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Abstract:

In the industry 4.0 ecosystem, a Digital Thread connects the data and processes for
smarter manufacturing. It provides an end to end integration of the various digital
entities thus fostering interoperability, with the aim to design and deliver complex
and heterogeneous interconnected systems. We develop a service oriented domain
specific Digital Thread platform in a Smart Manufacturing research and prototyping
context. We address the principles, architecture and individual aspects of a growing
Digital Thread platform. It conforms to the best practices of coordination languages,
integration and interoperability of external services from various platforms, and pro-
vides orchestration in a formal methods based, low-code and graphical model driven
fashion. We chose the Cinco products DIME and Pyrus as the underlying IT plat-
forms for our Digital Thread solution to serve the needs of the applications ad-
dressed: manufacturing analytics and predictive maintenance are in fact core capa-
bilities for the success of smart manufacturing operations. In this regard, we extend
the capabilities of these two platforms in the vertical domains of data persistence,
IoT connectivity and analytics, to support the basic operations of smart manufac-
turing. External native DSLs provide the data and capability integrations through
families of SIBs. The small examples constitute blueprints for the methodology,
addressing the knowledge, terminology and concerns of domain stakeholders. Over
time, we expect reuse to increase, reducing the new integration and development
effort to a progressively smaller portion of the models and code needed for at least
the most standard applications.

Keywords: Digital Thread Platform, Model Driven Development, Domain Specific
Languages, XMDD, Smart Manufacturing

1 Introduction

The digital transformation in Industry 4.0 integrates manufacturing processes with computing
devices, platforms, control systems, communication protocols, and data stores [Kus18]. The
progressive vertical and horizontal integration and connectivity in manufacturing ecosystem con-
tribute towards improved sustainability and better resource utilization, so that companies can
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achieve higher industrial performance, shorter production cycles and customization on demand,
ideally reaching a batch size of one [DBAF18]. Monitored and optimized manufacturing pro-
cesses in smart factories demand an increased interoperability between IoT devices and systems
with advance capabilities, like autonomous and smart configurations based on historical settings
and architectures. These needs are reshaping the way the industries traditionally operate and
communicate. In addition, the software systems, particularly in internet-centered ecosystems,
demand a high level of interaction with various external services, networks, technologies and
platforms.

Digital Thread [SW18, Gou18] is a data-driven architecture analogy for an integration and in-
teroperability layer with the ability to communicate and manage interoperation between business,
application and physical layer. It provides a robust reference architecture to drive innovation, ef-
ficiency and traceability of any data, process and communication along the entire system as well
as the Digital Twins and the devices, machines, sensors and dashboards, which may also include
analytics, AI and ML, and more. In industry 4.0 based ecosystems, a Digital Thread [MS19]
connects the processes and data in order to enable smarter manufacturing and smarter factories
through increased data exchange and process integration. Hence, the Digital Thread requires an
end to end integration of the data sources, processes and dashboards that cooperate with each
other to deliver such complex and heterogeneous interconnected systems. The costs and time-
line for a Digital Thread delivery through traditional software development would be prohibitive
because of the associated challenges of maintenance over time, quality of documentation, lack
of modularity and reusability, and the complexity in development for the adaptation to any new
dynamic requirements and upgrades [Was19].

Low-code development environments (LCDEs), on the contrary, promise to fulfil the robust
enterprise requirements, largely automate the software development process, and address the
core challenges associated with conventional software development [SGFP20]. LCDEs enable
domain experts to take advantage of graphical abstractions and automatic code generation, and
develop production-ready applications through model driven engineering principles [VID+19],
ideally requiring minimal or no coding experience [RA17, Was19]. The sweet spot seems here to
be the abstraction from unfamiliar programming syntax to models, combined with an abstraction
from coding to the domain specific knowledge. However, there are many flavours of LCDE and
many flavours of MDD. Instead of computer programs, the primary focus in the MDD paradigm
is to use models that are (programming and execution) platform independent (PIM), so that the
design language is less bound to the chosen underlying technology. If the chosen models have
an adequate syntax and semantic, it is possible to provide automatic model-to-code generation,
and also a more or less elaborate formal verification of the models. These capabilities can make
it easier to model a system that is more widely understandable, easily maintainable, and possibly
also scalable and flexible.

