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Abstract: Upcoming communication systems increasingly often tackle the spec-
trum scarcity problem through the coexistence with legacy systems in the same fre-
quency band. Cognitive Radio presents popular methods for Dynamic Spectrum
Access (DSA) that enable coexistence. Historically, DSA meant a separation solely
in the frequency domain, while in recent years it has been extended through the di-
mension of time, by employing Machine Learning to learn semi-deterministic and
cyclic medium access patterns of the legacy system that are observed through chan-
nel sensing. When this pattern is learnable, then a new system can utilize a neural
network and predict future medium accesses, thus steering its own medium access.
We investigate this novel and more fine-grained version of DSA, propose a predic-
tor and show its capability of reliably predicting future medium accesses of a legacy
system in an aeronautical coexistence scenario. We extend the predictor to the case
of partial observability, where only a narrowband receiver is available, s.t. observa-
tions are limited to a single sensed channel per time slot. In particular, we propose
a custom loss function that is tailored to partially observable environments. In the
spirit of Open Science, all implementation files are released under an open license.

Keywords: Cognitive Radio, Communication System Coexistence, Dynamic Spec-
trum Access, Artificial Neural Networks, Machine Learning

1 Introduction

The allocation of frequency spectrum to communication systems is decided by the local political
body, and at present this finite resource has become very sparse, making it difficult to obtain the
license to utilize a frequency band suitable for communication when designing a new system.
Two options exist: 1) move to unutilized high-frequency spectrum and work around problematic
properties, or 2) share already utilized spectrum with legacy systems.

Research on the first approach is manifold and focuses mainly on Physical (PHY) layer design.
Research on the second approach is becoming increasingly popular. Here the field of Cognitive
Radio (CR) research must be named, where in its terms, a legacy user that is licensed to use a
particular frequency band is called the Primary User (PU), while a novel Secondary User (SU)
is made “cognitive” in such a way that it operates on the same frequency band – it coexists with
the PU – without the two systems causing interference upon each other. To achieve this, in
particular, data link layer methods are required, so that coexistence is achieved through channel
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access separation in time, frequency or both.
In this paper, a dynamic Mobile Ad-hoc Network (MANET) scenario is considered. In our

earlier work in [LFT20] we have shown that Artificial Neural Networks (ANNs) can be capable
of learning a PU’s medium access pattern over time and frequency if certain properties hold. In
particular, the PU’s pattern must be cyclic and semi-deterministic. While these properties do
not apply to all communication systems, they do apply to some. In particular, the authors are
involved in a German research project on a novel, aeronautical communication system called L-
band Digital Aeronautical Communications System (LDACS), which shall be a key component
within the ICAO Global Air Navigation Plan’s Future Communications Infrastructure. It may
provide both communications and navigation to LDACS-equipped aircraft through air-to-ground
and air-to-air links. LDACS will have to coexist with possibly several legacy systems that oper-
ate on the lower L-band. Most prominently, the Distance Measuring Equipment (DME) system,
which provides navigation to aircraft and whose medium access pattern is cyclic and determin-
istic, has been determined in [EHS12]. For LDACS to be deployable, it must be ensured that no
interference is caused on DME operation by new LDACS users, which may be achieved through
a channel block list at the LDACS user, so that it refrains from channels utilized by local DME
operation as proposed in [BS21]. While safe for standardization, this approach is not benefi-
cial to spectral efficiency. We propose that a SU should learn the PU’s medium access strategy,
and then use Dynamic Spectrum Access (DSA) so that simultaneous access on the medium is
avoided. Recently DSA has been proposed to be the dynamic selection of frequency and time re-
sources, as opposed to just frequency resources – see Fig. 1. Our contributions are as follows. In
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(a) Historically DSA has been used to dynami-
cally select frequency channels s.t. interference
on the PU is avoided.
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(b) When possible, DSA should dynamically
select (time, frequency)-resources s.t. interfer-
ence on the PU is avoided.

