
Electronic Communications of the EASST

Volume 8 (2008)

Proceedings of the

Third International ERCIM Symposium on

Software Evolution

(Software Evolution 2007)

Lightweight Visualisations of COBOL Code

for Supporting Migration to SOA

Joris Van Geet and Serge Demeyer

12 pages

Guest Editors: Tom Mens, Ellen Van Paesschen, Kim Mens, Maja D’Hondt

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Lightweight Visualisations of COBOL Code

for Supporting Migration to SOA

Joris Van Geet1 and Serge Demeyer2

1Joris.VanGeet@ua.ac.be, 2Serge.Demeyer@ua.ac.be

http://www.lore.ua.ac.be/

University of Antwerp, Belgium

Abstract: In this age of complex business landscapes, many enterprises turn to

Service Oriented Architecture (SOA) for aligning their IT portfolio with their busi-

ness. Because of the enormous business risk involved with replacing an enterprise’s

IT landscape, a stepwise migration to SOA is required. As a first step, they need to

understand and assess the current structure of their legacy systems. Based on exist-

ing reverse engineering techniques, we provide visualisations to support this process

for COBOL systems and present preliminary results of an ongoing industrial case

study.

Keywords: SOA migration legacy reverse-engineering visualisation COBOL

1 Introduction

Mismatches between business and IT pose a threat to the agility with which enterprises can adapt

to changing requirements. In an attempt to ensure their competitive advantage, some enterprises

are turning to Service Oriented Architectures as a means to align their IT portfolio with their

business. Because of the enormous business risk involved with replacing an enterprise’s IT

landscape, a stepwise migration to SOA is required.

The Service Oriented Migration and Reuse Technique (SMART) [LMS06] is an existing

methodology for defining a migration process consisting of five distinct phases. First you should

(1) establish the stakeholder context, (2) describe the existing capabilities, (3) and describe the

target SOA state in an iterative and incremental manner. Based on these results you can (4) anal-

yse the gap between the existing capabilities and the target state, after which you can (5) develop

a migration strategy. All these phases can — and should — be supported by reverse engineering

techniques and tools.

As a first step, enterprises need to assess the current structure of their legacy system(s). Such

a First Contact [DDN02] typically aims at building an overall mental model of the system at a

high level of abstraction. During this process exceptional entities become apparent, which can

be studied afterwards. As building a mental model of large legacy systems is not a trivial task,

this process is usually supported by (visualisation) tools [SFM97].

Studies show that COBOL mainframes process more than 83% of all transactions worldwide

and over 95% of finance and insurance data [AAB+00]. Needless to say that maintaining these

systems is of vital importance, which is why we focus our efforts on COBOL. Unfortunately,

there is not one standard COBOL language: many variants and dialects have manifested them-

1 / 12 Volume 8 (2008)

mailto:Joris.VanGeet@ua.ac.be
mailto:Serge.Demeyer@ua.ac.be
http://www.lore.ua.ac.be/


selves over the years. To cope with this plethora of COBOL variations, lightweight parsing

techniques are preferred.

In this position paper we present such a lightweight technique for visualising functional depen-

dencies and data dependencies between COBOL programs. After a short introduction to services

and what it could (should?) mean for reengineering legacy systems (Section 2) we present our

data model on COBOL, define structural properties of this data and explain their usefulness in

the context of migration to SOA (Section 3). Then we define views on this structure and explain

how they should be interpreted (Section 4). We provide an initial experience report of an ongo-

ing industrial case study in Section 5 and suggest improvements to our approach in Section 6.

Related work is discussed in Section 7 after which we conclude.

2 The Service Concept

As a result of the increasing interest in SOA, many interpretations have been given to the concept

of a service. Ranging from an enabler of a capability accessible through a prescribed interface

and consistent with predefined constraints and policies [OAS06] to technical, network-centric

implementations typically based on web-services1. In fact, the term services science has been

coined as it reaches far beyond software engineering or even computer science [SR06].

In an enterprise context, however, a service can be best described as a way to specify en-

capsulated business functionality independent from concrete implementations. In this context,

a service is more of a business concept than an IT concept. This means that we cannot simply

identify services from the source code of a legacy system, because a thorough understanding of

the organisation and the domain is required. We can, however, make the functional dependen-

cies within the legacy system explicit and highlight the exceptional entities. This information

can generate discussion with the domain experts and enterprise architects to find out which of

these entities pose a threat for migrating to SOA. In this context a service would, ideally, be

implemented as a loosely coupled component [KBS04]. Indeed, the effort required to extract a

‘service’ can reasonably be expected to increase with the number of dependencies originating

from or targeting the associated source code.

