
Electronic Communications of the EASST
Volume 080 (2021)

Conference on Networked Systems 2021
(NetSys 2021)

Large Scale Monitoring of Web Application Software
Distribution to Measure Threat Response Behavior

Fabian Marquardt and Lennart Buhl

4 pages

Guest Editors: Andreas Blenk, Mathias Fischer, Stefan Fischer, Horst Hellbrueck, Oliver
Hohlfeld, Andreas Kassler, Koojana Kuladinithi, Winfried Lamersdorf, Olaf Landsiedel, Andreas
Timm-Giel, Alexey Vinel

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Large Scale Monitoring of Web Application Software
Distribution to Measure Threat Response Behavior

Fabian Marquardt1 and Lennart Buhl2

1 marquard@cs.uni-bonn.de
2 buhl@cs.uni-bonn.de

Department of Computer Science 4
University of Bonn, Germany

Abstract: Web application software may be affected by vulnerabilities and a fast
deployment of security updates is required to protect users from attacks. With daily
scans of over 50 million websites we are able to measure the threat response be-
havior. Preliminary results indicate significant differences between the different ob-
served web application softwares.

Keywords: Threat Response, WordPress, MediaWiki

1 Introduction

In the modern Internet web application software has become a widespread technical basis for
many websites. For example, the WordPress content management system (CMS) is used on
about 33% of the top 10 million websites [W3T]. New versions of web application software
may be released for a number of reasons. Typically, major releases introduce new functionality
to the software, while minor releases fix bugs contained in the previous version of the software.
However, the release of the new version does not automatically imply that all installations of
the software get updated. In some cases, an automated update mechanism is embedded into the
software or invoked by external tools such as package managers. In many other cases, updating
the web application software requires manual actions of the administrators. This raises an inter-
esting question: How long does it take until new releases are applied to existing installations?
Especially if the new release fixes one or more security issues, minimizing the time-to-patch is a
very important step to reduce the exposure of systems to known vulnerabilities.

Our work focuses on measuring the distribution of different web application software versions
on a large scale. We detect the used web application software versions from the client-side
and inspect millions of websites on a day-by-day basis. With the gained data we can track the
deployment of new releases for multiple widely used open source systems. While still in an early
stage, our work already shows that the availability of auto-update mechanisms has a great impact
on minimizing the time-to-patch especially for security-relevant releases.

2 Related Work

Past measurement studies have often focused on tracking one specific vulnerability to measure
threat response. For example, Durumeric et al. have analyzed the population of the Heartbleed

1 / 4 Volume 080 (2021)

mailto:marquard@cs.uni-bonn.de
mailto:buhl@cs.uni-bonn.de


Large Scale Monitoring of Web Application Software Distribution

vulnerability [DLK+14], and Quach et al. tracked the occurrence of a Linux TCP stack vulnera-
bility on top websites over time [QWQ17]. Our approach goes beyond tracking specific security
incidents, but focuses on tracking the web application software version distribution in a more
generic way. Apart from threat response analysis, this method can also be used for many other
statistical analyses. It is comparable to Censys, which started as a research project but has now
been converted to a commercial service [DAM+15].

3 Methodology

To perform daily scans of a high volume of websites we have created a pipeline-based infrastruc-
ture in Python. In this Extended Abstract paper we can only briefly outline the different elements
of this pipeline: First, the individual scan targets are read from an input file by the URL Selec-
tor. URLs and the contained domains are matched against common malware/abuse blacklists to
avoid triggering false positive alert messages in intrusion detection systems. In addition, a man-
ual blacklist is maintained for some domains explicitly by request of their operators. In the next
step, the HTTP Fetcher issues an HTTP request for each given URL. To provide a high scanning
throughput, many scans are performed in parallel. In the current setup, it can easily perform
several thousand requests per second on a normal desktop computer. The exact numbers depend
on many factors, e.g. the performance of the used DNS resolvers. Once the HTTP response is
received, it is forwarded to the Version Analyzer, which applies a pattern-based fingerprinting
strategy to identify different web application software and their specific versions. In the current
state we focus on several well-known open source systems, including WordPress and MediaWiki.
Finally the Result Writer collects all detected version information as well as error messages and
stores this information in a JSON-based file structure. This files can then later be processed to
analyze the gathered results.

4 Preliminary Analysis

For a first analysis of our methodology we collected a list of over 52 million URLs from the Top
List Study project [SHG+18]. Specifically, we merged the contents of all Alexa 1M, Majestic
1M and Umbrella 1M top lists released after January 01, 2018. The first daily scan of all URLs
has been conducted on March 24, 2020, leading to a time span of about six months at the time of
writing this paper. Obviously, for an in-depth analysis and the identification of long-term trends
it is necessary to collect even more data. Hence, the following results only present a preliminary
evaluation.

