Electronic Communications of the EASST

Volume 079 (2020)

Interactive Workshop
on the Industrial Application of Verification and Testing
ETAPS 2020 Workshop
(InterAVT 2020)

ReForm: A Tool for Rapid Requirements Formalization

Georgios Giantamidis, Georgios Papanikolaou, Marcelo Miranda,
Gonzalo Salinas-Hernando, Juan Valverde-Alcala, Suresh Veluru,
Stylianos Basagiannis

8 pages

Guest Editors: Stylianos Basagiannis, Goetz Botterweck, Anila Mjeda

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

ReForm: A Tool for Rapid Requirements Formalization

Georgios Giantamidis' -2, Georgios Papanikolaou', Marcelo Miranda’,
Gonzalo Salinas-Hernando', Juan Valverde-Alcala', Suresh Veluru®,
Stylianos Basagiannis'

!United Technologies Research Centre Ireland, Ireland
2 Aalto University, Finland
3University of Minho, Portugal

4ServisBOT Ltd. Arclabs Research Centre, Ireland

Abstract: Formal methods practices can sometimes be challenging to adopt in in-
dustrial environments. On the other hand, the need for formalization and verification
in the design of complex systems is now more evident than ever. To the end of easing
integration of formal methods in industrial model based system engineering work-
flows, UTRC Ireland has developed a tool aiming to render requirements formaliza-
tion as effortless as possible to the industrial engineer. The developed approach is an
end-to-end solution, starting with natural language requirements as input and going
all the way down to auto-generated monitors in MATLAB / Simulink. We employ
natural language processing and machine learning techniques for (semi-)automatic
pattern extraction from requirements, which drastically reduces the required for-
malization workload for both legacy and new requirements. For monitor generation,
we provide our own approach which outperforms existing state-of-the-art tools by
orders of magnitude in some cases.

Keywords: Requirements Formalization, Formal Verification, Natural Language
Processing, Clustering, Monitor Generation, MATLAB, Simulink

1 Introduction

Traditional requirements management procedure followed in industrial environments is char-
acterized by a set of important problems that can significantly limit engineer productivity and in
the worst case even have catastrophic results for the end product. One such problem is handling
requirements in unstructured, natural language format which prevents early potential requirement
inconsistency detection as well as analysis and tool support opportunities in general. Another is-
sue is that typically test cases and requirement monitors are constructed manually, which is time
consuming and error prone. While formalization of requirements could address these issues, it is
often not performed as simply the vast volume of legacy requirements makes this prohibitively
time consuming.

To address these problems at their core, in UTRC Ireland we have developed a tool for rapid
requirements formalization and subsequent analysis. Our proposed approach, by employing

1/8 Volume 079 (2020)

ReForm: A Tool for Rapid Requirements Formalization E}

Natural Language Processing (NLP) and Machine Learning (ML) techniques for pattern identi-
fication, leads to huge acceleration in formalization for both legacy and new requirements. Once
formalization is complete, consistency checking can be performed, which prevents early design
error propagation. Formalized requirements also enable automatic monitor and test-case gen-
eration which rapidly accelerates the verification process. Overall, the proposed methodology
can be shown to drastically reduce certification costs as well, an important consideration for
industrial adoption of any technology.

In this report we outline the proposed solution, highlight important aspects that contribute to
its effectiveness, present results in real world case-studies and conclude with discussion for fu-
ture development goals. The presentation is structured as follows: In section 2 we outline the
NLP part of the pipeline, which focuses on abstracting requirements to ease subsequent pattern
identification. In section 3 we discuss grouping of abstract requirements into clusters for pattern
identification and extraction. In section 4 we demonstrate how the extracted patterns speed-up
the formalization process for both legacy and new requirements. In section 5 we talk about the
additional capabilities of consistency checking and automatic monitor generation we provide for
formalized requirements. In section 6 we present results of applying the proposed approach on
real world industrial case studies. Finally, in section 7 we conclude with some ideas for future
extension of the tool.

2 NLP for Domain Entity Identification

In order for pattern discovery to yield high quality results, it is imperative that irrelevant details
are abstracted away from the provided input (Figure 1). To this end, we apply a range of built-in
transformations to remove textual clutter that typically appears in a variety of domains, but we
also provide the user with the option to insert their own abstraction rules in order to address the
specific domain at hand.

