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Abstract: Software evolution entails more than just redesigning and reimplement-
ing functionality of, fixing bugs in, or adding new features to source code. These
evolutionary forces induce similar changes on the software’s build system too, with
far-reaching consequences on both overall developer productivity as well as soft-
ware configurability. In this paper we take a look at this phenomenon in the Linux
kernel from its inception up until present day. We do this by analysing the kernel’s
build traces with MAKAO, our re(verse)-engineering framework for build systems.
This helps us in detecting interesting idioms and patterns in the dynamic build be-
haviour. Finding a good balance between obtaining a fast, correct build system and
migrating in a stepwise fashion turns out to be the general theme throughout the
evolution of the Linux build system.

Keywords: build system evolution, case study, Linux kernel, MAKAO

1 Introduction

The majority of software evolution research is targeted at direct participants in the evolution
process like source code and design artifacts. While these play —of course!— a major role,
much can be learnt from indirect evolution partners. The build system is one of them.

A build system takes care of two things:

• it decides which components should be built and establishes any platform-dependent in-
formation needed to do so;

• it incrementally builds the system taking dependencies into account.

Before 1977, most people wrote their own ad hoc build and install scripts for this. Then,
Feldman introduced a dedicated build tool named “make” [Fel79]. It was based on explicit
declarative specifications of the dependencies between targets (executables, object files, etc.) in
textual “Makefiles”, combined with imperative “recipes” (list of shell commands) for building a
target. A time stamp-based updating algorithm considerably improved incremental compilation
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of software projects and enhanced the quality of builds. The underlying philosophy of “make”
has influenced lots of other build tools, but traditional “make” systems are still in wide use today.

Configuration systems like e.g. GBS (GNU Build System)1 complement build tools to con-
stitute a full build system. They let build scripts abstract from platform-specific information
like include directories or compiler versions, in most cases by means of parameters which are
resolved right before build-time. At the same time, they help in composing a system from the
various available modules and their different versions.

One example of a widely used build system can be found in the Linux kernel. Linux is a —by
now famous— operating system, used both by enthusiasts as well as in industrial settings. It
started out in 1991, when Linus Torvalds sent an email to the Minix newsgroup, stating that he
had developed a free operating system he wanted to share with everyone. It was a monolithic
kernel, in which device drivers were hardcoded (e.g. Finnish keyboard), with user space pro-
grams ported over from Minix. In a little over fifteen years, Linux has grown from this one-man
hobby project into what is probably the largest open-source project on the planet, praised for its
portability across computer configurations.

Linux has been the target of many studies. The one which is of most relevance to this paper
was done by Godfrey and Tu in [GT00], where the kernel source code was studied from the
perspective of software evolution. Contrary to Lehman’s laws [LB85], the kernel exhibited a
superlinear growth in size. This means that strangely enough the growing complexity did not
temper the kernel’s evolution.

Source code, however, can not evolve in isolation. We claim that the build system co-evolves
with the source code. Every time new source code gets added, or existing modules are moved
around, one is forced to deal with the build system in order to keep the software system com-
pilable. An agile build system gives developers more freedom to restructure and refactor the
source code. Hence, traditional evolution steps have an immediate impact on the build system,
but the inverse also holds. Yet, no work to quantify this claim exists yet (the build system was
explicitly ignored in [GT00]). In this paper, we will therefore examine this peculiar relation by
means of the Linux kernel. Considering various major kernel releases from the very beginning
to the recent versions (at the time of writing), we will investigate the various forces on its build
system.

In Section 2 we will explain the setup of our case study on the Linux kernel and its build sys-
tem. Our measurements will enable us to make three important observations. First (Section 3),
we will investigate whether and how the build system evolves. Then (Section 4), we will look
at the build system’s complexity and discuss our observations in general. Finally (Section 5),
we will go into more detail and zoom in on build system maintenance activities. As this is still
preliminary work, we will point out future research directions (Section 6) before we summarise
this paper’s contributions in Section 7.

