturing all the possible situations. Therefore,
finding the exact context under which a bug can occur is tedious and error-prone [LM10].

We believe there is an opportunity to utilize a sound analysis technique for this task, for several
reasons. First, the context is usually much more limited than in the case when we try to verify
the program as a whole. Second, the developers might be more willing to wait long enough for
the analysis to complete, because it may save much more time to them than if they wanted to do
it manually. Last, even if the problem is too complicated to be handled properly in a reasonable
time, developers can interact with the tool, applying appropriate abstractions and assumptions.
Therefore, we have created a tool named AskTheCode, which utilizes control flow analysis and
backward symbolic execution to help developers investigate particular problems in the source
code.

1 / 6 Volume 77 (2019)

mailto:husak@ksi.mff.cuni.cz
mailto:jan.kofron@d3s.mff.cuni.cz
mailto:zavoral@ksi.mff.cuni.cz

AskTheCode: Interactive Call Graph Exploration for Error Fixing and Prevention

2 Design

The primary purpose of AskTheCode is to reason about the context under which a certain situ-
ation in a program can occur. Therefore, an efficient way to formulate what problem we need
to address is writing an assertion a0 specifying the expected semantics and check in which sit-
uations it can be violated. Notice that this approach is suitable not only for bug fixing, but also
for their prevention, because developers can use the tool to confirm their possibly incorrect ideas
about the program semantics.

To verify an assertion, a natural approach is to inspect the code against the control flow and
look for any input that eventually violates it. Because AskTheCode is a Microsoft Visual Studio
extension aimed at C# code analysis, it can access the Roslyn .NET compiler [NH14]. We use
it to construct control flow graphs and the call graph of the methods related to the problem
being solved. Next, we utilize backward symbolic execution [BCD+18, CFS09] to perform
the assertion verification itself, employing the Z3 SMT solver [DB08]. Depending on the user
configuration, an entry point is either a non-private method in the same class as where a0 occurs,
or a public method in a public class within the project. To tackle path explosion and other
symbolic execution problems, users can also adjust loop unwinding, recursion limit, and timeout.

All the execution traces from entry points to violating a0 are continuously gathered during the
run of backward symbolic execution. We provide users with a panel allowing them to interac-
tively explore those traces as if they were a program under execution. They can step forward and
backward throughout the particular methods and statements and see their intermediate values.
Furthermore, they can also inspect the relevant heap structure and its changes.

There is also a high-level overview in the form of an annotated call graph, rendered using
the Microsoft Automatic Graph Layout library [NNB+16]. The graph is continuously updated
as backward symbolic execution runs on background. At the beginning, it consists only of the
method m0 containing a0, but then it expands as the explored states extend to the callers and
callees of m0. Whenever an execution trace is discovered, all the methods it traverses are empha-
sized in red to draw the user’s attention. On the other hand, if there are not any states capable
of extending to a method mu, we mark mu as unreachable by making its background green. The
user can also explicitly ignore certain methods, letting the analysis focus on less complicated
ones.

3 Example

To demonstrate how can AskTheCode help developers, let us inspect the code example in Fig-
ure 1. It presents an excerpt from a library working with singly linked lists. They are represented
by the Node class containing an integer field val and a reference to the following node called
next. Due to a certain implementation issue, it is demanded that whenever a Node is last in a
list, its value must be zero. In LastNode, we check this property using an assertion. Imagine
that we have received a bug report stating that this property is sometimes violated, but we were
not given any exact context under which it can happen.

