
Electronic Communications of the EASST
Volume 079 (2020)

Guest Editors: Stylianos Basagiannis, Goetz Botterweck, Anila Mjeda
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Interactive Workshop
on the Industrial Application of Verification and Testing

ETAPS 2020 Workshop
(InterAVT 2020)

Parsing BDD Stories for Automated Verification of Software
Artefacts

Thiago Rocha Silva and Brian Fitzgerald

8 Pages

 ECEASST

2 / 9 Volume 079 (2020)

Parsing BDD Stories for Automated Verification of Software
Artefacts

Thiago Rocha Silva, Brian Fitzgerald

Lero - The Irish Software Research Centre

University of Limerick (UL)
Limerick, Ireland.

{thiago.silva,brian.fitzgerald}@lero.ie

Abstract: This position paper reports on our ongoing developments towards the
automated verification of software artefacts by parsing sentences on Behaviour-
Driven Development (BDD) stories. The solution we propose is based on different
strategies for analysing the consistency of user requirements specified in BDD stories
on task models, graphical user interfaces (GUIs), GUI prototypes, and domain
models. We illustrate our solution through concrete examples and discuss its
challenges and limitations.

Keywords: Behaviour-Driven Development (BDD), User Requirements
Assessment, Software Artefacts, Automated Verification.

1 Introduction
In recent years, User Stories [1] have been widely adopted, especially by agile methods, as an
artefact allowing to specify user requirements in a simple, understandable, but yet automatable
semi-structured natural language favouring effective communication between the different
stakeholders. The use of scenarios in User Stories additionally provides, in a single artefact,
the requirements specification along with the set of acceptance criteria which is required to
assess whether the system behaves in accordance with such requirements. This strategy has
been explored by agile methodologies such as Behaviour-Driven Development (BDD) which
gave rise to a particular instance of User Stories, the so-called BDD stories [2].

Title (one line describing the story)
Narrative:
As a [role], I want [feature], So that [benefit]
Scenario n: [title]
Given [context], When [event], Then [outcome]

Fig. 1. “BDD story” template [3].

A BDD story (Figure 1) is described with a title, a narrative and a set of scenarios representing
the acceptance criteria. The title provides a general description of the story, referring to a
feature this story represents. The narrative describes the referred feature in terms of the role
that will benefit from the feature, the feature itself, and the benefit it will bring to the business.
The acceptance criteria are defined through a set of scenarios, each one with a title and three
main clauses: “Given” to provide preconditions for the scenario, “When” to describe an event
that will trigger the scenario and “Then” to present outcomes that might be checked to verify
the proper behaviour of the system. Each one of these clauses can include an “And” statement

 Parsing BDD Stories for Automated Verification of Software Artefacts

InterAVT 2020 3 / 9

to provide multiple contexts, events and/or outcomes. Each statement in this representation is
called “step”.

By specifying the system’s expected behaviour through the use of examples, BDD stories
carry important information about the system’s domain and about how the user is expected to
interact with this system. This position paper reports on our developments towards a tool-
supported approach to parse these BDD stories and gather information to be automatically
verified and assessed on different software artefacts in order to ensure consistency between
them. Our motivation for this work resides in the fact that manual verification and software
inspections are still the first approaches to verify the consistency between user requirements
and such artefacts [4], although manually ensuring the consistency of software specification
and its artefacts every time a requirement is introduced and/or modified is extremely time-
consuming and highly error-prone. Promoting automated verification is, therefore, a key factor
to support assessment in an ever-changing environment.

To achieve this goal, we rely on a previously developed ontology for describing common
interactive behaviours on BDD stories [5], [6] which is currently used to support the
assessment of user interface design artefacts (task models, GUI prototypes and web GUIs). We
have been working on an extension of this approach to also cover the assessment of domain
models, such as class diagrams. The final solution is expected to be integrated as an Eclipse
plugin which would allow both the specification of the BDD stories and the upload of the
respective artefacts being considered for assessment. That would allow a more straightforward
integration with other Eclipse-based modelling tools.