The provided built-in transformations are regular expression and context free grammar based,
and serve to identify and abstract away information such as signal names, quantities accompa-
nied by units (e.g. time duration), as well as entire mathematical expressions. The user defined
abstraction rules are based on NLP analysis of the requirement text. Specifically, we have de-
veloped our own heuristics for named entity recognition on top of off-the-shelf NLP libraries
[Honl15, MSB"14] and suggest these to the user so they can (potentially after tweaking) en-
able their use in the requirement abstraction procedure. Finally, the user is able to enrich the
abstraction procedure by simply adding their own regular expression rules.

3 ML for Pattern Discovery

Once requirements are brought into an abstract representation, clustering for pattern discovery
follows as the next step of the proposed solution (Figure 2). The aim of this step is to discover
commonalities among requirements and group them based on these, so that the workload for

InterAVT 2020 2/8

ECEASST

& ReForm

51 [

Extraction | Preprocessing | Clustering | New Pattern | NewRequirement | Requirementlist | Options |

extracted requirements
{id* REQ_28,
ext:

{id': REQ_34,

)_35',

{id's REQ
rext':
signal_:

{id' RE

{id': REQ_30/,
“text': 'If sgnal_1 < abs(signal_3) * param_3 AND signal_# < param_3 then signal signal_2 shall be set to signal_3 * abs(signal_3) / abs{param_2) within 10

) 3%,
‘text': 'If abs(signal_3) > signal_2 AND abs(signal_4) < abslsignal_1) holds then signal_2 / abs(signal_1) == signal_3 - 4 AND signal_3 + param_2 <
_1) + signal_2 shall also hold. ",

ignal_: Lt
= abs{signal_3) shal also hold."},

preprocessed requirements
. id:REQ_28,

‘text': When the system s in state state_%, signal signal_4 shall be calculated s signal_4 + abs(signal_2) / param_4 * signal_%.}, ‘text': 'when the system is in [state-neme] , [signal-name] shall be caleulated as [math-expr]},
{id: REQ_29/, {abstractions’; {[math-expr]: [signal_3 > signal_2,
“text's If signal_3 > signal_2 then signal signal_1 shall be set to signal_2 *signal_3 / param_4 * signal_2 within 8 ms.}, ‘signal_2 *signal_3 [param_4 * signal 21,

“[signal-name]'; [signal_1],
“[time-duration]': [8 msT),

ms.}, ‘id' 'REQ_29,
“text’: if [math-expr] then [signal-name] shal be st to [math-expr] within [tme-duration]’},
{id: REQ_31,
‘text' 'If sgnal_4 + 7 < param_3 * abs{signal_1) AND 8 - signal_1 > signal_ then signal signal_3 shal be set to signal_3 within 10 us.}, {abstractions’: {[math-expr]': [signal_1 < abs (sgnal_3) = param_3 AND signal_4 < param_3,
“signal_3 * abs (signal_3) / abs (param_2)1,
{id: REQ_32, ‘[sional-name]'; [signal 2],
“text's 1t 7 - 4 < signal_1 then signal signal_4 shall be set to signal_2 / signal_4 - signal_3 within 8 ms.}, “[time-duration]'s [10 msT),

i

:'REQ_30',
xt: 'f [math-expr] then [signal-name] shall be set to [math-expr] within [tme-duraton]},

{abstractions’: {[math-expr]': [signal_4 +7 < param_3 *abs (signal_1) AND & - signal_1 > signal_11,

., | “[signal-name]'; [signal 3., signal_31,
“text Tf signal_3 == signal_1 holds then abs(signal 2) < param_2 - shall alsa hold. }, £ “ltime-duration]: 110 usT},
‘id": 'REQ_31',
ignal_3 * signal_4 > signal_1 + signal_2 AND signal_2 abs{signal_3) < signal_1 holds then param_# f signal_3 == signal_2 * signal_2 AND ‘text’s 'f [math-expr] then [signal-name] shall be set to [signal-name] within [tme-duration]},

{ebstractions’: {[math-expr]': [7-4 < signal_t,,
“signal_2 | signal_4 - signal_31,

'REQ_36,
"text’: 'If signal_2 < 1 +signal_1 AND signal_4 * param_2 < signal_% * signal_3 holds then signal_1 + signal_2 > signal_4 shall also hold.}, - ‘[signal-name]'; [signal_1,

L,

Search requirement by ID: req_28|

Extract Domain Terms

Figure 1: Abstraction view

subsequent formalization is reduced (e.g. the user only has to formalize a couple dozen patterns
instead of thousands of requirements).

