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Abstract: While the use of anomaly detection in network security has a long re-
search history, it is rarely used in practice. Besides privacy concerns when applied
in cross-network settings, and a more difficult attack interpretation, the major draw-
back consists of the high number of false alarms. One reason is the heterogeneity of
sources the model is trained on. In this paper, we propose a network anomaly de-
tection extension that counteracts the heterogeneity of participants by dividing them
into learning groups during central or federated training. The learning groups finally
contain similar behaving clients, e.g., light bulbs, or PCs of the same department.
Similar behavior is extracted by hierarchically clustering the predictions of all indi-
vidual client models similar to a passive property inference attack. Our preliminary
results based on infiltration attacks of the IDS2017 dataset show that the method
increases the accuracy and F1 score up to 4.4% and 2.5%, respectively.

Keywords: anomaly detection, unsupervised learning, property inference, network
security, hierarchical clustering, collaborative learning

1 Introduction

Anomaly detection intends to identify deviations or non-conforming patterns from expected be-
havior. These patterns are called anomalies or outliers. It is broadly researched in tumor identi-
fication on MRI images, credit card fraud, identity theft, spam detection, and intrusion detection
[CBK09]. The common problem of a high false positive rate does not concern for example credit
card fraud that much, because the users can clarify the situation easily. However, in network in-
trusion detection of large networks, even a false positive rate of 1% in a million network flows a
day is impractical to manually assess [SP10]. Additionally, the interpretation of an anomaly of-
ten requires expert knowledge when the anomaly detection task is not clearly formulated [SP10].
Furthermore, heterogeneous networks with different types of devices, end users, and thus be-
havior patterns make it hard to learn normal behavior, and interpret anomalies afterwards. Es-
sentially, while anomaly models intend to capture a normal profile, such that subtle deviations
are detected, the heterogeneity of entities counteracts this. In addition, real-world challenges
arise for the usage of centralized anomaly detection. First, it is challenging for large networks
to collect all data for training and prediction. Second, startups or small businesses may have too
few data samples to train the model effectively. This could be circumvented by collaborating
with others, which introduces privacy concerns. In consequence, network anomaly detection is
rarely used in practice, even though it is capable of detecting unknown attacks in contrast to sig-
nature or policy-based approaches. To overcome these problems, we suggest to extend existing
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anomaly detection procedures by dividing heterogeneous clients during the training into groups
with similar behaviors, e.g., service usage or user behavior, in an unsupervised fashion. This
enables given anomaly models to learn normal behavior more precisely in order to detect even
subtle deviations, such as a slight increase of ssh traffic in the IT department. Further, anomalies
can be interpreted and solved easier due to a decreased number of participating clients for a par-
ticular anomaly. Therefore, our main contributions include:
Identification of similar behavior. We provide an unsupervised method based on the principle
of property inference to identify similar behaving clients, further called learning groups. The
method is not restricted to, but evaluated on network anomaly detection in this work.
Central and collaborative learning. We show that this method can be applied to central and
collaborative learning by providing a federated learning extension that does not interfere with its
actual protocol nor its privacy and performance guarantees.
Preliminary results. Our preliminary results achieve an increased accuracy by 2.3-4.4% and F1
score by 1.2-2.5% on average between different models.

The rest of the paper is structured as follows. Section 2 identifies differences to existing
solutions. Section 3 provides the main research questions, explains the approach, and discusses
preliminary results. Finally, Section 4 summarizes the paper and states next steps.