2 Setup of the case study

To study the evolution of the Linux kernel build system, we looked at most of the pre-1.0 releases
of Linux, as well as the major stable post-1.0 releases (up to the 2.6 series). Table 1 gives an

1 http://sources.redhat.com/autobook/
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Date Version Date Version
September 17,1991 0.01 March 13, 1994 1.0
December 8, 1991 0.11 March 7, 1995 1.2.0
May 25, 1992 0.96a July 3, 1996 2.0.1
July 5, 1992 0.96c January 26, 1999 2.2.0
July 18, 1993 0.99.11 January 4, 2001 2.4.0
September 19, 1993 0.99.13 December 18, 2003 2.6.0
February 3, 1994 0.99.15 June 11, 2007 2.6.21.5

Table 1: Chronological overview of the Linux versions we investigated.

overview of the processed versions, which span some 15 years of real-world development time.
The distribution of systems seems to be skewed towards the earliest versions (1991–1995), but as
Linux was still a young system back then, it was much easier to make drastic changes than later
on. Indeed, samples in the later kernel series revealed no drastic build changes within a series,
except for the 2.6 line. This is due to the changed development model, i.e. no unstable kernel
anymore parallel to the stable one.

To each of the kernels of Table 1 we first applied David A. Wheeler’s SLOCCount tool2 in
order to calculate the physical, uncommented SLOC (Source Lines Of Code) of source code (.c,
.cpp, etc.), build scripts (“Makefile”, “Kbuild”, etc.), configuration data (“config.in”, “Kconfig”,
etc.) and support build files (.sh, .awk, etc.).

Then, we compiled each of the kernels using an initial configuration we reused and enhanced
with new kernel features as needed throughout the measurements. We opted for a run-off-the-mill
configuration. Influence of specific configurations on our results is future work. The build traces
were fed into MAKAO3 [ADTD07], our re(verse)-engineering framework for build systems, in
order to obtain the corresponding build dependency graphs, and some figures on the number of
targets and dependencies.

Finally, each dependency graph was loaded into MAKAO to visualise, query and filter them.
In this paper, we will report on the most striking maintenance activities like e.g. the transition
from the 2.4 to the 2.6 kernel.

In our measurements, we exclusively focused on the Linux build’s intrinsic complexity, not
on how the end user or developer perceives the build system. Whereas the build system engine
(“how”) may significantly be optimised and tweaked, the Linux build users are largely shielded
from this via domain-specific build and configuration languages (“what”). In personal commu-
nication, Linux 2.6 build maintainer Sam Ravnborg coined the phrase “simple syntax for simple
things” for this. The quality of this build interface is hard to measure however, as it is more
related to language design and evolution.

2 http://www.dwheeler.com/sloccount/
3 http://users.ugent.be/∼badams/makao/
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2.1 Build graph measurements

MAKAO is a re(verse)-engineering framework for build systems [ADTD07]. It is based on a
directed acyclic graph (DAG) model of actual builds [Fel79] to which static build script data
like command lists, line numbers, etc. has been attached. Nodes represent build targets and
edges denote dependencies. The DAG is obtained by parsing a trace of the build, i.e. by running
“make” with debugging flags and processing the output afterwards.

MAKAO is built on top of GUESS [Ada06], a graph manipulation tool in which nodes and
edges are objects with their own state and behaviour. Besides visualising a build DAG, it can
be controlled programmatically using the embedded Gython scripting language (derived from
Python). This is ideal for performing detailed queries on a particular build graph, or writing
build refactorings. We also wrote tool support to reify the graph as Prolog facts and apply
logic rules to manipulate them. As such, dependency graphs can be inspected and studied in
a more controllable way than by merely reading the build scripts. Validation is another useful
application.

More details on MAKAO can be found in [ADTD07], which explains the rationale behind it
as well as its applicability in the realms of build maintenance. The current paper focuses on one
of the future work topics mentioned there, i.e. learning things about the source code by looking
at the build system. One of the prerequisites for that is being able to measure their joint evolution
behaviour from some important properties, i.e. the measurements presented above.

As MAKAO does not yet take configuration data into account, we only looked at the SLOC
history for this. More detailed configuration analyses are future work.

3 Observation 1: the build system evolves

This section presents and discusses the measurements obtained with SLOCCount. Figure 1
shows the growth over time (in logarithmic scale) of the number of non-comment and non-blank
lines which make up the source code, and the build system. The latter is split over three parts:
(1) the actual Makefiles (build), (2) the configuration files which drive the selection process
of what should get built (config), and (3) other tools and scripts which assist the actual build
process (rest). This last category contains build-time scripts to extract symbol tables, install
kernel components, etc.