The next sections of this paper briefly illustrate, through concrete examples, the solution we
propose for assessment on the different covered artefacts, besides discussing its challenges and
limitations.

2 Automated Verification of Software Artefacts
The strategy we propose for automated verification of software artefacts [7] has been evolving
since 2016 [8]–[11] and is based on an analysis, with the support of an ontology, of different
elements specified in the BDD stories’ sentences depending on the artefacts being considered
for assessment. Figure 2 illustrates the direct relationship between different elements from the
BDD stories and the specific elements we verify in the targeted artefacts. In the example, a
scenario for successfully withdrawing money from a current account is presented as a user
requirement.

The scenario states, in the user’s point of view and by means of an example, the resultant
effect of withdrawing a certain amount of money. In the figure, the domain-specific behaviour
“withdraw” is being detailed in the 5 interaction steps required to effectively conclude the
respective action on the user interface of a given system. Thus, to complete the action of
withdrawing money in a web system, for example, the user needs to reach the interface in
which the transaction types are enlisted, select that he wants to withdraw money, select the
current account as the type of account, inform the amount he wants to withdraw, and finally
validate the operation by clicking on a button.

Taking the example presented in Figure 2, from the domain-specific behaviours “Given my
balance is $1000” and “Then my new balance will be $900”, balance can be identified as an
attribute of the class Account, and from the behaviour “When I withdraw $100”, withdraw can
be identified as an operation of the class Account. The set of interaction steps provides more
information to be assessed on the other artefacts. For the first one (“When I go to ‘Transaction

 ECEASST

4 / 9 Volume 079 (2020)

Type’”), Transaction can be identified as a class, and Type as an attribute. For this step, a
corresponding task can also be identified in the task model (“Go to Transaction Type”), as
well as the interaction element Browser Window in the GUI. For the second step (“And I select
‘Withdraw Money’”), Withdraw can be identified as an operation of the class Account, and
Money as the argument passed when calling it. A corresponding task can also be identified in
the task model (“Select Withdraw Money”), as well as the interaction element Vertical Tabs in
the GUI. The other steps can be analysed in a similar manner. The identification of useful
elements for assessment on each targeted artefact is discussed hereafter.

Fig. 2. Tracing the elements from the steps to check the consistency with different artefacts.

Task Models. Task Models (TM) provide a goal-oriented description of interactive systems.
Tasks can be specified at various abstraction levels, describing an activity that has to be carried
out to fulfil the user’s goals [12]. By manipulating task models, we can obtain scenarios that
represent the valid interaction paths in the system. This characteristic is particularly useful
when identifying test scenarios for the system.

Step of Scenario Task Name

When I set “Valid Departure Date” in the field
“Departure Date”

Set Departure Date

Fig. 3. Formatting rule for assessing interaction steps and tasks.

For assessing task models, we propose a sentence analysis of each interaction step (covered by
the ontology) in the BDD stories following a pattern to identify potential tasks to be verified in
the model. As task models are designed to support the multiple paths that users may
accomplish to perform their tasks, assessing such models involves initially extracting the
possible scenarios that are supposed to be tested. The equivalence of steps in BDD stories and
tasks in scenarios extracted from task models is supported by the aforementioned ontology
which encompasses a formatting rule as exemplified in Figure 3. Our tool applies such a rule

 Parsing BDD Stories for Automated Verification of Software Artefacts

InterAVT 2020 5 / 9

in order to verify whether a behaviour described in a step has an equivalent task to model it in
the task model.