4.1 Verification

To find out whether or not our system can measure the deployment of certain web application
software versions correctly, we compare our data set to an external data source: The WP Central
project collects the download counts for different versions of WordPress over time [Hej]. Even
if a download of the WordPress software does not strictly imply that it will be installed on a web

NetSys 2021 2 / 4



ECEASST

2020-08-11

2020-08-12

2020-08-13

2020-08-14

2020-08-15

2020-08-16

2020-08-17

2020-08-18

2020-08-19

2020-08-20

2020-08-21

2020-08-22

2020-08-23

2020-08-24

2020-08-25

2020-08-26

2020-08-27

2020-08-28

2020-08-29

2000000

4000000

6000000

8000000

D
ow

nl
oa

ds

0

200000

400000

600000

800000

1000000

1200000

D
et

ec
te

d
in

st
an

ce
s

Figure 1: WordPress 5.5 downloads and detected instances (Pearson correlation: r = 0.96)

page, we can assume that there is a strong correlation between the number of downloads and the
number of installations.

We have retrieved the download counts for the days following the release of the new 5.5 major
version on August 11, 2020 and compare it to our data set. As is visible in Figure 1 there is a
strong correlation with a Pearson coefficient of r = 0.96. Small variations between the two data
sets can be expected due to the time interval between download and deployment or the 24 hour
time difference between two of our daily scans.

4.2 WordPress and MediaWiki update behavior

One reason for the high popularity of WordPress is the availability of an easy to use update
system, which is already built into the software and can deploy updates to existing installations
automatically. By contrast, MediaWiki requires the user to manually deploy the source code
of the new version and run upgrade procedures. This might have a negative effect on threat
response behavior. To identify such effects we analyze and compare two security incidents:
Several WordPress vulnerabilities with medium to high CVSS score were disclosed on April 30.
Patched versions for all supported branches of WordPress were released on April 29. MediaWiki
was affected by several vulnerabilities of medium to high severity on September 27. Patched
versions for the supported branches were released on September 24.

Using our data set we want to inspect how quickly the fixed versions were applied to existing
installations. To do so, we focus on the versions of each software which were current before the
security fixes were released and monitor their decline over the next days. In the best case, the
occurrence of affected versions drops very quickly after the release. The results are shown in Fig-
ure 2. Each plot starts at and is normalized to the day before the new versions got released. For
WordPress, some of the older supported major versions have been removed for better visibility,
but show similar results in our evaluation. It is clearly visible that the number of affected Word-
Press installations declines very quickly just one day after the release of the patched versions,
which is a good result. The results for the affected MediaWiki installations are significantly
worse. The decline of vulnerable versions happens much slower and after one week about 50%
of the installations are still not patched. It should be noted that the results for September 28 are
skewed due to a power grid failure which affected the network connectivity of the measurement
system.

3 / 4 Volume 080 (2021)



Large Scale Monitoring of Web Application Software Distribution

2020-04-28

2020-04-29

2020-04-30

2020-05-01

2020-05-02

2020-05-03

2020-05-04

2020-05-05

0%

20%

40%

60%

80%

100% 5.4
5.3.2
5.2.5
5.1.4
5.0.8

(a) WordPress April 2020 incident
2020-09-23

2020-09-24

2020-09-25

2020-09-26

2020-09-27

2020-09-28

2020-09-29

2020-09-30

0%

20%

40%

60%

80%

100% 1.31.8
1.34.2

(b) MediaWiki September 2020 incident

Figure 2: Version distribution after security incidents

5 Conclusion and Future Work

The first evaluation already shows the potential of our large-scale data collection methodology.
For the future it is important to develop additional detection techniques to improve coverage
of other web application software. The resulting data sets will be used for a more in-depth
analysis to gain a better understanding of web technology updates. It is also planned to publish
anonymized versions of our data sets under open access conditions.

Bibliography

[DAM+15] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, J. A. Halderman. A search engine
backed by Internet-wide scanning. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security. Pp. 542–553. 2015.

[DLK+14] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey et al. The matter of heartbleed. In Proceedings
of the 2014 ACM Internet Measurement Conference. Pp. 475–488. 2014.

[Hej] M. Hejnen. WP Central: WordPress 5.5 download statistics. Online (accessed on
Oct. 15, 2020).
https://wpcentral.io/version/5.5/

[QWQ17] A. Quach, Z. Wang, Z. Qian. Investigation of the 2016 linux tcp stack vulnerabil-
ity at scale. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, pp. 1–19, 2017.

[SHG+18] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmermann, S. D. Strowes,
N. Vallina-Rodriguez. A long way to the top: Significance, structure, and stabil-
ity of internet top lists. In Proceedings of the 2018 ACM Internet Measurement
Conference. Pp. 478–493. 2018.

[W3T] W3Techs. Usage statistics of content management systems. Online (accessed on
Oct. 15, 2020).
https://w3techs.com/technologies/overview/content management

NetSys 2021 4 / 4

https://wpcentral.io/version/5.5/
https://w3techs.com/technologies/overview/content_management

	Introduction
	Related Work
	Methodology
	Preliminary Analysis
	Verification
	WordPress and MediaWiki update behavior

	Conclusion and Future Work