Our measurements confirm the claim made in [GT00] about the source code’s super-linear
evolution in SLOC. For our purposes, the observation to be made from this graph is that the build
system also evolves over time4. Over the course of fifteen years the SLOC of the Makefiles has
grown by a factor of about 52. There are various reasons for this. Initially (until 0.96x kernels),
build scripts flourished because of the rapid growth in source code, and also the addition of new
subdirectories for driver code (block and character devices, networking, file systems, etc.), each
with their own build scripts. In the 1.2.0 kernel, architecture-dependent code was separated from
the architecture-independent code, and put under subdirectories of the “arch” directory. This
resulted in a rise of SLOC of all build related artifacts.

What is also striking from Figure 1 is the amount of work which has been put into the config-

4 Note that measurement of SLOC occurs statically, which means that it is independent of the chosen build configuration.
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Figure 1: Linux kernel complexity (SLOC).

uration and support system. These have grown from nothing in the first version5 to almost 60K
and 10K lines resp., the former even getting ahead of the core build files. An important event
for the configuration layer was the addition of a configuration Bash script in the 0.99.1x series.
This took a file called “config.in” declaring the requested configuration and generated a “.con-
fig” file for usage during the build and an “autoconf.h” for usage inside the source code. Further
milestones include support for the oldconfig6 and modules phases in the 1.2.0 kernel, dis-
tribution of the central “config.in” across all directories in the 2.0.0 kernel together with the
advent of graphical configuration frontends (partially explaining increase in SLOC for rest),
and a configuration language overhaul in the 2.6 kernel (more on that later).

The graph also gives a strong indication of co-evolution between source code and build sys-
tem, as both more or less follow the same growth pattern. More data, e.g. at the subsystem
level [GT00], is needed to identify the exact relationship.
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Figure 2: Linux build system targets.

4 Observation 2: complexity increases

In order to assess the evolution of the complexity of the build system we will take a look at
some figures related to the actual Makefiles. As noted in the previous section, we will ignore
configuration files and other supporting scripts in this section.

Figure 2 presents the growth over time of the number of targets which participate in a build.
This point needs some elaboration. The Linux build process is divided into a number of phases,
of which we will consider the most important ones. The kernel image is either built by a phase
named all or vmlinux (starting from version 2.6.0 in 2003), while modules are built within
the modules stage. Extraction of dependencies occurs during the dep-phase. As MAKAO
works on dynamic traces of the build system [ADTD07], what Figure 2 shows is the number of
targets checked or built by the build process during a concrete run of each of the three phases7.

Overall, Figure 2 reflects the point made in the previous section: the build system grows, not
only in lines of code, but also in the number of tasks it attempts to complete. Part of this should
of course be blamed on the addition over time of new features in our build configuration, but
there is much more to it than this. Another general remark we can make is that, starting from the
2.6 kernel in 2003, the dep-phase disappears and is subsumed by the other two phases.

Figure 3 and Figure 4 relate the growth over time of the number of explicit and implicit8

build dependencies respectively, for each of the three different build runs. What we see here is

5 Technically, the measurements for config and rest around ’91–’92 have zero as value, which should be mapped to minus
infinity on Figure 1. For practical reasons, we of course approximated this by using a logarithmic value of zero on the graph,
corresponding in fact to 1 SLOC.
6 Generates a new configuration from an older one.
7 Every kernel was built from scratch, i.e. we did not measure incremental builds.
8 Implicit dependencies are relationships which are not explicitly declared as Makefile rule dependencies, but occur as arguments
or output of the rule’s commands.
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Figure 3: Linux build explicit dependencies.Implicit dependencies
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Figure 4: Linux build implicit dependencies.

a turbulent course culminating in a huge growth up to September 2000 (kernel 2.4), followed by
a serious dip. We also notice that eventually the number of dependencies rises again, albeit at a
slower pace.