Figure 1: The added dimension of time to DSA.

the related work we motivate the extended DSA through further possible application domains. A
brief overview on research in this direction is given, where recently numerous publications have
been made that utilize usually Machine Learning (ML) or Game Theory to achieve coexistence.
We extend our earlier work by lifting an unrealistic assumption that had been made: instead of
assuming a fully observable system state, we show how the method can be applied to a partially
observable one, and how this affects performance. We demonstrate the feasibility of the learning
task on the example of coexistence with DME using a simple Recurrent Neural Network (RNN)
and provide first steps towards the reduction of learning time.
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2 Related Work

In recent years, the topic of DSA has gained popularity. In [LCBM12], it is considered how
a group of Wi-Fi Access Points (APs) could self-configure their channel choice distributively
and without communication. It is emphasized that coordination through communication usu-
ally suffers from the interference range being substantially larger than the communication range,
and so a method that relies solely on channel sensing would be considerably more general than
one that requires dedicated control data exchange. Therefore, a distributed graph coloring so-
lution algorithm based on channel sensing is proposed. However, it is also acknowledged that
due to channel characteristics depending on the particular frequency, interference regions will
be channel-dependent. And so the channel allocation problem is actually equivalent to “a more
general multi-graph coloring task”. Their algorithm initially selects a channel uniformly random,
and selection probabilities are adapted based on the observed performance: if communication
does not succeed, the selection probability is multiplicatively decreased; other channels’ prob-
abilities are increased accordingly so that a selection probability distribution is maintained. It
corresponds to the historic coining of DSA as the dynamic selection of frequency channels.

The authors of [MMRC20] propose DSA to meet “the growing demands of forthcoming and
deployed wireless networks”, and in particular they focus on the coexistence of Long Term Evo-
lution (LTE)-License-Assisted Access (LAA) with IEEE 802.11 Wi-Fi. For this, they formulate
a variant of Q-Learning, which both 802.11 APs and LTE evolved NodeBs (eNBs) use for sub-
channel selection. These base stations each serve several users, and the subchannel selection
is fully distributed: no central controller or information exchange takes place between the base
stations. As for the formulation of the Reinforcement Learning (RL)-based Q-agent, which each
base station embodies, the authors base the agent’s reward on its achieved throughput, which
should be maximized. Concretely, each channel may be in one of four states: idle, successful
transmission, collision, contention. The actions are then the selection of channels. The approach
could be summarized as a ML-based distributed graph coloring solution where learning agents
are selfish and aim to maximize their own throughput.

The paper in [AMT10] is considerably closer to our assumption and ponders the question of
SUs that may sense a single channel per time slot: a partially observable environment. However,
the authors assume these channels as i.i.d., which we do not. Their approach aims to find each
channel’s mean availability, which is used to rate them in such a way that least-utilized channels
are selected for SU transmissions most. Most interestingly, they prove that the regret, which is
the subtraction of the numbers of successful transmissions in the optimal case and in the learned
case, shows logarithmic growth over time. However, they find that all users rank channels mostly
in the same way, and to prevent the collisions that would follow from all users selecting the same
channels, these selections are randomized.

The extension of DSA by the dimension of time has, to our knowledge, first been proposed
in 2017 by the authors of [WLGK17], [WLGK18]. The paper [WLGK18] proposes a Deep Q-
Network for developing a channel selection policy when channels are correlated and modeled as
Markov chains. The Q-agent is positively rewarded if it selects an idle channel, which is conse-
quently sensed and if found idle, used to transmit a packet. It could be described as a predictive
Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol. Afterwards, the con-
cept has received considerably more attention, and has been directly extended by [TR20]. There
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the neural network architecture is extended by a Long Short Term Memory (LSTM) layer and
Double Deep-Q learning. It is conceptually similar to our proposal, but differs in some funda-
mental assumptions. First, their CSMA/CA variant neglects the receiving node, which needs to
know which channel the transmitter node’s Q-agent selects next in order to be able to receive
a packet. This is why we focus instead on establishing the foundation of making reliable pre-
dictions first, which can then be forwarded to any Medium Access Control (MAC) protocol that
utilizes them. Second, they select one channel per time slot to try and transmit, where we provide
a prediction on all channels’ availabilities. This coincides with the first point, s.t. our method
can be viewed as a general data link layer function that should be connected to a fitting MAC
protocol.