Clustering requires defining what the distance between two requirements means. A variety
of approaches have been explored here based on just syntactic information (e.g. Jaccard simi-
larity of sentence n-grams), on just semantic information (e.g. similarity of dependency parsing
results), as well as combinations of the two, along with additional heuristics.

The clustering algorithm we employ is a so called hierarchical clustering algorithm. Initially,
each requirement is placed in its own group, and then an iterative phase takes place where,
on each iteration, the groups that are closest to each other are merged together. This process
continues until there is only one requirement group left that contains all requirements. As the
algorithm executes, information about various requirement (sub)groups and their merges is kept
track of and forms a binary tree data structure called a dendrogram. The final clustering is ob-
tained by providing a distance threshold that slices the dendrogram at the corresponding height.
An important property of the algorithm is that the resulting clusters are guaranteed to respect
the given distance threshold, i.e. within each cluster, all pairwise requirement distances are less
than that threshold. Note that while clustering results might not be perfect, the user (apart from
adjusting the distance threshold) is allowed to intervene by manually expanding and collapsing
dendrogram nodes in order to fine tune the obtained partitioning.

4 Formal Pattern Definition & Requirements Formalization

After partitioning of the requirements into clusters, pattern definition and formalization takes
place (Figure 3). While this phase is manual, we argue that the preceding clustering signifi-
cantly reduces the workload required by grouping together requirements that can potentially be

3/8 Volume 079 (2020)

ReForm: A Tool for Rapid Requirements Formalization Eﬁ

i ReForm

=

G |

Extraction | Preprocessing | Clustering | NewPattern | NewRequiement | Regurementlst | optons

Cluster Requirements

Dendrogram (leaves and collapsed nodes are dusters):

> 9-0.
1-0

Node (req count - max intemal dist) Assigned pattern ID
4 14 -0.897115384615
> 4-0311111111111
4 10-0.233333333333
0

4 [m

dist: 0,60
Search requirement by

Cluster list:

1

Selected requirements (4 9.52%): Search terms:

#2-12-00
#3-9-00

#5-1-0

#1- 16 - 0535294117647 #4 - REQ_29 - If signal_3 > signal 2 then signal signal_L shall be set to signal_2 * signal 3 / param_4 * signal_2 within 8 ms. -

#4 -4 - 0311111111111

if [math-expr] then [signal-name] shall be set to [math-expr] within [time-duration]

#4 - REQ_30 - If signal_1 < abs(signal_3) * param_3 AND signal_4 < param_3 then signal signal 2 shall be set to signal_3 * abs(signal_3) / abs(param_2) within 1

if [math-expr] then [signal-name] shall be set to [math-expr] within [time-duration]

Hide Show Singletans « i v Add term

save] [Load

Plot Cluster Overview

Figure 2: Clustering view

described by the same pattern. A pattern consists of two parts: a natural language part and a
formal language part. This is done so that once the pattern is defined and a coupling between the
two representations is made, the user can refer to the pattern by using the natural language part,
while the tool can use the formal language part under the hood.

A variety of formal languages is supported for defining the formal part of a pattern, namely
the Property Specification Language (PSL), an IEEE standard [PSL], the SpeAR domain spe-
cific language, developed by Rockwell Collins [FWH " 17], as well as the Structured Assertion
Language for Temporal Logic (SALT) [BLS06]. All these languages share the characteristic that
are extensions of Linear Temporal Logic (LTL), a widespread formalism for property specifica-
tion towards verification purposes. However, in contrast to LTL, the languages we support are
high-level, in the sense that they provide syntax features that facilitate expression of complex
properties with minimal amount of text; which is another way our proposed approach consider-
ably reduces the formalization workload for the user.