The first point to note here is related to what dependencies stand for. Basically, dependencies
capture the relationships between targets. As their number grows, so does the complexity of
understanding the relationships between the targets, which in their turn relate back to physical

7 / 16 Volume 8 (2008)



The Evolution of the Linux Build System

all/vmlinux modules dep
explicit implicit explicit implicit explicit implicit

0.01 147 2 N/A N/A 8 46
0.11 170 2 N/A N/A 12 55
0.96a 281 5 N/A N/A 20 121
0.96c 314 16 N/A N/A 22 91
0.99.11 503 26 N/A N/A 50 222
0.99.13 634 28 N/A N/A 50 232
0.99.15 631 13 N/A N/A 52 233
1.0 628 13 N/A N/A 52 233
1.2.0 583 17 282 26 57 226
2.0.1 817 16 376 19 171 986
2.2.0 1300 22 865 31 399 2072
2.4.0 1446 20 931 0 684 3542
2.6.0 1865 1538 1431 402 N/A N/A
2.6.21.5 2158 2347 1877 746 N/A N/A

Table 2: Analysis of the nature of the build targets in the investigated 2.4 and 2.6 kernels. For
each phase, the sum of the number of explicit and implicit targets yields the data of Figure 2.

components of the software system and their interconnections. By “physical components”, we
mean the decomposition of the source code in a sufficiently succinct way such that the build
system is able to create a working application from it. Hence, the growth of the number of
dependencies shows at least that understanding the build system becomes harder and harder.
More investigation is needed to verify whether this is also a symptom of growing complexity in
the source code.

This problem becomes compounded when we consider the implications of Figure 4. What
this shows is that there is also a steady growth in the number of implicit dependencies. This
means that the number of relationships the build system knows nothing about is on the rise.
This is not only problematic when trying to understand the build system, it also constitutes a
potential source of build errors, and (at best) may lead to suboptimal builds. Luckily, most of the
implicit dependencies originate from temporary files created during the dep phase, i.e. text files
with dependency information extracted from the source code’s #include relations. This can be
deduced from the graphical representation of the build dependency graph9, but also e.g. from the
fact that the modules and all/vmlinux phases only start to exhibit implicit dependencies
after the dep phase was merged with them.

This implies that between the 2.4 and the 2.6 kernel, the actual source code components did
not change as dramatically as Figure 2 indicates at first sight. Table 2 shows e.g. that whereas the
number of implicit targets10 increased with more or less 1500 for the all/vmlinux phase, the
number of explicit targets increased with approximately 400 between the 2.4.0 to 2.6.0 kernel

9 The graph of the dep phase from in the beginning resembles a spanning tree, hence the resemblance between its corresponding
charts in Figure 2 and Figure 4.
10 An implicit target is a target which is the destination node of at least one implicit dependency. In many cases, the number of
implicit targets equals the number of implicit dependencies. An explicit target is a target which is not implicit.

Proc. Software Evolution 2007 8 / 16



ECEASST

(which is less than between the 2.0.1 and 2.2.0 kernel). This observation does not entirely hold
for the modules phase, which is probably due to the addition of extra drivers to the build
configuration. Between the 2.6.0 and 2.6.21.5 kernel, extra (explicit) header file targets are
added, while two new kinds of implicit targets account for the increase in implicit targets.

5 Observation 3: maintenance as driver of build evolution

Having observed that the build system evolves and that its complexity increases throughout, we
will now examine efforts of the Linux build developers to reduce this growing complexity.

5.1 Maintenance until the 2.4 series

In the pre-1.0 era (1992-1993), effort has been spent to mitigate build complexity, as Figure 1
shows a decrease in SLOC of fourteen percent for this period. A new recursion scheme had been
introduced along which each Makefile in a directory defines a variable with the subdirectories to
traverse over together with a specific rule (“linuxsubdirs”) to do the traversal. These rules depend
on a phony target named “dummy” to make sure that each build executes the rule’s command
list.

1 obj-y :=
obj-m :=

3 obj- :=
obj-$(CONFIG_SOUND) += soundcore.o

Figure 5: List style build scripts.