3 Characterising Source Dependencies

3.1 COBOL Artefacts

As a means to characterise functional and data dependencies in COBOL source code, the fol-

lowing artefacts are of interest.

• A program is a functional block of COBOL code uniquely identified by a Program-ID.

Programs are the basic building blocks of a COBOL system.

• A copybook is a reusable snippet of COBOL code, contained within one source file, that

usually consists of a data declaration to be shared by different programs.

• A CALL statement is responsible for invoking a program from within another program

using its unique Program-ID. The thread of execution is then passed on to the called

1 http://www.w3.org/2002/ws/

Proc. Software Evolution 2007 2 / 12

http://www.w3.org/2002/ws/


ECEASST

program until the execution ends and the control returns to the calling program.

• A COPY statement is responsible for copying the contents of a copybook directly into the

COBOL source. This construct enables code level reuse of data declarations.

• A missing program or copybook is a program or copybook that is referenced from within

the system under study but not part of the system itself. They have been identified as IDs

used in CALL and COPY statements which we could not map to available source files.

Currently, we extract this information from the COBOL sources with a PERL script using

simple regular expression functionality implemented in the standard UNIX tool GREP. This

provides us with the necessary robustness for parsing COBOL.

Note that there are typically two usage modes of COBOL programs on mainframe, namely

online and in batch. In online mode programs interact via COBOL calls, in batch these programs

can also be invoked from mainframe scripts, usually JCL
2. We have not taken into account the

JCL artefacts, thus we are missing some, perhaps important, information.

3.2 Structural Properties

Using the same PERL script, we extract the following dependencies from these source code

artefacts.

• A functional dependency is a relationship between two programs implemented by a CALL

statement in the first program referencing the second program. This dependency has a

weight associated with it equalling the number of CALL statements from the first to the

second program.

• A data dependency is a relationship between a program and a copybook implemented by

a COPY statement in the program referencing the copybook. The same dependency can

occur between two copybooks.

These functional dependencies are interesting because they provide a measure for the ease of

separating programs: a group of programs sharing a lot of functional dependencies will be harder

to separate than a group of programs sharing little or no dependencies. Furthermore, strongly

interdependent programs might be working together to implement a certain functionality. In the

same way, data dependencies might reveal groups of programs working on the same data.

Besides these dependencies, we also define metrics on a COBOL program.

• The number of incoming calls (NIC) measures the total number of CALL statements refer-

encing that program.

• The number of outgoing calls (NOC) measures the total number of CALL statements within

that program to any other program.

We study these metrics because they are an indicator for the types of usage of COBOL pro-

grams3. Programs with a high NIC can be seen as suppliers as they supply a functionality that

is popular among other programs. As a special case of suppliers, programs with a high NIC

and a NOC of zero can be seen as libraries as they are likely to supply core functionalities

since they do not rely on other programs. Programs with a high NOC, on the other hand, can be

seen as clients as they use a lot of functionality from other programs. Putting these concepts in a

2 JCL stands for Job Control Language.
3 The terminology of suppliers , clients and libraries has been adopted from [MM06].

3 / 12 Volume 8 (2008)



service-oriented mindset, suppliers (and libraries) might provide good starting points for services

whereas clients will most likely be service consumers.

4 Views

We use a visual representation of this information as it provides the ability to comprehend large

amounts of data [War00]. More specifically, directed graphs have been shown to be natural

representations of software systems. Enriching these entities with metrics information provides

valuable visual clues for early structure comprehension [LD03].

To obtain such visualisations we export the structural information to GDF (Guess Data For-

mat) after which it can be visualised in GUESS [Ada06], a flexible graph exploration tool. This

environment assists a user in exploring graphs by providing capabilities such as applying graph

layouts, highlighting, zooming, moving and filtering.

In what follows we define two views based on the structural relations defined in Subsection 3.2,

namely the Functional Dependency View and the Data Dependency View. For each view we

identified some visual indicators of structural properties and grouped them according to a specific

task. We motivate the task, present visual indicators and interpret them in light of the specific

task.