2 Related Work

Network anomaly detection models for different attacks are widely researched. For example,
Fernandes et al. [FRC+19] survey numerous papers emphasizing that the kind of data, i.e.,
tcpdump, SNMP, and IP, determines the detection capabilities. Our approach is not determined
by a specific method or data type. Some works intend to profile IP hosts based on previously
analyzed traffic or host parameters [YR08, MDBC10, JGL15]. Our method does not necessarily
target a specific network anomaly problem, but rather improves existing models. Additionally,
we intend to integrate the division of learning groups into the actual training without the need
for a prior assessment of hosts, which might be infeasible in cross-network scenarios in regard
to privacy. Aiello et al. [AKM+05] analyze host-level communities of interest, i.e., entities
that share a common goal or environment, based on host connections to other hosts in regard
to popularity and frequency. While this approach is not characteristic dependent, we argue that
host-level goals are not necessarily interchangeable with similar behavior of hosts, e.g., regarding
time shifts of actions. Nguyen et al. [NMM+19] present a federated anomaly detection in a two-
fold approach. Calculated fingerprints are clustered to identify IoT device types, which are then
used as static properties to apply their anomaly model within a group of devices of one device
type only. In contrast, our approach aims at integrating the grouping step into the actual anomaly
model training. Additionally, our work goes beyond device type similarities and allows for the
creation of non-obvious learning groups.

3 Property Inference-based Federated Learning Groups

This work hypothesizes that if groups of similar behaving clients, e.g., smart light bulbs, web
servers, or PCs of the HR department, separately train together, the anomaly detection results in
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a more accurate prediction. Thus, we aim at answering the following research questions:

RQ1 How can we automatically infer client behavior properties during training?
The goal is to identify similar behaving clients independent of the anomaly detection task,
model, and training procedure.

RQ2 Which (non-obvious) properties exist that improve the anomaly detection after training in
property-based learning groups?
[NMM+19] achieve promising results with device type specific learning groups. However,
we also aim at recognizing non-obvious groups of devices that improve the prediction.

RQ3 How can we apply learning groups in a privacy-preserving and collaborative scenario?
To further apply this method in large networks with higher performance and privacy re-
quirements, we need to show that the method also works for collaborative learning.

The following paragraphs first sketch an answer to RQ3 and focus further on RQ1, while ad-
dressing RQ2 partially in the discussion of our preliminary results.
Approach. Federated learning (FL) is a distributed round-base learning technique between
clients with private data and a coordinating server. We modify the FL procedure as follows.
First, the server distributes a tuple (Mglobal,sn), i.e., a randomly initialized global model and n
random samples of network traffic, to the participating clients. Then, each client ci trains the
received Mglobal with its own data, makes a prediction pci

n of the random samples sn, and extracts
its model updates Uci

global . It then sends the tuple (Uci
global, pci

n ) back to the server. The server
now applies the learning group metric to all received predictions pci

n and determines the learning
groups. Finally, the clients continue FL training together within their assigned learning groups.
Learning group metric. Client behavior is expressed through client data. Client data is used to
train ML models, which then become a representation of the data. Thus, client behavior can be
inferred based on the trained model. Therefore, a metric to identify similarities between models
is required. Related work in the field of property and membership inference attacks on ML has
shown that it is feasible to infer properties of the training data that are solely represented in the
model predictions [SSSS17]. Consequently, we measure the similarity by comparing the pre-
diction outputs of each trained client model for a given input. To identify client behaviors that
are closest to each other, we choose hierarchical clustering, in particular Agglomerative Cluster-
ing. While we used three default distance metrics for our first results, further distance metrics
[PAH+19] will be analyzed subsequently.
Dataset and implementation. The preliminary results are based on the IDS2017 dataset [SHG18]
containing simulated corporate communication of ten clients and two servers. We choose a sub-
set of the attacks containing infiltration attacks. Then, we apply the recommended task related
flow-based features [SHG18] to our simple anomaly detection models, i.e., Isolation Forest and
Elliptic Envelope. We provide four baselines including all clients training together and separate,
as well as training in obvious learning groups, i.e., clients/servers and operating systems. The
values in Table 1 are the average of five rounds. Further, we test three variants of establishing
learning groups by varying the percentile of the training data before clustering, while keeping
three as a fixed number of clusters. Additionally, we apply three different clustering metrics
(CM) to the client-wise predictions of the samples sn with n = 1000: average (average distance),