Figure 3 also points to some reduction attempts. Between 1.2.0 and 2.0.0 (1995-1996), com-
mon build logic was extracted into a shared build script called “Rules.make”, resulting in a 40%
reduction of explicit dependencies (while the number of targets increased). Between 2.2.0 and
2.4.0 (1999-2000), the decrease of nine percent in SLOC can be attributed to a massive rewrite
of the build scripts and “Rules.make” in a more concise “list-style” manner [linb]. The central
“Rules.make” rule base of the 2.4.0 kernel contains rules expressed in terms of variables which
denote lists of file names. These lists are initialised as shown in Figure 5 in the various Makefiles
spread throughout the system. Depending on the fact that e.g. sound support (CONFIG SOUND)
is chosen as a built-in feature (“y”), module (“m”) or left out (“”) either the “obj-y”, “obj-m” or
“obj-” variable is assigned object file soundcore.o. The central rule logic is expressed in terms
of these variables and just iterates through the list of names. In this way, build logic boils down
to list processing. This approach was highly experimental in the 2.2.0 kernel such that the old
“Rules.make” did not know about it and each new list-style Makefile had to convert its vari-
ables to the ones expected by “Rules.make”. As more and more components switched to the
list style during the 2.2.x series, many of the performance gains of the original “Rules.make”
optimisations were becoming subdued and even introduced new problems like redundant work
being done. This situation lasted until Linus Torvalds himself started to change this, when he

9 / 16 Volume 8 (2008)
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described his grievances about “Rules.make” in an email to the Linux kernel mailing list11:

OK. That’s it. I had enough. That whole [...] mess has to go. It’s too much crap to
carry around, and when trying to fix one kind of build we invariably break another.

As a result, the “Rules.make” was rewritten for 2.4.0, which forced all components in the
system to migrate to the list style.

Another area of big build evolution steps is the dep phase. In the earliest releases, detection
of source code (header file) dependencies within the build system was not that sophisticated. Re-
leases 1.2.0, 2.0.0 and 2.2.0 each tried to make dependency management more correct without
sacrificing (build) speed. New dependency extraction scripts, recursion schemes, decomposing
the generated configuration header file for each configuration item, etc. tried to achieve this.
Eventually, as people still encountered many nuisances, the separate dep phase completely dis-
appeared in the 2.6 kernel and was merged into each build phase. The trade-off between accurate
information versus build speed is very apparent in this area. This was also coined as “correctness
trumps efficiency” by Michael Elizabeth Chastain, the Linux build maintainer [linb].

5.2 Towards the 2.6 kernel

This brings us to the huge maintenance step occurring between 2.4.0 and 2.6.0 (2001-2003):

• the separate dependency extraction step has vanished and is subsumed in the other phases
(see previous section);

• the number of explicit dependencies has dropped drastically to one third of the 2.4.0 level;

• the number of targets in the vmlinux build has increased with a factor of 2.3.

There were a lot of political struggles involved with the 2.6 kernel overhaul. In 2000, people
independently proposed substitutes for both the configuration and the build layer. CML212 tried
to replace the informally defined configuration layer by a domain-specific language implemented
on top of a custom rule-engine written in Python, and also to address the reliance on conditional
compilation and building. Kbuild 2.513 was a rewrite of the Linux build layer as a “non-recursive
build” (one “make” process builds everything instead of one process and Makefile per subdi-
rectory [Mil97]), which fixed dependency generation problems, Makefile complexity, parallel
builds, etc. The introduction of non-conventional kernel technologies like Python, and absence
of incremental migration strategies (in contrast with the list-style Makefiles of Subsection 5.1)
prevented both orthogonal initiatives from being accepted.

Instead, the existing build system was incrementally upgraded for the 2.6 kernel to squeeze
every possible bit of performance out of it. Kconfig (initially called “LinuxKernelConf”)14 was
designed by Roman Zippel and has been merged into the kernel in version 2.5.45. Basically,
a standard configuration language specification was devised to which all backends should ad-
here. The existing “config.in” files were rewritten and renamed to “Kconfig”, which explains
11 http://people.redhat.com/zaitcev/notes/linus-makefiles.html
12 http://lwn.net/2001/features/KernelSummit/
13 http://sourceforge.net/projects/kbuild/
14 http://www.xs4all.nl/zippel/lc/
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}.o

}.c

}.h

Figure 6: Linux 2.4.0 build process in phase all (with header file targets).

the slight increase in SLOC on Figure 1. The build scripts themselves were refactored by Kai
Germaschewski. He managed to incorporate a number of Kbuild 2.5’s proposed features on top
of the existing build infrastructure, avoiding a non-recursive “make”. For this, “Rules.make” had
been made much more sophisticated (and renamed) and all “make” subprocesses were invoked
with the top directory as working directory. Build speed was lower than in the Kbuild 2.5 case.
We are now going to look in depth at the changes introduced by Germaschewski.