4.1 Functional Dependency View

The building blocks of this view are COBOL programs and the functional dependencies be-

tween them. To distinguish programs from missing programs we use white rectangles and black

rectangles respectively. A functional dependency between two programs is implemented as a

directed edge between two nodes. Furthermore, the height and width of the nodes are relative

to the NIC and NOC metrics of the corresponding program respectively. We use the Graph EM-

bedder (GEM) algorithm [FLM94] as a layout algorithm because it tries to minimise the sum

of the edge lengths in order to provide an easy to interpret layout. This layout positions highly

connected nodes closer together thereby providing a visual indication of possible clusters and

groups.

4.1.1 Overall Design

Intent — Get a feel for the overall design of the system.

Motivation — Functional dependencies reveal first hand information on the complexity of the

design. Identifying strongly interdependent groups of programs can reveal opportunities or risks

early in the project.

Visual Indicators (Figure 1) — Isolated nodes (a) have no edges, whereas a monolith (d)

has an abundance of edges between all nodes. Disconnected clusters (b) are isolated groups

of interconnected nodes, whereas with connected clusters (c) the groups are connected by few

edges.

Interpretation — Assuming that functional dependencies are the only way to access a program,

Proc. Software Evolution 2007 4 / 12



ECEASST

(a) Isolated nodes (b) Disconnected Clusters (c) Connected Clusters (d) Monolith

Figure 1: Overall Design Indicators

isolated nodes and small disconnected clusters would reveal dead code. On the other hand,

if there are other functional dependencies which are not part of our model, these nodes might

reveal clearly separated functional blocks. Connected but loosely coupled clusters of nodes

indicate functional blocks that are easy to separate.

4.1.2 Exceptional Entities

Intent — Locate clients, suppliers and libraries.

Motivation — Easily detecting exceptional entities helps in quickly gaining focus in the usual

abundance of information.

Visual Indicators (Figure 2) — Clients are visually represented as very wide nodes (a), usually

with many outgoing edges, whereas suppliers can easily be identified as very tall nodes (b),

usually with many incoming edges. A combination of both results in a tall and wide node (c).

Libraries are a special form of supplier as they have no outgoing edges (d).

(a) Client (b) Supplier (c) Client & Supplier (d) Library

Figure 2: Exceptional Entities

Interpretation — Suppliers and libraries, both characterised by a high NIC, indicate a popular

functionality in the system. In the best case it could be an interface into an important func-

tionality, although it might as well be a smell indicating bad separation of concerns. Clients

(characterised by a high NOC), indicate more high level functionalities. Typically, (graphical)

user interfaces exhibit such characteristics. A combination of both client and supplier possibly

indicates an interface into lower level functionality (thus, making it a supplier) but delegating the

real work to the core programs (thus, making it a client). A library is a lowest level functionality

as it does not delegate anything, thus indicating a core functionality of the system.

4.2 Data Dependency View

The building blocks of this view are COBOL programs, (missing) COBOL copybooks and the

data dependencies between them. To distinguish programs from copybooks we use the rectangu-

lar and circular shape respectively. The distinction between copybooks and missing copybooks

5 / 12 Volume 8 (2008)



is implemented using white and black nodes respectively. A data dependency between a pro-

gram and a copybook or between two copybooks is implemented as a directed edge between two

nodes. Note that we do not show missing programs in this view, as they will never contain any

data dependencies. As with the Functional Dependency View, we also use the GEM layout for

positioning the nodes. Also note that the colour and the dimensions of a program node are in-

tentionally kept in accordance with the Functional Dependency View to easily identify the same

programs in the two views.

4.2.1 Data Usage

Intent — Get a feel for the data usage between different programs.

Motivation — Especially in data driven environments, data dependencies can provide an entry

point into the organisational structure of a company. Quickly identifying common data depen-

dencies or facades clearly separating data usage can provide necessary focus in the remainder of

the project.

Visual Indicators (Figure 3) — A common data concept is visually represented as a group of

programs directly connected to the same copybook (a). A data facade is represented as a program

connected to a set of copybooks which are only connected to that program. If the copybooks are

mainly missing copybooks we call it an external data facade (c), otherwise it is an internal data

facade (b).

(a) Common Data (b) Internal Data Facade (c) External Data Facade

Figure 3: Data Usage

Interpretation — As opposed to grouping programs by shared functional dependencies (Sub-

subsection 4.1.1), we can also group them according to shared data dependencies. Programs

sharing data are likely to work on a similar concept, especially when the data represents a busi-

ness concept. On the other hand, programs hogging data for themselves are likely to encapsulate

certain data and the corresponding functionality, making them more easy to separate.