This rule aims to eliminate unnecessary components of the step that do not need to be
present in the task name. In the example, the component “When” refers to the transition in the
state machine which is not addressed in a task model. The subject “I” signalizes that is the
user who performs the task. Tasks models encompass the definition of user role, so the
statement “I” refers to any users that might correspond to the role assigned to the task model.
The verb “set” indicates the action that will be performed by the user, so it begins naming the
task in the task model. The value “Valid Departure Date” indicates the test data domain that
will be used to perform and test the task (in this example, any valid value for a departure date
of a flight). This is an information which is not present in the task name. The sentence
complement “in the field” just signalizes that an interaction element (a “field”) will be
referenced in the sequence. Finally, the target field “Departure Date” indicates the name of
the interaction element that will be affected by this task, so it composes the final name of the
task to be assessed on the task model.

After getting the name of the task to be assessed, we search for that task in the set of
scenarios extracted from the task models and if it is found, we evaluate the position in which it
has been found in the TM scenario comparing to the position of the corresponding step in the
BDD scenario. Thus, we consider there is an inconsistency when (i) we do not find a
corresponding task in the TM scenario to match the name of the corresponding step in the
BDD scenario; or (ii) we find a corresponding task in the TM scenario but at a different
position of the corresponding step in the BDD scenario.

Graphical User Interfaces (GUIs) and GUI Prototypes. A GUI prototype is an early
representation of a user interface. Prototypes are often used in an iterative design process
where they are refined and become more and more close to the final GUI through the
identification of user needs and constraints. By running simulations on prototypes, we can
determine and evaluate potential scenarios that users can perform in the system [13]. Full-
fledged GUI versions are the source for acceptance testing and are used by users and other
stakeholders to assert whether or not features can be considered as done.

For assessing GUIs (both prototype and final versions), we propose a sentence analysis of
each interactive step (covered by the ontology) in the BDD stories identifying (i) the
interactive behaviour specified, and (ii) the affected interaction element. Each step is analysed
as follows:

Fig. 4. Structure of an interactive behaviour as specified in the ontology.

An extensive set of interactive behaviours is modelled in the ontology describing how users
are supposed to interact with the systems whilst manipulating graphical elements of the GUI.
An example of behaviour specification is illustrated by Figure 4. The specification of
behaviours encompasses when the interaction can be performed (using “Given”, “When”

 ECEASST

6 / 9 Volume 079 (2020)

and/or “Then” clauses – which corresponds to the context-event-action elements of a state
machine), and which graphical interaction elements can be affected. Altogether, behaviours
and interaction elements are used to implement the test of an expected system behaviour. In
the example presented in the figure, the step “I choose ‘<value>’ referring to ‘<field>’”
manipulates a “<value>”, which is associated with some test data; and a “<field>”, which
refers to the interaction element supported by this behaviour, i.e., in this case, a Radio Button,
a CheckBox, a Calendar, or a Link. Thus, we consider there is an inconsistency when steps are
specified using interactive behaviours that are semantically inconsistent with the affected
interaction element on the GUI, such as a selection to be made on a button, for example.

Domain Models. A domain model is a visual representation of conceptual classes or real-
world objects in a domain of interest [14]. Class diagrams are among the widest used type of
domain models in software engineering. It describes the structure of a system by showing the
system’s classes, their attributes, operations (or methods), and the relationships among objects
[15]. Our strategy for assessing class diagrams as domain models is based on parsing the
sentences of a BDD story trying to semantically identify elements that should be present in a
class diagram. For that, we follow existing heuristics proposed by different works in the
literature on natural language processing for requirements engineering and software modelling.

Table 1. Heuristics for parsing natural language requirements (adapted from Lucassen et al. [16])

Rule head (if) Rule tail (then)
Entities
Noun Potential entity
Common noun Entity
Sentence subject Entity

Compound noun Take compound together
to form entity

Gerund Entity
Non-hierarchical relationships
Verb Potential relationship
Transitive verb Relationship
Verb (phrase) linking
the subject and an
object

Relationship

Verb followed by
preposition

Relationship including
preposition

Noun–noun
compound

Non-hierarchical
relationship between
prefix and compound

Hierarchical relationships

Verb “to be” Subjects are children of
parent object

Head of noun–noun
compound

IS-A relationship between
compound and head

Rule head (if) Rule tail (then)
Attributes

Adjective Attribute of noun phrase
main

Adverb modifying a
verb

Relationship attribute

Possessive apostrophe Entity attribute
Genitive case Entity attribute
Verb ‘‘to have’’ Entity attribute
Specific indicators
(e.g., “number”,
“date”, “type”, ...)

