
Electronic Communications of the EASST
Volume 079 (2020)

Interactive Workshop
on the Industrial Application of Verification and Testing

ETAPS 2020 Workshop
(InterAVT 2020)

Testing Interconnected Systems with Behavior Mining

Alexander Schieweck, Tiziana Margaria

9 pages

Guest Editors: Stylianos Basagiannis, Goetz Botterweck, Anila Mjeda
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Testing Interconnected Systems with Behavior Mining

Alexander Schieweck1, Tiziana Margaria2

1 alexander.schieweck@ul.ie 2 tiziana.margaria@ul.ie
Department of Computer Science and Information Systems

University of Limerick, Ireland
Lero - The SFI Research Centre for Software

Confirm - The SFI Research Centre for Smart Manufacturing

Abstract: Modern software applications rely not only on a complex stack of tech-
nologies, but are more and more dependent on and connected to third party inter-
faces, Internet of Things devices and Industry 4.0 machines. One approach to tackle
this complexity is Model Driven Design with custom interactions. But it is then
still necessary to test the whole system to ensure that all parts work together as in-
tended. This paper looks at the possibility of using Active Automata Learning as a
systematic way to test interconnected systems.

Keywords: Formal Methods, Active Automata Learning, Model Driven Design,
Industry 4.0, Smart Manufacturing

1 Introduction

Model Driven Design (MDD) and Low-Code application development environments are getting
increasingly popular. This is also true in the field of mechanical engineering, where new ma-
chines become more equipped with more sensors, computing power and connectivity. However,
mechanical engineers are not specialized in programming, so instead of solely relying on soft-
ware engineers they look for alternatives to help them configure and manage new machines on
their own, reducing the programming needs. Most MDD tools are multi-purpose environments
and need custom extensions to accommodate the needs of mechanical engineers. This raises the
question of how to test and verify those combined systems.

The Confirm Digital Thread prototype will be used as a small example for a complex MDD
based application in the smart manufacturing context. This prototype is a web application to re-
motely control collaborative robots (cobots) by Universal Robots (UR) (see Figure 1a). Cobots
are equipped with special sensors and can detect if something is in their way. This ability allows
them to operate without special work cages, opening the possibility of collaborative work with
humans. UR, the first company to produce such robots, offers now four models: UR3, UR5,
UR10 and UR16. The number indicates the maximum payload in kg of each model. The models
grow in size and weight accordingly, but the core design and concepts are very similar for all
models. They use for example the same API, which allows custom programs to be interchange-
able [MS19].

This paper gives an overview of MDD and Active Automata Learning techniques in (Sec-
tion 2). It then explains the set up for experiments of the Confirm Digital Thread prototype in

1 / 9 Volume 079 (2020)

mailto:alexander.schieweck@ul.ie
mailto:tiziana.margaria@ul.ie


Testing Interconnected Systems with Behavior Mining

(a) Simulator by Universal Robots (b) Model of the App Workflow in DIME

Figure 1

conjunction with the robot simulator (Section 3), followed by the results in Section 4. Lastly, it
discusses future challenges (Section 5).

2 Concepts and Technologies

This section introduces the MDD tool called DIME that we used to create the applications and
gives a short introduction in Active Automata Learning.

2.1 Model Driven Design

The Model Driven Design (MDD) approach breaks with the paradigm that everything needs to be
written in code and puts models at the center of a software development project. Those models
can be textual or graphical and help the developer to describe what the software should be doing,
without worrying about the how.

DIME is an Integrated Modeling Environment, i.e. a model driven design tool, specialized
for web applications. DIME offers various Graphical Domain Specific Languages (GDSLs) to
describe all layers of a modern web applications, e.g. a data model GDSL, a process model
GDSL to describe the business logic (see Figure 1b) and a GDSL for the GUI front end, similar
to a ”What you see is what you get” editor. For domains not covered by DIME in the default
configuration, it is possible to extend its capabilities with new GDSLs: new libraries of Service
Independent Blocks (SIBs) for the back or front end. The UR Control application makes use of
this functionality by introducing robotics DSLs used to create a plugin that communicates with
the UR robots [SMN+06] [BFK+16].

DIME itself is created using the Cinco meta-modeling environment [NLKS18]. In fact DIME
is right now the most sophisticated Cinco-product. Cinco allows the creation of Eclipse based

InterAVT 2020 2 / 9



ECEASST

Figure 2: Overview of the Active Automata Learning Loop

specialized GDSL tools without a deeper knowledge about the various Eclipse graphical tooling
projects.