5 Experience Report

This section describes some preliminary results we obtained during an ongoing case study at a

Belgian insurance company. The system under study is a document generation and management

system consisting of 200k lines of COBOL code with embedded SQL (including whitespace and

comments), divided over 401 COBOL programs and 336 COBOL copybooks, and 38k lines of

JCL (from which we did not extract any information). Extraction of the COBOL artefacts and

creation of the data model, as described in Section 3, was completed in less than five seconds

Proc. Software Evolution 2007 6 / 12



ECEASST

Figure 4: Functional Dependency View, height and width of the nodes represent NIC and NOC

respectively.

indicating that the approach is indeed very lightweight and likely to scale well on even bigger

systems.

Figure 4 depicts the Functional Dependency View of the system. The first thing you notice is

the typical monolithic nature of the legacy system. Almost everything seems to be interconnected

with no apparent order or hierarchy. There are some isolated nodes on the bottom and the right

(A) that would seem to constitute dead code, as they have no functional dependencies. Although

closer investigation did reveal some empty files, not all nodes are by definition dead code as they

can be called directly from JCL scripts running on mainframe. The small disconnected clusters

on the right show a distinct pattern (B): one parent node functionally depending on three child

nodes. Closer investigation revealed that each cluster is responsible for accessing and modifying

a specific part of the documents database. Each group of three child nodes is responsible for

respectively inserting, deleting and updating corresponding records.

When looking for exceptional entities, the most pertinent supplier is the tallest white node (S1).

Closer investigation revealed that this program is indeed a supplier as it provides the interfacing

program into all the disconnected clusters on the right. It collects all user and application requests

for adjusting the documents database and forwards those request to the correct cluster. Although

one would expect a functional dependency between this supplier and the clusters, this is not

7 / 12 Volume 8 (2008)



Figure 5: Data Dependency View.

the case because processing the request is performed asynchronously (in batch). Therefore, the

functional dependency is not visible in the COBOL files, but rather in JCL scripts running on

mainframe. Other suppliers include a program for visualising errors (S2) and an interface into

other databases (S3). Besides the white suppliers there are also missing programs (black nodes)

that are classified as suppliers. The tallest of them (S4), for example, provides an interface into

core mainframe functionality. Many other tall black nodes (e.g., S5, S6) are core programs of

the organisation.

Besides the very pertinent suppliers, Figure 4 also contains two clients that stand out. The

first one (C1), connected to several missing programs, is responsible for automatically filling in

documents with information from different databases outside the system under study. This pro-

gram is classified as a client as it seems to be extensively using data services of other systems.

Another client (C2) is responsible for checking the correctness of documents. Although, it del-

egates its functionalities to three child nodes, the main contribution for classifying it as a client

are numerous calls to a module that visualises error messages (S2).

One last node that really stands out is the big white rectangle (D) classified as both a client

and a supplier. It is the interface into the core of the system under study. It is a supplier for all

the end programs that feed (graphical) user interface, and wide because it delegates a lot of its

Proc. Software Evolution 2007 8 / 12



ECEASST

responsibilities to lower level suppliers.

Figure 5 depicts the Data Dependency View of the system. Besides the monolithic structure

on the left, there is one group of nodes that is clearly separated from the rest. This cluster reveals

one data concept (E) used by several programs. Closer investigation revealed that the programs in

this cluster are the same programs that are responsible for managing the documents database (the

disconnected clusters in Figure 4). The central copybook has the capability of uniquely defining

one row within this entire documents database. So this database management responsibility is

not only functionally clearly separated from the rest of the system, but also with regard to the

data dependencies. When consulting the domain experts, they supported this observation and

explained that this is actually a subsystem used by other systems as well. For historical reasons

it is part of this bigger legacy system, but it was designed to be used as a separate system.

Client C3 has many data dependencies with copybooks that have no dependencies with other

programs, therefore it acts as an internal data facade. Closer investigation revealed that C3 is

the only program responsible for (re)creating and correctly formatting all types of documents.

Client program C1, on the other hand, has a lot of data dependencies with missing copybooks

(the black nodes above). This is the program that retrieves information from other systems to

automatically fill in documents and was characterised by a lot of functional dependencies with

missing programs in Figure 4. This link between functional and data dependencies over the two

views is not surprising since data definitions are necessary to communicate with these programs.

When looking at group1 of copybooks, C1 acts like a data facade for the external data. The

copybooks from group2, on the other hand, are also used by other programs, thereby apparently

violating the facade property. Closer investigation revealed that the shared copybooks (group2)

are necessary for creating the terminal screens, indicating that C1 not only implements business

logic on top of external data, but also its GUI functionality.