To close in on our application domain, when fine-grained resource selection of both frequency
and time are the goal, then the PU’s medium access over time must follow some pattern for it
to be learned and accounted for. A random access-based CSMA/CA scheme intuitively presents
no such pattern, but may still do through application layer behavior. The resource scheduler
in LTE networks is up to the operator, and it can be expected that it will occupy its frequency
bands fully. In both cases, all PU-used bands would be learned as mostly busy, and then the
here-proposed method, too, degrades to channel selection. We are more interested in showing
the effectiveness in coexistence scenarios where a more fine-grained resource allocation can
succeed, and so we will present the aeronautical coexistence scenario for our evaluation in Sec. 3,
and here briefly present another one that we deem applicable from the field of wireless sensor
networks. One publication out of many is [PAG+13], which motivates a traffic aware scheduling
algorithm for data-centric scheduling that is multi-channel, time-synchronized and duty-cycled,
and which has been integrated into the IEEE 802.15.4e Time Slotted Channel Hopping (TSCH)
protocol, standardized in [IEE]. Putting it briefly, communicating nodes agree on a particular
resource in the (time, frequency)-grid, and then repeatedly follow the same hopping sequence
of finite length, and so attempt to avoid interference with other networks. This leads to long-
lasting links between sensor nodes and a data aggregator, that are completely cyclic. So while
TSCH proposes a pseudo-random-channel-hopping-based interference mitigation, which evenly
utilizes all available frequency channels, we propose a learning-based interference mitigation
that selectively utilizes frequency channels and time slots within if they are predicted as idle; and
such an IEEE 802.15.4 system has already been shown in [WLGK18] to be a good candidate for
such learning-based coexistence.

3 System Model

We consider a SU communication system, whose communication resources are derived from
both Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM). Time
is organized into discrete time slots of identical duration, and the frequency band is split into
C = {1, . . . ,c} orthogonal narrowband channels with identical bandwidths. The users of the
SU network attempt to opportunistically access the medium. A PU communication system is
present, which operates on the same frequency band. The number of PUs is unknown, but the
superposition of their medium accesses on the particular frequency channels can be observed
through channel sensing. Definitions of time slots and frequency channels between PUs and SUs
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are not required to be identical. Each channel therefore has its own availability statistic, and
these are local to each SU due to different geographic positions and the hidden node problem.
Depending on the PU’s channel access strategy, there may be a correlation between the channels
w.r.t. their availability. In fact, a finite, repeating (cyclic) and (semi)-deterministic PU channel
hopping sequence is assumed as in [LFT20], where the next frequency channel may be drawn
from this finite sequence with probability 1− ε , and with ε no hop is made. At ε = 0.5 the
PU behavior is most unpredictable, while at ε ∈ {0,1} it is fully deterministic. Here a fully
deterministic PU strategy with ε = 0 is assumed. It is each SU’s goal to reliably learn the
availability statistics of the channels s.t. predictions about future utilization can be made. These
predictions can then be used to steer the local medium access – the SU network needs to organize
among its users, but this is outside the scope of this paper. Instead, the focus is on making such
predictions. We assume a single hardware receiver to be available for the learning task at each
SU.

3.1 Environment model

We consider two different types of receivers that are available to the SU, where the first is a spe-
cialized version that allows full observation of the medium. It is capable of sensing over a broad
frequency range, and then differentiating between received radio signals on the narrowband fre-
quency channels, making out independent radio signals on each channel. The complexity of such
a receiver depends on the width of the frequency band. In the example of LDACS, it is likely
to operate on 500 kHz wide channels from the range 960–1164MHz, as shown in [EHS12].
This would require the specialized receiver to detect signals in 408 narrowband channels on a
204MHz wide band. Optimistically speaking, a complex and very expensive receiver is needed.
Other communication systems with fewer channels and a smaller band may be realizable with
such a receiver. The second version is a simple narrowband receiver, which can be tuned to a sin-
gle narrowband frequency channel and detect radio signals within, but provides no information
about signals on the other channels.