Entity attribute

Object of
numeric/algebraic
operation

Entity attribute

Cardinality
Singular noun
(+definite article)

Exactly 1

Indefinite article Exactly 1
Part in the form
“More than X”

X..*

Indicators many, each,
all, every, some, any

??..*

Most of these works rely on Stanford Parser [17] and WordNet [18]. The Stanford Parser
parses sentences in different languages and returns a phrase structure tree (PST) representing
the semantic structure of the sentence. WordNet is a large lexical database of English which

 Parsing BDD Stories for Automated Verification of Software Artefacts

InterAVT 2020 7 / 9

groups nouns, verbs, adjectives, and adverbs into sets of cognitive synonyms, each
representing a lexicalized concept. By using these tools, Soeken et al. [19] propose a specific
set of heuristics for BDD stories in order to identify class diagram elements by parsing their
sentences. The authors claim that (i) regular nouns in sentences usually are realized as objects
in the system, and therefore, they can be represented by classes; (ii) adjectives usually provide
further information about the respective objects. Thus, they can be represented by attributes of
classes; and (iii) verbs usually describe actions in a scenario and can therefore be represented
by operations of classes. Additionally, they provide information about when an operation is
called and by whom.

Other authors have provided more refined heuristics to identify conceptual elements from
general requirements in natural language. A comprehensive list of these heuristics is presented
in Table 1 adapted from Lucassen et al. [16]. We are currently analysing such heuristics to
identify to which extent they fully apply for parsing BDD stories as well. We are also
investigating the tools Visual Narrator [16] and ReDoMEx [20] which apply a given subset of
these heuristics to generate models. Visual Narrator generates an ontology as a conceptual
model from ordinary User Stories, and ReDoMEx generates a class diagram as a domain
model from, according to the authors, unrestricted natural language requirements. After
identifying the conceptual elements, the idea is to point out an inconsistency whenever such
elements cannot be found in the class diagrams under assessment.

3 Challenges and Conclusions
We have conducted preliminary case studies with this approach using task models [21], GUI
prototypes [22] and final GUIs [23]. Below, we summarize the main challenges, limitations
and lessons we have learned so far.

Comprehension of BDD stories. As this approach is expected to benefit a wide range of
stakeholders involved with software requirements, verification and testing, one of the main
challenges is to ensure that BDD stories are well understood and effectively used by the
different stakeholders involved in the project. In a previous study [24], we have preliminary
evaluated (i) the comprehension of the BDD story template by potential Product Owners
(POs), and (ii) their ability to effectively use the set of predefined interactive behaviours to
specify their own user requirements. Although the participants have followed different
specification strategies, we observed an overall high level of adherence to the proposed set of
interactive behaviours. The results also pointed out a wide use of domain-dependent
behaviours, with the interactive behaviours defined by the ontology being, to some extent,
reproduced by the participants even without prior training in the adopted vocabulary. Further
studies, however, are still needed to evaluate how useful the proposed vocabulary is to specify
user requirements for real software projects in industry involving different stakeholders.

Relevance of artefact maintenance. This approach benefits from the independence for
assessing artefacts, i.e. the assessment can be conducted in an independent manner, for
example, only in a subset of the artefacts under development or being considered at a given
time. In theory, the approach is also well suited to run within any macro software development
process, but the maintenance and evolution of the targeted artefacts must make sense in the
context of the project. We acknowledge that for some projects, especially in the agile context,
artefacts resultant from modelling activities are only used to clarify and agree upon a common
understanding of user requirements and are not kept or evolved in practice. Naturally, for these
cases, this approach has limited value.