6 Room for Improvement

Both views suffer from unnecessary cluttering. We will try to eliminate this by identifying and

removing omnipresent programs [MM06]. Furthermore, some of the programs classified as miss-

ing programs result from unresolved dynamic calls rather than really being a program outside

the system scope. We will try to resolve them if possible (using static techniques), otherwise we

will remove them from the model.

After uncluttering the views, we believe more meaningful visual patterns will become ap-

parent. Also, the synergy between the two views (e.g., the link between depending on missing

programs and using missing copybooks) is something we would like to make more explicit,

maybe by using a clearly focussed combined view.

Furthermore, our model is far from complete, therefore we would like to take other source

code artefacts into account as well. For example, the functional dependencies resulting from

the JCL scripts or the data dependencies implemented by global data accesses. Also, the data

dependencies are only extracted from the copybooks. However, there is no guarantee that each

copybook is uniquely mapped to a database table, thus, several copybooks could point to the

same data. This can be solved by explicitly mapping each copybook to its originating source.

Finally, we would like to merge our scripts with FETCH [DV07] — an open-source fact ex-

9 / 12 Volume 8 (2008)



traction tool chain currently geared towards C(++) but easily allowing extension via its pipe and

filter architecture — as we can then take advantage of more advanced querying mechanisms and

and a collection of views already available in FETCH.

7 Related Work

We based our views on the ideas of Lanza’s polymetric views [LD03], aiming at both a lightweight

and a visual approach. Although the views as proposed by Lanza are independent from the im-

plementation language, they are mainly targeted at the object oriented paradigm. We apply this

polymetric view concept to COBOL and target our views to anlysing the reuse potential in a

service oriented context.

Nyáry et. al. [NPHK05] support the maintenance of legacy COBOL applications by setting

up a COBOL repository. While using much of the same artefacts and dependencies as we use,

they go into more COBOL detail (including file references and data fields). Their tool focuses

on the repository with simultaneous code browsing resulting in low level abstractions, whereas

we aim to create more high level abstractions and uncover visual patterns.

Another tool capable of reverse engineering COBOL code is RIGI [MTW93, WTMS95].

They also present graph based visualisations of the system. But while they aim at more general

program comprehension activities, our approach is specifically targeted to finding opportunities

and risks for migrating to SOA. Furthermore, RIGI has a finer-grained approach to extracting

COBOL artefacts, making our approach more lightweight.

O’Brien et. al. [OSL05] support migration to services using software architecture recon-

struction techniques. While they also visualise functional and data dependencies (using their

tool ARMIN), they perform these analyses mainly on object-oriented systems and not on legacy

COBOL systems.

8 Conclusion

While enterprises are turning to Service Oriented Architectures for aligning their IT portfolio

with their business, migrating the current systems to such an architecture is not trivial. Therefore

a stepwise migration is necessary. This research constitutes the initial steps for investigating

COBOL systems in the early stage of such a migration project.

In preparation of talking to domain architects, it is important for a reengineer to quickly gain

an understanding of the COBOL source code structure. The explorative views presented in this

paper are a first contribution towards this goal as they aim at identifying areas obstructing or

facilitating migration to SOA. We already described some noticeable phenomena and use them

to make concrete observations. In the future we will conduct more empirical studies to evaluate

this approach.

The logical next step in the migration process would be to inject domain and organisational

knowledge into the views. This way we can see to what degree the structure of the existing

systems corresponds to the target SOA state as proposed by the domain experts.

Acknowledgements: This work has been carried out in the context of the ‘Migration to Service Ori-

Proc. Software Evolution 2007 10 / 12



ECEASST

ented Architectures’ project sponsored by AXA Belgium NV and KBC Group NV.

References

[AAB+00] E. Arranga, I. Archbell, J. Bradley, P. Coker, R. Langer, C. Townsend, M. Weathley.

In Cobol’s Defense. IEEE Software 17(2):70–72,75, 2000.

doi:10.1109/MS.2000.10014

[Ada06] E. Adar. GUESS: a language and interface for graph exploration. In CHI ’06:

Proceedings of the SIGCHI conference on Human Factors in computing systems.

Pp. 791–800. ACM Press, New York, NY, USA, 2006.

doi:10.1145/1124772.1124889

[DDN02] S. Demeyer, S. Ducasse, O. Nierstrasz. Object Oriented Reengineering Patterns.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[DV07] B. Du Bois, B. Van Rompaey. Supporting Reengineering Scenarios with FETCH:

an Experience Report. In Third International ERCIM Symposium on Software Evo-

lution. October 2007. to appear.