3.1.1 Fully observable environment model

In a fully observable scenario, we assume a specialized receiver to be available at the SU, which
is capable of sensing all channels at each time slot, and can determine the availability of each
channel. At time t, a sensing result would be Xt as in Eq. 1.

Xt = {xt,1, . . . ,xt,c} where ∀i = 1, . . . ,c : xt,i =

1 if channel i was found idle

−1 if channel i was found busy
(1)

3.1.2 Partially observable environment model

In a partially observable scenario, only a narrowband receiver is available at the SU, which can
be tuned to a single frequency channel during a time slot to obtain a measurement, but cannot
give information about the other channels. Therefore, at time t, a sensing result X̃t, j would yield
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an observation for a selected channel j, and give no information about any other channel as in
Eq. 2.

X̃t, j = {x̃t,1, . . . , x̃t,c} where ∀i= 1, . . . ,c : x̃t,i =


1 if channel i = j was found idle

0 if i 6= j

−1 if channel i = j was found busy

(2)

3.1.3 Primary user channel access behavior model

The PU accesses the medium according to its own strategy. It is initially unknown to us, and it is
our goal to learn it from sensing samples Xt or X̃t, j over time. We evaluate the learning approach
on the DME system. It is used for navigation purposes, where ground stations are configured to
transmit at a fixed center frequency on a 1 MHz-wide channel from the range 960 – 1215MHz,
according to [ESCG11] and [EHS12]. An interrogating aircraft sends a request pulse pair, to
which the ground station replies at a frequency offset of±63MHz and a fixed delay of 12 – 36µs
that depends on the mode.

We abstract this operation, and consider a channel at time slot t as utilized by DME if an
interrogation or response signal was present in its duration. There is a correlation between the
interrogation and response frequency channels, where a response signal on the response channel
follows an interrogation signal on the interrogation channel. An LDACS-equipped aircraft may
be in the presence of several DME ground stations, which each serves a number of users. For
example, consider Fig. 2a, where one LDACS user may receive interrogation signals of two
DME users, and response signals of two DME ground stations.

With this, as the SU observes the medium over time, it may uncover a resource utilization as
in Figs. 2b, 2c. Note that propagation delays in aeronautical communication are non-negligible:
according to [LE12], DME provides service up to a transmission range of 740 km, which imposes
a propagation delay of almost 2.5 ms, and the interference range is typically much larger than
the transmission range. The relative positions between SU and PUs are therefore of utmost
importance, and mobility changes the spectral view at the SU. In the example in Figs. 2b, 2c,
time is discretized into slots such that interrogation and response signals are separated into two
consecutive slots. Time could be discretized differently and the number of PUs could change,
but the critical aspect is that DME medium access is cyclic, showing a pattern over time which
changes only as users move.

3.2 Prediction model

3.2.1 Channel access pattern learning

As full or partial observations are made, these are used to train a predictor. Earlier work in
[LFT20] and [FLT20] have shown that a LSTM RNN works very well for this task. In a nutshell,
this type of neural network is capable of learning correlations over time, which fits well with the
prediction of the time series that PU medium access can be viewed as. The earlier papers present
a detailed discussion on the learning characteristics of such RNNs, such as learning time, the
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(a) Example case where two DME ground stations serve one user each. All radio signals arrive at the SU.
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(c) Random partial sampling at each time slot.

Figure 2: Exemplary view of sampled PU resource utilization over time at the SU.

values predictions converge towards, and consider continuous learning where mobility changes
the learning target over time for deterministic and for Markovian PU channel access patterns.

Training data is obtained over time during SU operation, where at time t signal reception is
used to construct the current observation Xt as in Eq. 1. This observation is used as the target (or
label) for the previous observation Xt−1, training the predictor to output Xt given Xt−1. The input
into the learning process therefore lags behind the sensing process by one time slot, as a target is
required before training can commence.