Given a set of patterns, formalization of legacy requirements is trivial — all the user needs
to do is associate a cluster with a pattern and all requirements in that cluster are formalized
according to the formal part of the corresponding pattern. For new requirements, we provide two
ways formalization can be done: The user can either select a pattern to serve as a template and
fill in the missing information (e.g. signal names, mathematical expressions etc.) according to
the new requirement, or use the requirements editor we provide with syntax checking and auto-
completion features based on a grammar automatically derived by the set of defined patterns. It
might, of course, happen that none of the existing patterns are suitable for the new requirement
at hand, in which case a new pattern has to be defined before proceeding. However, as more
requirements are formalized using the tool and the pattern library grows, this situation becomes
less likely to occur.

InterAVT 2020 4/8

E

ECEASST

& ReForm

= |

Extraction | Freprocessing | Clustering | NewPattern | New Requirement | Requirementlist | Options |

New Text Requirement [f signal_1 < abs(signal_2) param_3 then signal signal_2 shall be set to signal_4 * abs(signal_3) within 1ms

Suggest Pattern

Itis ahways the case that P1is followed by P2 within N1 cycles

P1 signal_1 < abs(signal_2) * param_3
P2 signal_2 = signal_4 abslsignal_3)

NL 10

[ggnau '] [

Add Signal

[param_l 'l [

Add Parameter

Preview (ratural language):

Itis always the case that (signal_1 < abs(signal_2) * param_3) is followed by (signal_2 = signal_4 * abs(signal_3)) within 10 cydes

Preview (formal language):

always ((signal_1 < abs(signal_2) * param_3) > ((signal_2 = signal_4 = abs(signal_3)) or next_e[1to 10]((signal_2 = signal_4 = abs(signal_3) })))

Requirement 1D REQ_1337

Add New Requirement

Editor Requirement

= | | mpert Editor Requirements

Launch Editor

]

Figure 3: Formalization view

5 Consistency Checking & Monitor Generation

Having obtained a set of formalized requirements we can perform, through the tool, con-
sistency checking as well as monitor generation (Figure 4). Note that both these procedures
are supported for all available specification languages by means of translating the high-level
property representations into low-level LTL formulas, the fundamental formalism our supported
languages are based on. For consistency checking we extended an existing algorithm [GMR17]
by integrating with the Z3 SMT solver [MBO0S8] in order to be able to handle mathematical ex-
pressions as well. For monitor generation we use our own approach [GBT20] based on active
automata learning [Ang87] which, in some cases, is able to outperform conventional translation
strategies by orders of magnitude. The resulting monitors can be coupled with the system model
(i) serving as assertions for run-time monitoring, (ii) for automatic test-case generation, as well
as (iii) for formal verification of the design. Currently we only support Simulink as a monitor
generation target, however, since we first generate a tool-agnostic intermediate representation,

supporting additional targets is trivial.

6 Industrial Case Studies

The developed solution has been applied so far on two industrial case studies: (1) Low-level
requirements for the FPGA specification of Airbus A350 ETRAC (electrical thrust reverser ac-
tuation controller), and (2) High-level requirements for the brake control unit of Mitsubishi Re-
gional Jet. In the former case, the entire tool pipeline was used, from importing natural language

5/8

Volume 079 (2020)