 ECEASST

8 / 9 Volume 079 (2020)

Flexibility and artefact coverage. So far, we are only covering the assessment of task
models modelled with the HAMSTERS1 notation and tool, GUI prototypes designed with the
Balsamiq2 tool, and web GUIs developed under whatever technology for the presentation
layer. The approach, however, is domain-independent, i.e. the interactive behaviours described
in the ontology (such as clicks, selections, etc.) are the same regardless of the software
business domain, and the architecture is flexible enough to accommodate new notations and
tools in the future. A limitation is that even with the ontology mapping synonyms for some
specific behaviours, it does not provide any kind of semantic interpretation, i.e. the behaviours
must be specified exactly as they were defined. At first glance, nonetheless, the restricted
vocabulary seems to bring less flexibility to designers, testers, and requirements engineers, but
at the same time, it establishes a common vocabulary, avoiding the typical problems of
miscommunication, ambiguity, and incompleteness in requirements and testing specifications.

Variety of inconsistencies identified. We identified a wide range of inconsistency
problems when running the approach in preliminary case studies. While simple inconsistencies
such as differences in names of tasks and fields are easy to be solved, conflicts between
specification and modelling along with different specification strategies for task models
compose a more critical group of problems and must be prioritized. Concerning the GUIs, the
presence of semantically inconsistent elements, the presence of more than one element to
represent the same field, and fields already filled-in on web GUIs are also critical groups of
problems and denotates inconsistencies that exposes important design errors. Finally, we are
still working on case studies to evaluate our strategy for assessing domain models.

Acknowledgments
This work was supported with the financial support of the Science Foundation Ireland grant
13/RC/2094 and has also received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 754489.

References
[1] M. Cohn, User Stories Applied for Agile Software Development. Addison-Wesley, 2004.
[2] D. North, “Introducing BDD,” Better Software, 2006.
[3] D. North, “What’s in a Story?,” 2019. [Online]. Available: https://dannorth.net/whats-in-a-story/.
[4] M. Chechik and J. Gannon, “Automatic Analysis of Consistency between Requirements and

Designs,” IEEE Trans. Softw. Eng., vol. 27, no. 7, pp. 651–672, 2001, doi: 10.1109/32.935856.
[5] T. R. Silva, J.-L. Hak, and M. Winckler, “A Behavior-Based Ontology for Supporting Automated

Assessment of Interactive Systems,” in Proceedings - IEEE 11th International Conference on
Semantic Computing, ICSC 2017, 2017, pp. 250–257, doi: 10.1109/ICSC.2017.73.

[6] T. R. Silva, J.-L. Hak, and M. Winckler, “A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces,” Int. J. Semant. Comput., vol.
11, no. 04, pp. 513–539, 2017, doi: 10.1142/S1793351X17400219.

[7] T. R. Silva, M. Winckler, and H. Trætteberg, “Extending Behavior-Driven Development for
Assessing User Interface Design Artifacts,” in Proceedings of the International Conference on
Software Engineering and Knowledge Engineering, SEKE, 2019, pp. 485–488, doi:
10.18293/SEKE2019-054.

[8] T. R. Silva, J.-L. Hak, and M. Winckler, “An Approach for Multi-Artifact Testing Through an

1 https://www.irit.fr/recherches/ICS/softwares/hamsters/
2 https://balsamiq.com

 Parsing BDD Stories for Automated Verification of Software Artefacts

InterAVT 2020 9 / 9

Ontological Perspective for Behavior-Driven Development,” Complex Syst. Informatics Model.
Q., no. 7, pp. 81–107, 2016, doi: 10.7250/csimq.2016-7.05.