As for the RNN architecture, our focus is on feasibility and not on the optimization of the ar-
chitecture. Thus, a minimalistic LSTM RNN as depicted in Fig. 3 is used, where the observation
is put into an LSTM layer of 128 neurons, which is fully connected to a c-neuron output layer.
This means a prediction on each of the c channels’ availability at t +1 is obtained at time t. The
hyperbolic tangent activation function ensures LSTM layer outputs to be from [−1, 1].

Custom loss function In partially observable environments, as Eq. 2 states, only one element
in X̃t+1, j will be non-zero (contain information); which element this is depends on the selection of
the sensed channel j. This selection is uniformly random over all channels, and so each channel
has a probability of 1

c to be selected. Fix one channel j. Over time, channel j is sampled equally
often as all other channels. However, the vast majority c−1

c of all observations will be of other
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n1,1

n1,128

LSTM Layer

θ1

Observation Xt

...

n2,1

n2,c

Output Layer

θ2

Prediction hΘ(Xt) = Y

Custom Loss L (Eq. 3)

Target Y ′ = Xt+1

Adam Optimizer

tanh

Figure 3: Our LSTM RNN architecture.

channels, where X̃t+1,k 6= j will contain an entry of zero at channel j. The go-to loss function for
such applications is the Mean Squared Error (MSE): MSE = 1

c ∑
c
i=1(Yi−Y ′i )

2. With this, every
time channel j is selected, the new observation on this channel will push the prediction towards 1
(idle) or−1 (busy), however most of the time the prediction on channel j will be pushed towards
0 (no info). Predictions on this channel will tend towards 0 as t→ ∞ or c→ ∞.

Therefore, a custom loss function is proposed, which takes into account the special circum-
stance of having partial information. The neural network’s optimizer takes the loss value and
applies gradient descent, i.e. it computes the gradient of the loss function and updates the neural
weights in the opposite direction, thus reducing the loss. This leads to the just-described behav-
ior of adjusting weights to predict a zero when the respective channel was not sensed, since this
constitutes the target output that is provided to the optimizer. To circumvent this issue, the MSE
is modified and instead the custom loss function L as given in Eq. 3 is used.

L = max
i

[(
Y ′i · (Yi−Y ′i )

)2
]

(3)

The target Y ′ must be zero in all positions but the selected channel, and so the only non-zero loss
value is where Y ′ is non-zero. Consequently, the optimizer is given no incentive to change neural
weights to reflect the zero elements in the target, but only attempts to output the target element
that is non-zero. The function L practically boils down to the two cases of the non-zero label
element y′ ∈ {−1, 1}, so

L =

 f1 = (y−1)2, if y′ = 1

f2 = (y+1)2, if y′ =−1

with y ∈ R. These functions f1 and f2 are continuously differentiable. The custom loss func-
tion is only used for partially observable environments, while the MSE is used for fully observ-
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able ones, since the maximum in Eq. 3 increases the learning time when all target values can be
optimized jointly.

4 Results

All simulation results are obtained using Python and TensorFlow v2.5.0. Simulations are re-
peated 50 times and results split into batch means of 5 runs each, s.t. 95 % confidence intervals
can be computed. The source code to replicate the results is provided under an open license in
[Lin21].

4.1 Learning time

0 10000 20000 30000
time slots

0.00

0.25

0.50

0.75

1.00

fully obs.: accuracy
fully obs.: loss

part. obs.: accuracy
part. obs.: loss

Figure 4: LSTM loss and accuracy over time
for fully and partially observable models for the
DME coexistence scenario visualized in Fig. 2.