The most common approaches to solving these tasks are manual call graph exploration and
debugging, both of which can be problematic in certain situations. Manual call graph exploration

InterAVT 2019 2 / 6

ECEASST

private bool LastNode(Node n) {
Debug.Assert(n.next != null || n.val == 0);
return n.next == null;

}
public void CheckedUse(Node n) {
if (n.val == 0 && LastNode(n)) { /*...*/ }

}
public Node UncheckedUse(Node n) {
Node gen = RandomNode();
if (LastNode(gen)) { gen.next = n; }
return gen;

}
private Node RandomNode() {
int v = GetRandomNumber();
if (v == 0) return new Node(0, null);
if (v == 1) return new Node(10, null);
return TooComplicatedOperation();

}

Figure 1: Example C# code with an assertion in LastNode to be verified

requires us to inspect the logic of each affected method to ensure the situation is handled in there.
In our example, we need to inspect CheckedUse, although it never allows the error to happen.
Debugging, on the other hand, reveals only the situations which can indeed cause the error being
inspected. However, it might be often difficult to reproduce the error and we cannot be sure
that we have discovered all the contexts under which it can occur. Furthermore, the information
provided by the debugger is limited. Considering our example, after reproducing the error and
pausing the program execution on the violated assertion, we can see UncheckedUse in the call
stack. However, we cannot see what exactly happened in the call of RandomNode, because we
no longer know the indeterministic value v and hence the executed branch.

The mentioned problems can be solved using AskTheCode, as we can see in Figure 2. The call
graph displayed in the top right panel shows that LastNode is called both by CheckedUse
and UncheckedUse. CheckedUse is displayed with a green background and dashed arrow,
as it is proven not to cause the error. On the other hand, UncheckedUse is emphasized in
red together with its callees RandomNode, GetRandomNumber and the Node constructor, as
there was found an assertion violating program trace going through them. RandomNode can
also potentially call another method, TooComplicatedOperation, whose definition we
have intentionally skipped. As we can tell from its name, it was too complicated for backward
symbolic execution to handle automatically. Therefore, as it is shown in the call graph, we at
least know that it is worth to be inspected manually, unlike CheckedUse.

Regarding the found trace, we can explore it in the bottom panel by inspecting its call tree
and the particular statements. Whenever we select a statement in the table, the appropriate piece
of code is selected in the opened code editor in the top left part. Furthermore, there is a replay
panel on the right in which we can see the contents of the heap and of all the local variables at
the given step of the trace. On its bottom, there are buttons to navigate through the trace in a
debugger-like fashion, with the added capability of stepping backward in the history. From the
trace, we can now easily discover that at least one of the problematic situations happens when v
in RandomNode is 1.

3 / 6 Volume 77 (2019)

AskTheCode: Interactive Call Graph Exploration for Error Fixing and Prevention

Figure 2: AskTheCode in Microsoft Visual Studio 2017

4 Related Work

In the field of human interface design, there are numerous tools helping developers to understand
the semantics of the code [SBM17, DR10]. Probably the closest one to our approach is Reacher
[LM11], a tool to interactively and intuitively explore complex call graphs. However, these tools
do not reason about reachable paths as soundly as symbolic execution. Furthermore, they are not
directly aimed at verifying assertions, hence no production of error traces.

On the other hand, to discover erroneous program inputs, we can use symbolic execution,
whose current state of the art is summarized in [BCD+18]. Most of these techniques analyse
a program by systematically exploring its state space from various entry points in a forward
fashion, aiming for high code coverage. In order to reason about particular assertions, we use
the backward variant of symbolic execution, whose most important representative is Snugglebug
[CFS09]. Despite its advanced capabilities used to alleviate the path explosion problem, it can
still occur in practice. In such situations, Snugglebug and other related tools [DA14, MYFH11]
cannot provide sufficient information due to their lack of interactivity.

InterAVT 2019 4 / 6

ECEASST

5 Conclusion

On a complex example which models situations known from practice, we demonstrate that Ask-
TheCode can help developers understand causes of errors. Utilizing interactive approach, certain
limitation of used backward symbolic execution can be alleviated, e.g. by voluntarily omitting
certain problematic places or controlling loop unwinding. In the future, we plan to extend the in-
teractivity even more, and implement more advanced features such as state merging [KKBC12]
or directed call graph construction [CFS09], ultimately making AskTheCode production-ready.