2.2 Active Automata Learning

Active Automata Learning (AAL) uses observations to infer models of a system’s internal states
and behavior. In the case of reactive systems like web applications, those models are often Mealy
machines.

Definition 1 (Mealy Machine) A Mealy Machine is defined as a tuple (Q,q0,Σ,Λ,δ ,λ ), where
Q is a finite set of states, q0 ∈ Q is the initial state, Σ is a finite set of input symbols, i.e. the
input alphabet, Λ is a finite set of output symbols, i.e. the output alphabet, δ : Q×Σ→ Q is the
transition function, and λ : Q×Σ→ Λ is the output function.

The core learning loop of Active Automata Learning is illustrated in Figure 2 and follows
the principles first described by Angluin [Ang87]. The learner interacts with the System Under
Learning (SUL) via testing and observes its behavior. Those interactions are called Membership
Queries. Once the learner thinks it has seen enough behavior, it creates a hypothesis model of
the internal states of the system and passes it to the Equivalence (EQ) Oracle. The EQ Oracle
then tells the learner if the hypothesis is correct or not. In an ideal world the EQ Oracle would
have perfect knowledge and could decide this question directly. In the real world, instead, the
EQ Oracle sends Equivalence Queries to the SUL in order to find a counter example to the
hypothesis. If a counter example is found, the example is passed back to the learner to refine
the hypothesis. If no counter example is found through the deployed counter-example search
strategies in reasonable time, it is assumed that the hypothesis is correct.

Every membership or equivalence query needs to start with the same prerequisites, so a reset
mechanism of the SUL is needed too.

LearnLib1 is a state of the art open source framework for AAL, which offers a wide set of

1 https://learnlib.de

3 / 9 Volume 079 (2020)

https://learnlib.de


Testing Interconnected Systems with Behavior Mining

?

System Under Learning

Learner

Model

Figure 3: The Setup of the learning experiment (AAL with LearnLib Studio

algorithms, counter examples search strategies and infrastructure components in Java [IHS15]
[HS18].

Many tools have been designed to create customized learn experiments utilizing the LearnLib.
The tool Active Automata Learning Experience (ALEX) is built upon LearnLib and allows a

no-code way to learn web applications and even to mix them with REST APIs. ALEX is itself a
web application. It offers a comfortable GUI to describe the interactions with a web application
or a RESTful API. The learning can be parameterized, but the overall learning loop is fixed.
[BSI+16] [BSSH17]. Because the UR robot itself does not offer a REST API, ALEX is not
applicable and a different solution is needed.

We use LearnLib Studio2, a specialized Cinco-product for defining LearnLib experiments
through a custom MDD editor.

3 Experiment Set Up

In our Digital Thread prototype, the UR Remote Control Web Application and the robot, here
a UR simulator, constitute the SUL (see Figure 3). We wish to automatically extract a Digital
Twin of the SUL in order to find out whether the web application interacts with the robot in the
expected way. Concretely, we wish to find out if the native SIB libraries of the UR DSL are
used in the correct way, and if the controller application is properly designed, i.e. it is doing
exclusively what it is expected to do.

While this experiment can show the existence of a fault, it would not be able to determine
whether the fault is in the implementation of the native SIBs (code) or if the SIBs are OK but not
properly used in the process model (application logic).

3.1 Preexisting Parts

Instead of connecting a real robot to the system we used of the simulator provided by Universal
Robots in a Virtual Box. As the real robot is also connected with an IP Address, the Virtual

2 https://github.com/learnlib/learnlib-studio

InterAVT 2020 4 / 9

https://github.com/learnlib/learnlib-studio


ECEASST

(a) Description of the Learning Experiment as a Learn
Experiment Model

(b) Symbol Definition of the Click on Initial Position
Button

Figure 4: Examples of the Models in LearnLib Studio

Box helps to create a realistic scenario. Within this setup the simulator and the robot are in-
terchangeable, which was confirmed through tests. We parameterized the simulator for the UR
3 model, but the UR scripting language and ways to communicate with the robot are identical
for the whole UR family. Using the simulator also allowed us to speed up the robot a little bit,
bringing down the overall time for our learning experiment.

The UR Control Web Applications runs in a Docker environment and can be used without
DIME. Everything was executed on a single local machine.

3.2 The Learning Set Up

The learning experiment was described graphically using LearnLib Studio’s models. some mod-
els can be seen in Figure 4.

The experiment uses the TTT Algorithm and a random word counterexample search, which is
parametrized with 20 random words with a length between 5 and 10. The set up can be seen in
Figure 4a.