3 / 5 Volume 080 (2021)



Property Inference-based Learning Groups

complete (maximum distance), and ward (minimizes the variance of the clusters being merged).
Preliminary results and discussion. Table 1 compares all performed tests, where min and max
correspond to the result of a single learning group, while mean averages all of them. Cells high-
lighted in red provide the information that they consist of one learning group that scores worse
than the all together prediction. The goal, however, is to achieve a set of learning groups that all
score equal or greater than the all together learning group. Thus, none of the baselines address
the most effective client properties for learning group separation.

Our experiments have several limitations, including the lack of comparison in regard to the
fixed size of clusters, the use of simple ML models with discrete instead of probabilistic predic-
tions, and a restricted set of features.

Learning
Groups

Isolation Forest
Accuracy

Isolation Forest
F1

Elliptic Envelope
Accuracy

Elliptic Envelope
F1

min mean max min mean max min mean max min mean max

Baselines

all together 0.863 0.927 0.914 0.955
all separate 0.835 0.886 0.946 0.901 0.939 0.972 0.891 0.926 0.973 0.942 0.961 0.986
machine 0.883 0.899 0.930 0.938 0.947 0.964 0.903 0.911 0.925 0.949 0.953 0.961
machine + os 0.850 0.893 0.940 0.919 0.943 0.969 0.907 0.923 0.955 0.951 0.960 0.977

10% Training
3 Clusters

CM: average 0.870 0.899 0.944 0.931 0.947 0.971 0.915 0.921 0.934 0.956 0.959 0.966
CM: complete 0.844 0.883 0.944 0.915 0.938 0.971 0.915 0.921 0.934 0.956 0.959 0.966
CM: ward 0.902 0.908 0.926 0.949 0.952 0.961 0.929 0.935 0.949 0.963 0.966 0.974

20% Training
3 Clusters

CM: average 0.863 0.885 0.926 0.926 0.939 0.962 0.926 0.936 0.949 0.961 0.967 0.974
CM: complete 0.893 0.907 0.946 0.943 0.951 0.972 0.926 0.936 0.949 0.961 0.967 0.974
CM: ward 0.882 0.901 0.940 0.937 0.948 0.969 0.926 0.936 0.949 0.961 0.967 0.974

30% Training
3 Clusters

CM: average 0.867 0.897 0.940 0.929 0.945 0.969 0.928 0.937 0.949 0.963 0.967 0.974
CM: complete 0.870 0.901 0.950 0.930 0.947 0.975 0.924 0.933 0.949 0.961 0.965 0.974
CM: ward 0.850 0.892 0.950 0.919 0.942 0.974 0.924 0.933 0.949 0.961 0.965 0.974

Table 1: Evaluation of predicting normal behavior on the infiltration attacks dataset. Bold values
represent the maximum in a column. Highlighted values are less than the all together baseline.

4 Conclusion and Future Work

In this paper, we present an unsupervised division of participants into learning groups during the
semi-supervised training of an anomaly detection model. Clients within learning groups have
trained the initial model in a similar way, meaning that they have similar data and thus similar
behavior. We showed that it is also feasible to introduce this method in a collaborative learning
setup without revealing private data. By applying it to network anomaly detection of infiltration
attacks, it achieves an increased accuracy and F1 score by up to 4.4% and 2.5%, respectively, in
contrast to the common training procedure.

Teh next steps include advancing from a fixed cluster size to a threshold, a detailed analysis
of distance metrics for hierarchical clustering, and a deeper look into the data to answer RQ2.
Additionally, further models, e.g., neural networks and datasets of different domains, e.g., IoT,
industrial networks, or image recognition, will be evaluated to show the independence of this
approach. Subsequent work will reduce the attack surface on the property inference step, e.g.,
by introducing secure multi-party computation, and generalize the approach on other ML tasks.
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