Acknowledgements: This work was supported by the project PROGRESS Q48, the Czech
Science Foundation project 18-17403S and the grant SVV-2017-260451.

Bibliography

[BCD+18] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, I. Finocchi. A survey of sym-
bolic execution techniques. ACM Computing Surveys (CSUR) 51(3):50, 2018.
doi:10.1145/3182657

[CFS09] S. Chandra, S. J. Fink, M. Sridharan. Snugglebug: A Powerful Approach to Weakest
Preconditions. SIGPLAN Not. 44(6):363–374, June 2009.
doi:10.1145/1543135.1542517

[DA14] P. Dinges, G. Agha. Targeted Test Input Generation Using Symbolic-Concrete Back-
ward Execution. In 29th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). ACM, Västerås, Sweden, September 15-19 2014.
doi:10.1145/2642937.2642951

[DB08] L. De Moura, N. Bjørner. Z3: An Efficient SMT Solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08,
pp. 337–340. Springer-Verlag, Berlin, Heidelberg, 2008.
doi:10.1007/978-3-540-78800-3 24

[DR10] R. Deline, K. Rowan. Code canvas: Zooming towards better development environ-
ments. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2. Volume 2, pp. 207–210. 05 2010.
doi:10.1145/1810295.1810331

[KKBC12] V. Kuznetsov, J. Kinder, S. Bucur, G. Candea. Efficient State Merging in Symbolic
Execution. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’12, pp. 193–204. ACM, New York,
NY, USA, 2012.
doi:10.1145/2254064.2254088

5 / 6 Volume 77 (2019)

http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/1543135.1542517
http://dx.doi.org/10.1145/2642937.2642951
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1810295.1810331
http://dx.doi.org/10.1145/2254064.2254088

AskTheCode: Interactive Call Graph Exploration for Error Fixing and Prevention

[LM10] T. D. LaToza, B. A. Myers. Developers Ask Reachability Questions. In Proceedings
of the 32Nd ACM/IEEE International Conference on Software Engineering - Volume
1. ICSE ’10, pp. 185–194. ACM, New York, NY, USA, 2010.
doi:10.1145/1806799.1806829

[LM11] T. D. LaToza, B. A. Myers. Visualizing call graphs. In 2011 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). Pp. 117–124. Sep.
2011.
doi:10.1109/VLHCC.2011.6070388

[MYFH11] K. Ma, K. Yit Phang, J. S. Foster, M. Hicks. Directed Symbolic Execution. In Static
Analysis. Pp. 95–111. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
doi:10.1007/978-3-642-23702-7 11

[NH14] T. Neward, J. Hummel. Rise of Roslyn. MSDN 29(11):70, 2014.
https://msdn.microsoft.com/en-us/magazine/dn818501.aspx

[NNB+16] L. Nachmanson, A. Nocaj, S. Bereg, L. Zhang, A. Holroyd. Node Overlap Re-
moval by Growing a Tree. In Graph Drawing and Network Visualization. Pp. 33–
43. Springer International Publishing, Cham, 2016.
doi:10.1007/978-3-319-50106-2 3

[SBM17] J. Smith, C. Brown, E. Murphy-Hill. Flower: Navigating program flow in the IDE.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). Pp. 19–23. 10 2017.
doi:10.1109/VLHCC.2017.8103445

InterAVT 2019 6 / 6

http://dx.doi.org/10.1145/1806799.1806829
http://dx.doi.org/10.1109/VLHCC.2011.6070388
http://dx.doi.org/10.1007/978-3-642-23702-7_11
https://msdn.microsoft.com/en-us/magazine/dn818501.aspx
http://dx.doi.org/10.1007/978-3-319-50106-2_3
http://dx.doi.org/10.1109/VLHCC.2017.8103445

	Introduction
	Design
	Example
	Related Work
	Conclusion