The learning time in partially observable en-
vironments is expected to increase in contrast
to fully observable ones. To explain, consider
the difficulty of reliably predicting the next
time slot with only partial observations. Only
1
c of the information is gained per time slot, or
in other words, the state space increases from
S = {−1,1} to S0 = {−1,0,1} with the in-
troduction of the “no information” state 0, and
|S0|c = 3c > |S |c = 2c when all channels
are considered. To evaluate this hypothesis,
the coexistence scenario depicted in Fig. 2 is
taken where one SU shall learn the superposi-
tion of channel accesses by two DME ground
stations and two DME interrogators on c = 5
frequency channels. Channels 1 and 2 are uti-
lized by one DME operation, channel 3 is al-
ways idle and channels 4, 5 are used by the
other DME operation. Fig. 4 shows the neural
network’s learning process over time, where the loss is the MSE or Eq. 3 resp., and the accuracy
is the binary accuracy of rounding prediction values to r(y) =−1 if y < 0 else 1, comparing it to
the integer target, and averaging over all channels.

The hypothesis is clearly supported as the fully observable case achieves a loss of zero at about
1
20 of the training samples compared to the partially observable case. For partial observability,
a random initialization of neural weights as well as randomly sensing the next channel lead to
relatively large confidence intervals before convergence.

To investigate different difficulties in the learning targets, Fig. 5 depicts the time until con-
vergence for the fully and partially observable system models over an increasing number of
frequency channels. New DME ground stations and users are placed as channels 5 and 7 are
added, so that the channel access pattern grows and the learning target becomes more difficult.
Convergence is defined as that state of the model where the next consecutive 1000 slots are cor-
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rectly predicted. Both environment models show an exponential growth in learning time as the
number of frequency channels increases, while for partially observable scenarios this learning
time is close to one order of magnitude larger and grows with c.

4.2 Learning time reduction

2 3 4 5 6 7
frequency channels

103

104

105
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nv

er
ge

nc
e

tim
e

fully observable partially observable

Figure 5: LSTM convergence time in slots over
the number of channels, where with more chan-
nels also more DME users are added, and so
the pattern that should be learned becomes more
complicated.

Fig. 5 shows that the learning time may be-
come the limiting factor. This process cannot
be sped up through more computing power,
as it is the sparse learning samples that are
limiting. Real-world channel measurements
yield these observations, and these must have
taken place before the learning model can be
trained. In an exemplary LDACS network,
when five channels are used by DME, the
learning time translates to about 6 min un-
der an assumed time slot duration of 12 ms.
This may be acceptable when the pattern
stays relatively constant as the user traverses
the interference range of more than 1000 km,
but for fast-changing environments, the PU’s
medium access pattern might have already
changed by the time a now-obsolete pattern
has been learned. Therefore, the reduction of learning time is crucial. A first step in this direc-
tion is the aggregation of multiple samples into an observation matrix M of l rows, where each
row holds one observation vector, so M = [Xt−l+1, Xt−l+2, . . . , , Xt ]

′. When a new observation Xt

is made, the oldest observation is popped from M, and the new observation appended. With this,
a sequence that shows the correlations over time is presented to the predictor. Note that this may
put the necessity of an LSTM layer into question. The LSTM’s memory cells enable the neural
network to establish correlations over arbitrarily long periods of time. With this, the proposed
method becomes general, as when it is applied on other (non-DME) coexistence scenarios, the
cycle length of the PU’s medium access pattern may not be known a-priori. An LSTM-provided
memory can establish patterns over small input matrices that do not encode the full pattern, while
a feed-forward neural network cannot learn the pattern if the input matrix is too small. Therefore,
we argue for the LSTM layer, but emphasize that removing it for known PU pattern lengths can
reduce the computational overhead.

Fig. 6a shows that the learning time in the fully observable case can be significantly reduced as
loss and accuracy converge sooner when l = 16 samples are aggregated. The same behavior had
been discovered in our previous work in [LFT20], where it was concluded that when a training
sample contains the pattern that should be learned, convergence is reached much faster than if
correlations between samples must be established through the LSTM memory cells. In Fig. 6c
the substantial decrease in the training time required until convergence is shown, which follows
a bathtub curve in the fully observable case with a minimum at l = 16 for this particular pattern.
Finding the optimal l is then application-specific.
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For partial observability, Fig. 6c shows relatively chaotic behavior with a minimum at l = 64.
The time until convergence shows relatively large variance, and 6 out of 50 runs with l = 16
did not converge at all within 250000 slots. An evaluation of the training process in Fig. 6b
likewise shows a large variance. This may be explained by the “usefulness” of an input matrix
M, which is largely determined by the random choice of the channel sampling: it may contain
useful information about the pattern to learn, or it may not. This information content varies
between inputs, and utilizing matrices of little information is not beneficial for training. Thus,
the strong variance in learning and convergence times, and the much later convergence in Fig. 6b
appear. To reduce the learning time in partially observable environments, another method that
aims at finding highly informative training inputs may be required.