[9] T. R. Silva, J.-L. Hak, and M. Winckler, “Testing Prototypes and Final User Interfaces Through
an Ontological Perspective for Behavior-Driven Development,” in 6th International Working
Conference on Human-Centred Software Engineering, and 8th International Working
Conference on Human Error, Safety, and System Development (HCSE 2016 and HESSD 2016),
vol. 9856, 2016, pp. 86–107.

[10] T. R. Silva, “Definition of a Behavior-Driven Model for Requirements Specification and Testing
of Interactive Systems,” in Proceedings - 2016 IEEE 24th International Requirements
Engineering Conference, RE 2016, 2016, pp. 444–449, doi: 10.1109/RE.2016.12.

[11] T. R. Silva and M. Winckler, “A Scenario-Based Approach for Checking Consistency in User
Interface Design Artifacts,” in IHC’17, Proceedings of the 16th Brazilian Symposium on Human
Factors in Computing Systems, 2017, vol. 1, pp. 21–30, doi: 10.1145/3160504.3160506.

[12] F. Paternò, C. Santoro, L. D. Spano, and D. Raggett, “W3C, MBUI - Task Models,” 2017.
[Online]. Available: http://www.w3.org/TR/task-models/.

[13] M. Beaudouin-Lafon and W. E. Mackay, “Prototyping Tools and Techniques,” in Prototype
Development and Tools, 2000, pp. 1–41.

[14] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development. Addison Wesley Professional, 2004.

[15] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process, 1st ed.
Addison-Wesley Professional, 1999.

[16] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper, “Extracting
conceptual models from user stories with Visual Narrator,” Requir. Eng., vol. 22, no. 3, pp. 339–
358, 2017, doi: 10.1007/s00766-017-0270-1.

[17] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating Typed Dependency Parses
from Phrase Structure Parses,” in Proceedings of the Fifth International Conference on
Language Resources and Evaluation, LREC 2006, 2006, pp. 449–454.

[18] G. A. Miller, “WordNet: A Lexical Database for English George A. Miller,” Commun. Acm, vol.
38, no. 11, pp. 39–41, 1995.

[19] M. Soeken, R. Wille, and R. Drechsler, “Assisted Behavior Driven Development Using Natural
Language Processing,” in TOOLS Europe 2012, 2012, vol. 7304 LNCS, pp. 269–287.

[20] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Extracting Domain Models from Natural-
Language Requirements: Approach and Industrial Evaluation,” in Proceedings - 19th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, MODELS
2016, 2016, pp. 250–260, doi: 10.1145/2976767.2976769.

[21] T. R. Silva, M. Winckler, and H. Trætteberg, “Ensuring the Consistency between User
Requirements and Task Models: A Behavior-Based Automated Approach,” Proc. ACM Human-
Comput. Interact., vol. 4, no. EICS, pp. 77:1–32, 2020, doi: 10.1145/3394979.

[22] T. R. Silva, M. Winckler, and H. Trætteberg, “Ensuring the Consistency Between User
Requirements and GUI Prototypes: A Behavior-Based Automated Approach,” in Proceedings of
the 17th IFIP TC 13 International Conference on Human-Computer Interaction – INTERACT
2019, 2019, vol. LNCS 11746, pp. 644–665, doi: 10.1007/978-3-030-29381-9_39.

[23] T. R. Silva, M. Winckler, and H. Trætteberg, “Ensuring the Consistency Between User
Requirements and Graphical User Interfaces: A Behavior-Based Automated Approach,” in
Proceedings of the 19th International Conference on Computational Science and Its Applications
– ICCSA 2019, 2019, vol. LNCS 11619, pp. 616–632, doi: 10.1007/978-3-030-24289-3_46.

[24] T. R. Silva, M. Winckler, and C. Bach, “Evaluating the usage of predefined interactive behaviors
for writing user stories: an empirical study with potential product owners,” Cogn. Technol. Work,
May 2019, doi: 10.1007/s10111-019-00566-3.