}.o

}.c

Figure 7: Linux 2.4.0 build process in phase all (without header file targets).

When looking at the dependency graph of the 2.4.0 kernel image build (all) on Figure 6,
it is clear that there are a lot (16615) of dependencies on header files (yellow edges to yellow
nodes). This becomes apparent on Figure 7, where all these edges have been elided. Only then,
we clearly see the various object (red nodes) and source files (blue nodes) with dependencies
between them. By querying of the static information attached to the nodes and edges, we find
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}.o

}.c

}.h

}dir

Figure 8: Linux 2.6.0 build process (phase vmlinux).

that each cluster of nodes corresponds to a particular directory. Kernel subcomponents seem to
be delimited by directory boundaries.

Figure 8 shows the corresponding build dependency graph of release 2.6.0. Here, most of
header file dependencies have vanished, and the remaining ones (843) are localised in two clus-
ters. We see a very dense build, almost one huge cluster of nodes. Paradoxically, the dependency
graph looks much more complex after the maintenance activities than before (Figure 7). Keep in
mind that the end user is not directly confronted with this complexity.

There are various reasons for this. First, dependency generation now occurs as part of the build
instead of as a separate phase (see section 5.1). To make this more efficient, a technique invented
by Tom Tromey for automake15 has been applied [Mec04]. Basically, if a source file has been
changed one is certain that it should be recompiled. Hence, it is unnecessary to check its depen-
dencies first. It suffices to generate the source code’s new dependencies during its compilation,
i.e. for use in future builds. As a consequence, during a clean build no source code file requires
checking of its dependencies, which explains the disappearing of more than 15000 edges. Sec-
ond, there are many new implicit dependencies which represent relations between object files
and temporary files generated during the build. These hint at changed build commands.

Third, a couple of build idioms are in use, which tie together a lot of build targets. The most
obvious one is the “FORCE”-idiom. Target FORCE is a so-called “phony” target, i.e. it should
always be rebuilt as it is never up-to-date. Whereas the 2.4.0 kernel contains similar phony
targets in every subdirectory, the 2.6.0’s FORCE target is unique across the whole DAG. This
indicates a change in working directory, one of the steps in shifting closer to a non-recursive
build. The majority of build rule targets depends on the central FORCE target to make sure that
their command list is always executed (as FORCE is always newer than a rule’s build target).
To avoid that everything is recompiled, the rules’ recipes consistently call a custom “make”

15 http://www.gnu.org/software/automake/
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Figure 9: Circular dependency chain in the Linux 2.6.0 build system.

function which decides whether the build target is still up-to-date. Hence, “make” is solely used
to express build dependencies. In practice, determining whether rebuilding is necessary still
happens via time stamps, but is now controlled by the particular implementation of the custom
decision function instead of by “make” itself. This backfires at MAKAO, especially in the case
of incremental builds, as it will interpret all formal build dependencies as actual dependencies,
although the custom function will have ruled out many of them as being up-to-date. To abstract
away this idiom (and open up the graph), we can use MAKAO’s Prolog component to write a
logic rule [ADTD07] which removes FORCE and its associated edges.

The remaining graph reveals some other peculiarities. The kernel image consists of a number
of modules which are big object files linked together from various smaller ones. It is easy to
detect these “composite objects” [lina], as they are usually called built-in.o and their only
dependencies are object files. Many of them have the center node of the graph, build, as
parent node, as illustrated by the blue and red nodes of Figure 9. Composite objects are in
use since the very first Linux version to overcome “recursive make” ordering problems [linc].
Despite speed and correctness issues, they are still in use in the kernel build system.