0 1000 2000
time slots

0.0

0.5

1.0

l = 16: accuracy
l = 16: loss

l = 1: accuracy
l = 1: loss

(a) Learning behavior in fully observable case.

0 20000 40000
time slots

0.0

0.5

1.0

l = 64: accuracy
l = 64: loss

l = 1: accuracy
l = 1: loss

(b) Learning behavior in partially observable case.
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(c) Convergence times for both cases.

Figure 6: A comparison of convergence times
in Fig. 6c for the aggregation of different num-
bers l of observations into an input matrix M.
The respective best values of l = 16 and l = 64
were selected for fully and partially observable
scenarios respectively, and the LSTM learning
behaviors are shown in Figs. 6a and 6b.

5 Discussion

It has been shown that if the coexisting PU system exhibits a cyclic and semi-deterministic
medium access pattern, then through the utilization of a simple LSTM RNN, this pattern can be
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learned as the medium is observed, and so DSA can be realized both in frequency and in time. An
aeronautical scenario has been investigated, but it must be emphasized that the method is general
and can be applied to the coexistence with any PU system if the required characteristic of a semi-
deterministic cyclic medium access pattern holds, and related work has already demonstrated the
applicability to other systems.

The predictor has been adapted to partially observable environments, where a single narrow-
band receiver can obtain observations of a single frequency channel in each time slot. In order
to achieve this, a custom loss function has been proposed, which is tailored to the specifics of
partial information. Through this loss function, the RNN is prevented from adjusting its neural
weights for unknown channel states.

As expected, the learning time increases drastically when the amount of information per time
slot is reduced due to partial observability. The complexity of the PU’s channel access pattern is
the driving factor here. Since observations are obtained over time, it has become clear that the
efficient utilization of available observation samples is crucial for effective deployment of this
method. A first step into this direction has been the aggregation of several observation vectors
into an observation matrix. This could significantly reduce the learning time in both fully and
partially observable scenarios. However, for the partially observable case, a large variance in the
learning behavior could be observed, and apparently the input matrix size must be chosen with
care. A more stable method for learning time reduction should be found.

Future work should encompass this further reduction of the learning time as well as the utiliza-
tion of predictions through a MAC protocol. In particular, our next focus lies in Reinforcement
Learning, where a learning agent could be tasked with the selection of the next frequency channel
that should be sensed, as related work has already shown this to be feasible. This is in contrast
to the current method of a uniformly random selection of the next channel to sense. If channel
availability statistics are i.i.d., then the information gained from sensing any channel is the same
as sensing any other channel; sensing channels at uniformly-random is an optimal strategy in
such a case. However, we consider cyclic channel access patterns with correlations in time and
frequency: if a DME request channel is now busy, the corresponding DME response channel will
be busy soon. Observing the correlation between these two channels gains much information.
Another channel may be unutilized by local DME operation: initially sampling it will reveal it
always idle – this is new information – but after having learned it is idle, sensing it again yields
no new information; periodically checking that it remains idle is however still required. This
may realize self-supervised channel sampling, as the agent learns to maximize the information
gain per sampling round.

Another approach could be transfer learning, where a prediction model trained on one task
could use its knowledge to apply it to a changed pattern when user mobility is considered.
Our previous work [LFT20] already suggests that the proposed RNN architecture can adapt to
changed learning targets e.g. through mobility, but the subject has not been investigated thor-
oughly so far. Similarly, knowledge transfer and student-teacher models could improve learning
times for users that have just entered a geographic area as they are taught by existing users that
have already trained their models.
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