A list of created symbols in described in Table 1. The Symbols ’Go To Initial Position’, ’Go
to Test Position’ and ’Robot Coordinates’ are the learning alphabet. Their names are the input
alphabet. The output alphabet consists of their possible outputs, i.e. ’Success’, ’Success (X, Y,
Z)’, with the actual robot coordinates at time of calling, and the additional symbol ’ElementNot-
Found’. The use of the robot coordinates in this set up allows to observe the robot coordinates in
the learning independently and correlate them to interactions with the web application.

Beside those input symbols there are three helper symbols (see Table 2) to manage the exper-
iment, e.g. to ensure a reliable reset.

The symbols use a custom SIB library to interact with the web application and another SIB
library to interact with the robot directly. The SIB library to interact with the robot was newly
created. The one to interact with the web application is standard (buttons, numeric fields) and
preexisted.

During the first learning experiment there were some issues with the network socket of the
robot: even the sped-up robot (in the simulator) could not keep up with the amount of different
commands send to it. This was solved by introducing artificial wait times.

5 / 9 Volume 079 (2020)



Testing Interconnected Systems with Behavior Mining

Table 1: Overview of the Learning Alphabet

Name Outputs Description
Connect To Robot Success,

E
lem

entN
otFound

Tries to to enter the IP address and click ’Connect’.

Go to {Initial, Test} Position
Tries to click the button {initial, test} position button,
which should move the robot accordingly.

Go to Coordinate Input
Tries to click the button in the web application to
navigate to the coordinate input page.

Send Coordinates
Tries to enter custom coordinates and click the move
button on the coordinate input page.

Cancel Coordinate Input
Tries to click the cancel button on the coordinate input
page.

Robot Coordinates
Success
(X, Y, Z)

Connects to the robot and receives the current robot
coordinates, which are part of the output.

Table 2: Overview of the Helper Symbols

Name Description
Set Up Starts the web browser. It is called only once at the beginning of the learn experiment.

Reset
Opens the web app in a fresh environment. Moves the robot to the initial position.
Called before every query.

Tear Down Closes the web browser. It is only called once at the end of the learning experiment.

4 Results

The final Mealy machine shown in Figure 5 is the behavioral Digital Twin of the UR Controller
Web Application.

The state q0 on the left shaded in green is the initial state. The very first page of the web
application asks for the IP address of the robot and is otherwise only reachable through a reload
of the application. This behavior is evident in the Digital Twin model’s state q0: it is the initial
state and only allows to move ahead with ’Connect To Robot’.

Upon closer inspection one notices that the final model is a product of the possible states of
the web application, i.e. main ’button’ page and coordinate input page, and the three possible
robot positions from the app, i.e. initial position, test position, and custom coordinates. In the
states q0, q1 and q3 (dashed oval) the robot is in the initial position. The states q2 and q5 (solid
oval) represent the robot in the test position. And in states q4 and q6 (dotted oval) the robot is in
the custom coordinates position. Between those areas there are only the ’Go to Initial Position’,
’Go to Test Position’ and ’Send Coordinates’ transitions, and they lead always successfully to
the according state.

In each robot position, one state q1, q2 and q4 (blue squares) represents the main button page
of the website. Furthermore, these areas include the states q3, q5 and q6 (orange triangles) repre-
senting the coordinate input page. Between pairs of those states there are only the transitions with
’Go to Coordinate Input’ and ’Cancel Coordinate Input’: they are present and successful. The
only exception is the ’Send Coordinates’ transition between q6 and q4, which can be explained
as this is the reflexive edge within the robot position area.

InterAVT 2020 6 / 9



ECEASST

Figure 5: The Final Model: A Digital Twin Obtained by AAL

Overall the final model can be seen as a product between the states of the web application and
the three chosen robot positions, with a network of correct transitions according to the ”good
machine” behavior we expected.

The learning experiment was run on a Dell XPS 15 9560 (Intel Core i7-7700HQ, 32GB RAM,
Manjaro Linux) and took 80 min. It took four iterations of the learning loop. The learner asked
218 Membership Queries and the counter example strategy issued 34 Equivalence Queries.

5 Conclusion & Challenges

In this paper we showed how to extend the classical class of System Under Learning for Ac-
tive Automata Learning experiments to more complex and connected scenarios like robotics.
While this is a small example, the capability to retrofit Digital Twin models to the behavior of
cyberphysical systems can potentially pave the way to capturing the behavior of legacy (control)
applications in smart manufacturing by means of models amenable to formal analysis and model
based testing.

Future challenges might evolve around the questions of more complex behaviors, e.g., how to
handle complex paths of the robot arm, combined with actual work of the robot. Another chal-
lenge is the scalability of this approach to multiple robots or machines, who are doing different
jobs. The AAL techniques have been shown to scale very well - here the time limitation was due
to the slow simulator response.

