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Abstract: In this work, we provide initial insights regarding the error introduced
into multicomponent queueing systems by assuming the departure processes of ar-
bitrary GI/GI/1-∞ queues to be renewal processes. To this end, we compute the so-
journ time distribution as well as departure distributions of a linear chain of queueing
components and compare the results to a simulation of the same system. By apply-
ing the renewal approximation, potential autocorrelations of the departure processes
are lost. We investigate the magnitude of this error regarding both the sojourn time
as well as interdeparture time distributions for a broad set of parameters. Although
more indepth studies are needed, our results show that both distributions can be
closely approximated, which allows the application of the model to asses the perfor-
mance of real world NFV function chains.
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1 Introduction

The complexity of both, applications as well as their underlying networks and compute archi-
tectures has increased substantially over the last few years. The abundance of cost-efficient
cloud resources and the emergence of cloud-native microarchitectures, as well as the introduc-
tion of paradigms like network functions virtualization (NFV) and software-defined networking
(SDN) have led to systems becoming significantly more complex. While legacy system are often
designed as large, monolithic structures, modern systems consist of a multitude of largely inde-
pendent actors that communicate with each other in order to perform their tasks. This micro-
architecture paradigm allows cost-efficient resource scaling, improves system resilience, and
shortens release cycles. However, the decomposition of functions into microservices (MS) in-
troduces new challenges regarding the modeling and performance evaluation of such systems.
Since requests traverse several MSs, the performance of the whole system is composed of the
performance of chains of MSs. Finally, such models can be used during the dimensioning of
complex, interconnected systems to establish required processing rates for each component as
well as for the detection of bottlenecks in existing systems.

To this end, we propose an iterative approach to numerically compute the departure process
of individual GI/GI/1-∞ MSs and show that by utilizing the resulting departure process as an
arrival process to a subsequent system component, we can approximate several performance
characteristics of downstream system components. The model is based on the assumption that
the departure processes of individual components are renewal processes and do not exhibit any
autocorrelation. This, in general, does not hold true in arbitrary systems.
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Hence, in this work, we describe the approach itself as well as quantify the error introduced
through the renewal approximation for different system configurations.

2 Related Work

Queueing stations of the type GI/GI/1-∞ as well as general queueing networks composed of mul-
tiple such queueing stations have been investigated in the past by, e.g. Tran-Gia [1], Kuehn [2],
and Whitt [3]. Similarly, the evaluation of the waiting time distribution of GI/GI/1 systems has
been evaluated previously [4–6]. Additionally, we have shown previously that the waiting time
distribution can be determined numerically, even for more complex systems [7, 8].

3 Interdeparture Time Distribution Model

The model used in this work is based on the model proposed in [1]. To disambiguate between
random variables (RVs) and distributions, we use the following convention: uppercase letters
such as A denote RVs, their distribution is represented by a(k). Accordingly, the model input is
composed of the interarrival time distribution a(k), as well as the service time distribution b(k).
Based on that, waiting time w(k) and interdeparture time d(k) can be calculated as follows.

To compute the interdeparture time distribution, we first need to compute the waiting time
distribution w(k). This can be done using Lindley’s equation, in which ∗ denotes the convolution.
Note that we assume the system to be in a stable state and can hence use c(k), a(k), and b(k)
without indices indicating their respective arrival.

wn+1(k) = π0(wn(k)∗ c(k)) with c(k) = a(−k)∗b(k) (1)

π0(x(k)) =


x(k) k > 0

∑
0
i=−∞ x(i) k = 0

0 k < 0

The waiting time can then be used to compute the idle time distribution i(k) via the virtual
unfinished work uv(k). The idle time distribution describes the time a system is idle after a
departure event.

uv(k) = w(k)∗ c(k) = w(k)∗a(−k)∗b(k) (2)

i(k) = K ·uv(−k) with K−1 =
∞

∑
j=1

uv(− j)