ReForm: A Tool for Rapid Requirements Formalization

1 Reform o o
Extraction | | Clstering [NewPattern [New List | Options |
Name Text PSL Selected o
1 REQL The system shall transition from state state 1 to state state_2 when signal_2 / abs(param_1) > param_L. always (((state 1 = 1) and (signal 2 / abs(param_1) » param_1)) -» ((state 2 = 1) or (X (state 2 =11)))
2 REQ2 Thesystem shall transition from state state_1 to state state_3 when signal_1 + signal_1 = abs(signal_2). always (((state 1 =1) and (signal 1 + signal 1 = abs(signal_2))) -» ((state_3 = 1) or (X (state 3=1))))
3 REQ3 Thesystem shall transition from state state_1 to state state_4 when signal_L > signal 4 * 4. always ({((state 1 =1) and (signal 1 > signal 4 *4)) - ((state4 = 1) or (X (stete 4 =1)))) 2
4 REQA Thesystem shall transition from state state_2 to state state_L when param_3 < param_3 /3 AND signal 3 < abs(signal 1) + param... always ({ (state 2= 1) and (param_3 < param_3/3 and signal_3 < abs(signal_1) + param_3)) -» ((state_1 = 1) or (X { stat...
5 REQS Thesystem shall transition from state state 2 to state state_3 when param_1 * signal 2 < 8 * param_3 AND signal 4 < signal 2. always (((state 2=1) and (param_1 * signal 2 < 8 * param_3 and signal 4 < signal 2)) > ((state 3 = 1) or (X (state 3 = ..
6 REQG Thesystem shall transition from state state_2 to state state_4 when abs(signal_L) / 6 = param_2 / abs(signal_1) AND abs(signal_2) ... always ({ (state 2 = 1) and (abs(signal_1) /6 = param_2 / abs(signal_1) and abs(signal 2) » signal 1)) -> ({state4 = 1) or... a
7 REQ7 Thesystem shall transition from state state 3 to state state_L when signal 1 = 7 * abs(signal _1). always (((state 3 =1) and (signal 1 = 7 * abs(signal 1))) -> ((state 1 = 1) or (X (state 1 =11)))) 0
8 REQB Thesystem shall transition from state state_3 to state state_2 when signal_4 * signal_3 > signal_L AND param_2 / abs(signal_2) = .. always ({ (state_3 = 1) and (signal 4 * signal_3 » signal_1 and param_2 / abs(signal_2) = param_4)] -> ((state_2 = 1} or (X. a
9 REQO Thesystem shall transition from state state 3 to state state 4 when signal_2 - 7 < signal_3 AND abs(param 4) < signal_4, always (((state 3=1) and (signal 2 -7 < signal_3 and abs(param 4) < signal 4)} -> ((state 4 =1) or (X (state 4 =1)))) [}
10 REQ10 The system shall transition from state state_4 to state state_L when param_2 * abs(signal_4) > abs(signal 4). always (((state 4 = 1) and (param_2 * abs(signal 4) » abs(signal 4))] -> ((state_1 = 1) or (X {state 1 =1)))) |}
11 REQIL Thesystem shall transition from state state 4 to state state_2 when signal_2 * abs(param_4) > signal 1 AND signal 4 / signal 1 » s.. always ({ (state.4 = 1) and (signal 2 * abs(param 4) > signal 1 and signal 4 / signal 1 > signal_2 + abs(signal 3)1) - ((st... |}
12 REQ12 The system shall transition from state state_4 to state state_3 when abs(param_2) > abs(signal 3) always (((state 4 = 1) and (abs(param_2) » abs(signal 3))] > ({state_3 = 1) or (X {state 3 = 1)])) B
13 REQ13 Whenever the system is in state state_1, signal signal_1 should be calculated as follows: signal 2 + 7 - param 2. always ((state_1 =1) -> (signal 1 = (signal 2+ 7 - param_2))} a
14 REQI4 When the system is in state state L, signal signal_2 shall be calculated as param _4 * signal 3. always ((state 1 = 1) -> (signal 2 = (param_4 * signal 3)]) B
15 REQS When the system is in state state_l, signal signal_3 shall be calculated as abs(signal_2) / 3 - signal_4 / signal_2. always ((state_1 = 1) -> (signal 3 = (abs(signal 2) /3 - signal 4 / signal 2))) 0 i
[Generate Monitors l
[Consistency Checking J

Figure 4: Consistency checking & monitor generation view

requirements all the way down to formal verification of the Space Vector Modulation (SVM)
subsystem of the design using the automatically generated monitors. Specifically, we were able
to fit 40% of the 750 given requirements into 25 clusters, and managed to formalize the 100
requirements for the SVM subsystem using just 6 patterns. Automatically generated monitors
from these 100 requirements were coupled with the system model and successful formal verifi-
cation of the design took place by employing the Simulink Design Verifier (SLDV) MATLAB
toolbox. In the latter case, only the parsing and clustering part of the tool were exercised, in or-
der to demonstrate that our solution provides benefits (e.g. better documentation and traceability
by enabling easy subsequent mapping to a more structured representation) even for high-level
requirements that cannot be easily mapped to Simulink model representations; in particular, we
were able to fit 50% of the 700 given requirements into just 15 clusters.