Through Confirm and its (future) outreach partners we will hopefully have the possibility to

7 / 9 Volume 079 (2020)



Testing Interconnected Systems with Behavior Mining

extend the Confirm Digital Thread prototype to different kinds of robots, i.e. bigger industrial
robots, typically caged, as well as smaller robots used by makers as in the FabLab Limerick. An
extended prototype and a working Digital Thread library of models for various robot families
will open possibilities to investigate those issues further.

Acknowledgements: This work was supported, in part, by Science Foundation Ireland grant
16/RC/3918 to Confirm, the SFI Research Centre for Smart Manufacturing (www.confirm.ie)
and 13/RC/2094 to Lero - The SFI Research Centre for Software (www.lero.ie).

Bibliography

[Ang87] D. Angluin. Learning Regular Sets from Queries and Counterexamples. Inf. Comput.
75(2):87–106, 1987.
doi:10.1016/0890-5401(87)90052-6

[BFK+16] S. Boßelmann, M. Frohme, D. Kopetzki, M. Lybecait, S. Naujokat, J. Neubauer,
D. Wirkner, P. Zweihoff, B. Steffen. DIME: A Programming-Less Modeling Envi-
ronment for Web Applications. In Margaria and Steffen (eds.), ISoLA 2016, Pro-
ceedings, Part II. LNCS 9953, pp. 809–832. 2016.
doi:10.1007/978-3-319-47169-3 60

[BSI+16] A. Bainczyk, A. Schieweck, M. Isberner, T. Margaria, J. Neubauer, B. Steffen.
ALEX: Mixed-Mode Learning of Web Applications at Ease. In Margaria and Stef-
fen (eds.), ISoLA 2016, Proceedings, Part II. LNCS 9953, pp. 655–671. 2016.
doi:10.1007/978-3-319-47169-3 51

[BSSH17] A. Bainczyk, A. Schieweck, B. Steffen, F. Howar. Model-Based Testing Without
Models: The TodoMVC Case Study. In Katoen et al. (eds.), ModelEd, TestEd,
TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birth-
day. LNCS 10500, pp. 125–144. Springer, 2017.
doi:10.1007/978-3-319-68270-9 7

[HS18] F. Howar, B. Steffen. Active Automata Learning in Practice - An Annotated Bibli-
ography of the Years 2011 to 2016. In Bennaceur et al. (eds.), Machine Learning for
Dynamic Software Analysis: Potentials and Limits - International Dagstuhl Seminar
16172, 2016, Revised Papers. LNCS 11026, pp. 123–148. Springer, 2018.
doi:10.1007/978-3-319-96562-8 5

[IHS15] M. Isberner, F. Howar, B. Steffen. The Open-Source LearnLib. In Kroening and
Păsăreanu (eds.), Computer Aided Verification. Pp. 487–495. Springer International
Publishing, Cham, 2015.

[MS19] T. Margaria, A. Schieweck. The Digital Thread in Industry 4.0. In Ahrendt and Tarifa
(eds.), IFM 2019, Proceedings. LNCS 11918, pp. 3–24. Springer, 2019.
doi:10.1007/978-3-030-34968-4 1

InterAVT 2020 8 / 9

http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1007/978-3-319-47169-3_60
http://dx.doi.org/10.1007/978-3-319-47169-3_51
http://dx.doi.org/10.1007/978-3-319-68270-9_7
http://dx.doi.org/10.1007/978-3-319-96562-8_5
http://dx.doi.org/10.1007/978-3-030-34968-4_1


ECEASST

[NLKS18] S. Naujokat, M. Lybecait, D. Kopetzki, B. Steffen. CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. STTT
20(3):327–354, 2018.
doi:10.1007/s10009-017-0453-6

[SMN+06] B. Steffen, T. Margaria, R. Nagel, S. Jörges, C. Kubczak. Model-Driven Devel-
opment with the jABC. In Bin et al. (eds.), HVC 2006, Revised Selected Papers.
LNCS 4383, pp. 92–108. Springer, 2006.
doi:10.1007/978-3-540-70889-6 7

9 / 9 Volume 079 (2020)

http://dx.doi.org/10.1007/s10009-017-0453-6
http://dx.doi.org/10.1007/978-3-540-70889-6_7

	Introduction
	Concepts and Technologies
	Model Driven Design
	Active Automata Learning

	Experiment Set Up
	Preexisting Parts
	The Learning Set Up

	Results
	Conclusion & Challenges