[FLM94] A. Frick, A. Ludwig, H. Mehldau. A Fast Adaptive Layout Algorithm for Undi-

rected Graphs. In GD ’94: Proceedings of the DIMACS International Workshop on

Graph Drawing. Pp. 388–403. Springer-Verlag, London, UK, 1994.

[KBS04] D. Krafzig, K. Banke, D. Slama. Enterprise SOA: Service-Oriented Architecture

Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle River, NJ, USA,

2004.

[LD03] M. Lanza, S. Ducasse. Polymetric Views-A Lightweight Visual Approach to Re-

verse Engineering. IEEE Trans. Softw. Eng. 29(9):782–795, 2003.

doi:10.1109/TSE.2003.1232284

[LMS06] G. Lewis, E. Morris, D. Smith. Analyzing the Reuse Potential of Migrating Legacy

Components to a Service-Oriented Architecture. In CSMR ’06: Proceedings of the

Conference on Software Maintenance and Reengineering. Pp. 15–23. IEEE Com-

puter Society, Washington, DC, USA, 2006.

doi:10.1109/CSMR.2006.9

[MM06] B. S. Mitchell, S. Mancoridis. On the Automatic Modularization of Software Sys-

tems Using the Bunch Tool. IEEE Trans. Softw. Eng. 32(3):193–208, 2006. Brian

S. Mitchell and Spiros Mancoridis.

doi:10.1109/TSE.2006.31

[MTW93] H. A. Müller, S. R. Tilley, K. Wong. Understanding software systems using re-

verse engineering technology perspectives from the Rigi project. In CASCON ’93:

11 / 12 Volume 8 (2008)

http://dx.doi.org/10.1109/MS.2000.10014
http://dx.doi.org/10.1145/1124772.1124889
http://dx.doi.org/10.1109/TSE.2003.1232284
http://dx.doi.org/10.1109/CSMR.2006.9
http://dx.doi.org/10.1109/TSE.2006.31


Proceedings of the 1993 conference of the Centre for Advanced Studies on Collab-

orative research. Pp. 217–226. IBM Press, 1993.

[NPHK05] E. Nyáry, G. Pap, M. Herczegh, Z. Kolonits. Supporting the Maintenance of legacy

COBOL Applications with Tools for Repository Management and Viewing. In

ICSM (Industrial and Tool Volume). Pp. 5–10. 2005.

[OAS06] OASIS Consortium. Reference Model for Service Oriented Architecture 1.0. July

2006.

http://www.oasis-open.org/committees/download.php/16587/wd-soa-rm-cd1ED.

pdf

[OSL05] L. O’Brien, D. Smith, G. Lewis. Supporting Migration to Services using Software

Architecture Reconstruction. step 0:81–91, 2005.

doi:10.1109/STEP.2005.29

[SFM97] M.-A. D. Storey, F. D. Fracchia, H. A. Mueller. Cognitive Design Elements to Sup-

port the Construction of a Mental Model during Software Visualization. In WPC

’97: Proceedings of the 5th International Workshop on Program Comprehension.

P. 17. IEEE Computer Society, Washington, DC, USA, 1997.

doi:10.1109/WPC.1997.601257

[SR06] J. Spohrer, D. Riecken. Services science. Commun. ACM 49(7), July 2006.

[War00] C. Ware. Information visualization: perception for design. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2000.

[WTMS95] K. Wong, S. R. Tilley, H. A. Muller, M.-A. D. Storey. Structural Redocumentation:

A Case Study. IEEE Software 12(1):46–54, 1995.

doi:10.1109/52.363166

Proc. Software Evolution 2007 12 / 12

http://www.oasis-open.org/committees/download.php/16587/wd-soa-rm-cd1ED.pdf
http://www.oasis-open.org/committees/download.php/16587/wd-soa-rm-cd1ED.pdf
http://dx.doi.org/10.1109/STEP.2005.29
http://dx.doi.org/10.1109/WPC.1997.601257
http://dx.doi.org/10.1109/52.363166

	Introduction
	The Service Concept
	Characterising Source Dependencies
	COBOL Artefacts
	Structural Properties

	Views
	Functional Dependency View
	Overall Design
	Exceptional Entities

	Data Dependency View
	Data Usage


	Experience Report
	Room for Improvement
	Related Work
	Conclusion

