
Electronic Communications of the EASST
Volume 080 (2021)

Conference on Networked Systems 2021
(NetSys 2021)

FlowEmu: An Open-Source Flow-Based Network Emulator

Daniel Stolpmann, Andreas Timm-Giel

4 pages

Guest Editors: Andreas Blenk, Mathias Fischer, Stefan Fischer, Horst Hellbrueck, Oliver
Hohlfeld, Andreas Kassler, Koojana Kuladinithi, Winfried Lamersdorf, Olaf Landsiedel, Andreas
Timm-Giel, Alexey Vinel

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

FlowEmu: An Open-Source Flow-Based Network Emulator

Daniel Stolpmann1, Andreas Timm-Giel2

1daniel.stolpmann@tuhh.de, 2timm-giel@tuhh.de
Hamburg University of Technology, Institute of Communication Networks, Germany

Abstract: When analyzing the impact of a communication system on the Quality of
Experience (QoE) of an interactive application, simulation and mathematical model-
ing typically require reimplementation or modeling of the application under test and
only provide insights in terms of selected Key Performance Indicators (KPIs), which
raises the need for network emulation. In this demo, we present FlowEmu, an open-
source flow-based network emulator that allows the user to manipulate the under-
lying model and analyze various statistics in real-time via an easy-to-use Graphical
User Interface (GUI), by using interactive game streaming as an example applica-
tion.

Keywords: Network Emulation, Flow-Based Programming, Game Streaming

1 Introduction

Network emulation combines abstract models and real hardware / software components to mimic
the behavior of a communication system. Compared to simulation and mathematical modeling,
which typically require reimplementation or modeling of the application under test and only
provide insights in terms of selected Key Performance Indicators (KPIs), this makes it possible
to showcase the impact of a communication system on the Quality of Experience (QoE) of a real
interactive application.

In this demo, we present FlowEmu, an open-source flow-based network emulator. FlowEmu
provides an extendable set of modules that implement basic functions such as adding delay and
introducing packet loss as well as packet queues and departure processes. These modules can
be freely connected to model the impact of different types of communication systems on the
network traffic of a real application. By providing an easy-to-use web-based Graphical User
Interface (GUI), FlowEmu allows the user to change the structure and parameters of the model
at runtime. Additionally, it gives insights on internal states by visualizing various statistics.

This paper is structured as follows. In Section 2, existing network emulators are presented and
compared to FlowEmu. Section 3 describes the architecture of FlowEmu and highlights some
of its features. In Section 4, we give an overview of our demo at NetSys 2021. In the end, we
provide a summary in Section 5.

2 Related Work

NetEm [Hem05] is an open-source network emulator that is implemented as a queuing discipline
(qdisc) in the Linux kernel and can be set up on any network interface using the “tc” command

1 / 4 Volume 080 (2021)

mailto:daniel.stolpmann@tuhh.de
mailto:timm-giel@tuhh.de


FlowEmu: An Open-Source Flow-Based Network Emulator

line tool. Besides being able to emulate uncorrelated and correlated delay, packet loss, packet
corruption, packet duplication and packet re-ordering, it also provides bit rate emulation [Lin].
However, without workarounds, it can only be applied to the outgoing traffic. Also, the included
discrete Gilbert-Elliot model is evaluated for each packet, which makes the wall-clock sojourn
times dependent on the packet rate. In contrast, FlowEmu provides a continuous-time Gilbert-
Elliot model that can be applied to both directions of the traffic simultaneously.

Facebook’s Augmented Traffic Control (ATC) [Fac] is based on NetEm and targeted to appli-
cation developers for testing. It features a web-based GUI and a Representational State Trans-
fer (REST) Application Programming Interface (API) that allows the user to set up and switch
between profiles that are parametrized for emulating different types of networks. The project is
open-source, but was officially discontinued. Compared to this, FlowEmu is under active devel-
opment and provides an Message Queuing Telemetry Transport (MQTT) interface as well as a
web-based GUI and the option to save and load models.

In [Ste17], a framework for analyzing Active Queue Management (AQM) algorithms was
developed. It is build around NetEm and the Linux kernel implementations of different AQM
algorithms. The framework supports execution on a physical testbed consisting of multiple com-
puters or a single machine using Docker. In order to get statistics for queuing delay and packet
drops, the implementations of the AQM algorithms in the Linux kernel have to be modified to
write these statistics into the 16 bit “identification” field of the Internet Protocol Version 4 (IPv4)
header. From there, these statistics can be read by the receiving application. FlowEmu also pro-
vides the flexibility of running experiments on a testbed or a single machine using Docker, but
allows each module to directly record statistics independently of the application under test.

Mahimahi [NSD+15] is an open-source record-and-replay framework for Hypertext Transfer
Protocol (HTTP) traffic, which contains a set of network emulation tools called “shells”. Each
shell creates its own network namespace, in which any program can be executed, and operates on
the incoming and outgoing traffic of it. Multiple shells can be chained together by starting them
in each other’s namespace. Besides shells that are able to add fixed delay or uncorrelated packet
loss, there is also a shell that emulates a link based on a trace file, which contains timestamps of
packet transmission opportunities. The link shell has an internal queue and is able to create live
graphs of the channel capacity, the throughput and the queuing delay. FlowEmu reimplements
many of Mahimahi’s features and is even able to read its trace files for link emulation. Addition-
ally, it is more flexible due to its modular design and the way modules can be connected while
introducing less overhead by running everything in a single process.