7 Conclusion & Future Work

In this report we presented an effort carried out in UTRC Ireland to develop a tool for rapid
requirements formalization. This is achieved by pattern identification from legacy requirements
with NLP and ML methods, and subsequent use of the extracted patterns to drive formalization
of both legacy and new requirements. A variety of formal languages is supported by the tool
and, once requirements are formalized, consistency checking and automatic monitor generation
can be performed as well. The approach has been tested on industrial case studies with several
hundreds of requirements in each case and the results have been very promising so far.

One limitation of the developed solution is that it currently only focuses on functional require-
ments (i.e. system behavior). Therefore, a direction we plan to explore in the future is handling

InterAVT 2020 6/8

E

ECEASST

non-functional requirements as well (e.g. timing and architectural constraints). Another direc-
tion for future development is extending the tool with more specification languages and monitor
generation targets in order to enable further interoperability with other tools and ease adoption
from industrial users.

Bibliography

[Ang87]

[BLS06]

[FWH*'17]

[GBT20]

[GMR17]

[Hon15]

[MBO08]

[MSB*14]

D. Angluin. Learning Regular Sets from Queries and Counterexamples. Inf. Comput.
75(2):87-106, Nov. 1987.
doi:10.1016/0890-5401(87)90052-6

A. Bauer, M. Leucker, J. Streit. SALT—Structured Assertion Language for Tempo-
ral Logic. In Liu and He (eds.), Formal Methods and Software Engineering. Pp. 757—
775. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

A. W. Fifarek, L. G. Wagner, J. A. Hoffman, B. D. Rodes, M. A. Aiello, J. A. Davis.
SpeAR v2.0: Formalized Past LTL Specification and Analysis of Requirements. In
Barrett et al. (eds.), NASA Formal Methods. Pp. 420—426. Springer International
Publishing, Cham, 2017.

G. Giantamidis, S. Basagiannis, S. Tripakis. Efficient Translation of Safety LTL
to DFA Using Symbolic Automata Learning and Inductive Inference. In Computer
Safety, Reliability, and Security - 39th International Conference, SAFECOMP 2020,
Lisbon, Portugal, September 15-18, 2020, Proceedings. Springer Nature Switzer-
land AG, 2020.

https://doi.org/10.1007/978-3-030-54549-9_8

N. Gigante, A. Montanari, M. Reynolds. A One-Pass Tree-Shaped Tableau for
LTL+Past. In Eiter and Sands (eds.), LPAR-21, 21st International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017. EPiC Series in Computing 46, pp. 456—473. EasyChair, 2017.
http://www.easychair.org/publications/paper/340363

M. Honnibal. spaCy: Industrial-Strength Natural Language Processing. 2015.
https://spacy.io/

L. de Moura, N. Bjgrner. Z3: An Efficient SMT Solver. In Ramakrishnan and Rehof
(eds.), Tools and Algorithms for the Construction and Analysis of Systems. Pp. 337—
340. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, D. McClosky. The
Stanford CoreNLP Natural Language Processing Toolkit. In Association for Com-
putational Linguistics (ACL) System Demonstrations. Pp. 55-60. 2014.
http://www.aclweb.org/anthology/P/P14/P14-5010

7/8

Volume 079 (2020)

http://dx.doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-030-54549-9_8
http://www.easychair.org/publications/paper/340363
https://spacy.io/
http://www.aclweb.org/anthology/P/P14/P14-5010

ReForm: A Tool for Rapid Requirements Formalization Eﬁ

[PSL] IEC 62531:2012(E) (IEEE Std 1850-2010): Standard for Property Specification
Language (PSL), in IEC 62531:2012(E) (IEEE Std 1850-2010), vol., no., pp.1-184,
28 June 2012.

InterAVT 2020 8/8

	Introduction
	NLP for Domain Entity Identification
	ML for Pattern Discovery
	Formal Pattern Definition & Requirements Formalization
	Consistency Checking & Monitor Generation
	Industrial Case Studies
	Conclusion & Future Work