Finally, the interdeparture time distribution d(k) can be computed using the service time distri-
bution b(k), the idle probability PE , and the idle time distribution i(k).

d(k) = PE · (i(k)∗b(k))+(1−PE) ·b(k) with PE =
E[A]−E[B]

E[I]
(3)

Analogously, the sojourn time distribution s(k) of linear chains with n components can be ap-
proximated via w(k) and b(k). Note that this neglects potential autocorrelations in wi(k).

s(k) = w1(k)∗b1(k)∗w2(k)∗b2(k)∗ ...∗wn(k)∗bn(k) (4)
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4 Evaluating Multicomponent Queueing Systems

In the following, we apply the model to iteratively compute the interdeparture time distribution
of component i, which is then applied as an interarrival time distribution to component i+ 1.
We assume a system of linearly concatenated GI/GI/1-∞ queueing components without cross-
traffic (cf. Figure 1). Here, we assume the departure process to be a renewal process, which, in
general, is not true. Instead, the departure process of a GI/GI/1-∞ queue must be assumed to
exhibit autocorrelation. Subsequently, we quantify the error introduced by assuming D1,D2,D3
to be renewal processes when it comes to a) the interdeparture time distribution and b) the dis-
tribution of the sojourn time for the whole system. In order to assess the error, the model results
are compared to simulations with the same input parameters.

A B1 B2 B3
D1 D2

D3 = DW1 W2 W3

- Negative Binomial
- c = {0.5, 1, 2}
- E[B] = 50

- Deterministic
- Negative Binomial
- c = {0.5, 1, 2}
- E[A] = 100

- Negative Binomial
- c = {0.5, 1, 2}
- E[B] = 50

- Deterministic
- Negative Binomial
- c = {0.5, 1, 2}
- E[B] = 100ρ
 

A

B

B

B

- ρ = {0.1, 0.2, 0.3, 0.4,
        0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98}

Figure 1: System and parameter overview.
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Figure 2: Mean, max, and min JSD of the sojourn time s(k) for different values of cA and ρ .

Figures 2 a) and b) show main effect plots of the Jenson-Shannon-Divergence (JSD) for differ-
ent values of cA and ρ . cB has been omitted here since the effects are similar to the ones induced
by cA. The figures show all JSD values obtained by evaluating every parameter combination
possible from the values presented in Figure 1.

The results show that the sojourn time can be closely approximated by assuming D1,D2,D3
to be renewal processes. The 95% quantile of JSD values is 0.037 for the sojourn time. A
similar evaluation regarding the interdeparture distribution of the last component has shown a
95% quantile of 0.0004. Regarding the sojourn time, the largest error with a JSD value of
0.45 has been observed for a deterministic arrival process and deterministic service time of the
second processing unit in combination with high system load (ρ = 0.98). This is due to the
fact that deterministic arrival and service times lead to maximum autocorrelation regarding the
departure process. However, since deterministic distributions are rarely observed in technical

3 / 4 Volume 080 (2021)



Discrete-time Analysis of Multicomponent GI/GI/1 Queueing Networks

systems, when filtering these processes out, the highest observed error was a JSD value of 0.13
for cA = 0.5, cB1 = cB3 = 2, cB2 = 0.5 and ρ = 0.98.

5 Conclusion

In this work, we provide preliminary insights into the linear concatenation of GI/GI/1-∞ queue-
ing components. We apply existing models for the calculation of the interdeparture time dis-
tribution in order to iteratively compute the waiting time distribution of further components in
the chain. Finally, we are able to compute the sojourn time for the total system and show that,
for the parameter combinations evaluated in this work, a close approximation is possible. Mov-
ing forward, future work includes the extension of the parameter space to cover more cases as
well as the introduction of new parameters such as the length of the chain as well as autoregres-
sive arrival processes. Furthermore, the impact of cross-traffic and feedback loops needs to be
investigated.
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