3 Architecture and Features

FlowEmu is written in C++ and runs on Linux as a single user space process. The network
interfaces are accessed using raw sockets, which provide layer 2 access, so the emulator is able
to process the Ethernet Medium Access Control (MAC) header and all higher layer information
of the packets.

All functions such as adding delay, introducing packet loss as well as the packet queues and
departure processes are implemented in separate modules. Each module has multiple “ports”,
which are used to connect the modules to each other. Depending on its functionality, a module

NetSys 2021 2 / 4



ECEASST

can have sending, receiving, requesting or responding ports, which can be connected indepen-
dently for each direction of a data flow. Packets are passed between modules as references, so
no unnecessary copying overhead is introduced. Additionally, each module can define a set of
parameters that can be set by the user and a set of statistics to be recorded.

FlowEmu provides an extensive toolchain for running experiments either in a virtual environ-
ment or on a physical testbed. Running the emulator as well as the client and server components
of the application under test on a single machine in separate Docker containers, which are con-
nected via bridge interfaces, enables fast and convenient development and testing. When running
experiments and recording statistics, it is recommended to run the emulator and the application
components on separate machines to improve the real-time behavior.

Message Queuing Telemetry Transport (MQTT) Interface FlowEmu is fully controllable
via MQTT. This includes changing the structure of the model as well as setting the parameters
of the individual modules and getting their statistics. By writing special driver applications,
this also allows the emulator to interface with hardware devices, such as Microcontrollers and
Musical Instrument Digital Interface (MIDI) controllers.

Graphical User Interface (GUI) FlowEmu provides a web-based GUI that communicates
with the emulator via MQTT over a WebSocket. The GUI features a graphical node-based editor,
which allows the user to freely connect the modules by drag-and-drop, set the parameters of the
individual modules and visualize their statistics.

Runtime Reconfigurable Model FlowEmu applies changes to the structure of the model and
the parameters of the individual modules at runtime without resetting the internal state of the
modules, which makes it possible to immediately see their effect on the application performance.
Besides being an impressive feature for demonstration purposes, this can also be used to quickly
test various parameters and find value ranges that are worth to be investigated.

Real-Time Statistics Each module in FlowEmu can provide statistics in real-time, which can
give insights on internal states such as queue lengths or can be used if the application under test
does not provide end-to-end packet level statistics such as throughput or delay.

Independent and Seedable Pseudo Random Number Generators In FlowEmu, each mod-
ule uses its own pseudo random number generator, which ensures that the behavior of a module
is not influenced by other modules. Additionally, the seed of each pseudo random number gen-
erator can be set, which allows results to be reproducible and comparable.

4 NetSys 2021 Demo

At NetSys 2021, we present FlowEmu in a demo. An overview of the setup is shown in Figure 1.
The demo is based on a cloud gaming scenario, where a video game is executed on a server and
streamed as a video to a client while the inputs of the player are sent back from the client to
the server. For this, we use Steam’s Remote Play [Val] feature to stream a game from a high-
end computer to another device over the network emulator. When changing the structure and
parameters of the underlying model via the GUI while the game is being played, the impact of
these changes on the performance of the interactive game streaming application can be seen.

3 / 4 Volume 080 (2021)



FlowEmu: An Open-Source Flow-Based Network Emulator

Inputs

Video

Server ClientFlowEmu

Figure 1: Overview of the demo setup

5 Summary

In this demo, we present FlowEmu, an open-source flow-based network emulator that allows
the user to manipulate the underlying model and analyze various statistics in real-time via an
easy-to-use GUI and offers advanced features such as independent and seedable pseudo random
number generators. For demonstration purposes, we use interactive game streaming as an exam-
ple application. The source code of FlowEmu is available at [Sto], where we also provide further
documentation and invite everyone to contribute improvements and new modules.

Bibliography

[Fac] Facebook. Augmented Traffic Control. (Accessed 12.08.2021).
https://github.com/facebookarchive/augmented-traffic-control

[Hem05] S. Hemminger. Network Emulation with NetEm. In linux.conf.au 2005. Canberra,
Australia, Apr. 2005.

[Lin] Linux Foundation. NetEm. (Accessed 12.08.2021).
https://wiki.linuxfoundation.org/networking/netem

[NSD+15] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, H. Balakrish-
nan. Mahimahi: Accurate Record-and-Replay for HTTP. In 2015 USENIX Annual
Technical Conference (USENIX ATC ’15). Pp. 417–429. Santa Clara, CA, USA, July
2015.

[Ste17] H. Steen. Destruction Testing: Ultra-Low Delay using Dual Queue Coupled Active
Queue Management. Master’s thesis, University of Oslo, Oslo, Norway, 2017.

[Sto] D. Stolpmann. FlowEmu.
https://github.com/ComNetsHH/FlowEmu

[Val] Valve Corporation. Steam Remote Play. (Accessed 12.08.2021).
https://store.steampowered.com/remoteplay

NetSys 2021 4 / 4

https://github.com/facebookarchive/augmented-traffic-control
https://wiki.linuxfoundation.org/networking/netem
https://github.com/ComNetsHH/FlowEmu
https://store.steampowered.com/remoteplay

	Introduction
	Related Work
	Architecture and Features
	NetSys 2021 Demo
	Summary