In combination with composite objects, a phenomenon we named “circular dependency chain”
occurs. We show a schematic overview in Figure 9, with green nodes representing directories.
Edges with a common color occur within the same “make” process in the order given by the
numbers, so three “make” processes are needed here to build the built-in.o node. A com-
posite object within a given subdirectory D (e.g. “802”) not only depends on D (arrow 4), but
on all of D’s sibling directories as well (arrow 8). This is strange, because these subdirectories
contain driver code of different devices or subsystems. A second observation is that there are
also dependencies from build to all subdirectories (arrows 11 and 12).

The following note in the main Makefile gave us a hint: “We are using a recursive build, so
we need to do a little thinking to get the ordering right.”. Hence, just like composite objects
the circular dependency chain (especially arrows 11 and 12) is a clever iteration strategy the
Linux developers added to their recursive build to avoid problems with the evaluation order of
targets [Mil97]. However, there is more. We tried to obtain a more natural build dependency
graph by changing the Makefiles. Getting rid of arrow 8 was no problem, but required one extra
“make” subprocess (following arrow 12). Additionally rerouting arrow 4 to build could
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compensate for this, but GNU Make is not expressive enough to express multi-target build rules
with different dependencies per target. In other words, the idiom of Figure 9 is the actual engine
of the 2.6 kernel build. Contrary to a normal “recursive make”, it is a central, generic piece of
build logic for which GNU Make’s advanced features are exploited to their fullest. This does not
suffice, so an equally fast, more complex compromise has been found (Figure 9).

}.o

}.c

}.h

}dir

Figure 10: Phase vmlinux of the Linux 2.6.0 build process after filtering of complex idioms.

Figure 10 shows the resulting graph after filtering out the above idioms using logic rules. E.g.
the circular dependency chain of Figure 9 has been hidden. The result resembles Figure 8’s
structure, which is plausible, as the basic directory structure has remained stable between 2.4.0
and 2.6.0, and each directory more or less corresponds to a composite object. Only the recursive
process has changed in the meantime to produce a higher-quality build at the expense of extra
complexity, both during the build as well as for the developer.

The 2.6.21.5 kernel continues down the path set out by 2.6.0. Some additions include 1835
extra dependencies on header files, of which 538 edges point to a common configuration header
file, and 300 extra edges (compared to 2.6.0) have a header file as destination. Also, two extra
types of intermediate (implicit) targets indicate small changes in build commands.

6 Future work

We consider future work of this topic to consist of three major tracks. For one, we should broaden
the scope of the study by also looking at other real-world systems, both open- and closed-source.
This is needed in order to check whether our observations hold for a larger class of software.

Also, it is important to stress that we limited ourselves to one representative kernel configura-
tion which was continuously expanded if needed. As one of the reviewers noted, performing a
configuration-aware study could learn us a lot too, i.e. determining configuration-(in)dependent
parts of the build. The build could e.g. change more frequently in one of these parts than in the
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other ones. In principle, MAKAO is armed to measure this kind of things. The same reviewer
also suggested to relate our findings with changes registered inside the Linux source code repos-
itory, or e.g. with bugs submitted to the bug tracking system. Some general observations about
the relationship between source and build commits have been made by Robles [Rob06], but more
specific measurements for the Linux kernel could shed some new light.

Finally, there are two main questions which have been left open in this paper, and which we
believe need answering: (1) what part do the configuration files and supporting scripts play in
the evolution of this build system, and (2) to what degree can we show a causal link between
the evolution of the source code and that of the build system? As a corollary: Can one claim
that source code re-engineering approaches can only be effective if corresponding build system
consequences have been taken into account?

7 Conclusion

This paper presented a case-study of the evolution of a real-world build system, namely that
of the Linux kernel. We analysed its growth in number of source lines of code (SLOC), as
well as the number of targets and dependencies (both explicit and implicit) which are part of
the Makefiles. We also delved into some of the idioms which have shown up in recent kernel
versions.

From this case study we can make the following observations: (1) the build system evolves,
(2) as it evolves it grows in complexity, and (3) it is maintained in order to deal with this growing
complexity. These observations are in line with Lehman’s laws of software evolution. It also
strengthens our conviction that in order to modify/re-engineer the source code one will have to
modify/re-engineer the build system. That is, a part of the source code evolution bill implicitly
is spent on evolving the build system.
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