If the modeling language is much closer to the application domain, it may even empower do-
main experts to participate in the development process. This direct co-design approach is by
far the most effective method for boosting productivity and reliability [Sel03]. Domain specific
languages (DSLs) are tailored for a particular domain, that encapsulate or resort domain specific
constructs familiar to the domain experts, and accordingly provide abstractions where the domain
experts find themselves at ease. DSLs, both textual and graphical pave the way for new possi-
bilities for reusability, optimization and transformation, and even formal verification that would
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be much harder to achieve otherwise [MHS05]. To a certain extent, the combination of LCDEs,
MDD and DSLs seems therefore a winning strategy, but there is not yet a solution that supports
the heterogeneity needed for the Digital Thread, the formality needed for the MDD-based rigour
for high assurance software, and the specificity embodied by DSLs.

We address here the task of supporting all three aspects for the Digital Thread by means of
a platform concept. Specifically, we support the integration of external services from various
(domain specific) platforms and various programming languages in order to deliver their much
simpler and better controlled interoperability. Our goal is to develop a service oriented domain
specific Digital Thread Platform in the context of Smart Manufacturing, for which we provide
these integrations and orchestrations in a formal methods based, low-code and graphical, model
driven fashion. We chose the Cinco products DIME [BFK+16] and Pyrus [ZS21] as the underly-
ing IT platforms for our Digital Thread solution to serve the needs of the applications addressed:
manufacturing analytics and predictive maintenance are in fact core capabilities for the suc-
cess of smart manufacturing operations. They use a collection of tools and techniques to detect
anomalies and potential defects in the processes and the equipment before these reach a point of
failure. The use of data-driven proactive maintenance methods also helps operators to plan the
maintenance schedules for the equipment.

In this regard, the contribution of the paper is that we extend the capabilities of these two
platforms with new external integrations in the domain of data persistence, IoT connectivity and
analytics, and provides an overview of services linking together in the platforms to support the
basic operations of smart manufacturing. DSLs with a family of SIBs [SMN+07] are added
with small examples that are sufficient to constitute blueprints, i.e. reference examples that the
adopters can use as starting point, and adapt and enrich as needed. The SIBs (Service Inde-
pendent Building blocks) are executable modeling components for process models. We are also
moving from individual reusable SIBs to features [Mar04a, KM06] intended here as ready-made
workflows, where a collections of SIBs are packaged into workflows that are ready to use as a
hierarchical SIB.

The challenge to maintain consistency between continuously evolving system level require-
ments, component specifications, and evolving underlying implementations [LM12] is addressed
by resorting to hierarchical structuring, the introduction of a feature level abstraction [JMN+01],
and a systematic integration of externally provided services that goes beyond the manual, ad-hoc
integration of the services one by one. This has been done in the past with automatic integra-
tion of externally provided WebServices through generation of the corresponding classes and
wrappers [KMSN07]. Similarly, prior to DIME, to make the data type definitions in DyWA
accessible to the process models, a code generator generated the domain specific classes and
the corresponding CRUD services [NFSM14]. With DIME, the accessibility of data models to
process models is built-in, so there is no export step anymore. This approach of encapsulation
and publishing has been successful in many respects, in particular it supports the definition of
formal service and type semantics, which enables automatic process analysis and generation
techniques [LMS08], and hence also large scale automatic composition and reuse[LNMS11].
The main research question we face now concerns the feasibility of these many and diverse
integrations in a more abstract, systematic, and guided way than just through the customary
case-by-case and service-by-service ad hoc approach.

In this paper, Sect. 2 discusses the related work, Sect. 3 gives an overview of the principles
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and architecture of the Digital Thread Platform, Sect. 4 discusses two representative case studies,
with integrations in DIME and in Pyrus, and finally in Sect. 5 we conclude and discuss next steps.

2 Related work

Over the years, domain specific languages, both textual and graphical in a low-code and model
driven paradigm, have become one of the most popular approaches for the design and develop-
ment of heterogeneous systems [BHK16, NLKS18, NNMS16]. According to Gartner [Gar21],
Low-Code Application Platforms (LCAP) are being increasingly adopted by industry, specifi-
cally by software-as-a-service (SaaS) vendors and are expected to grow significantly in adoption
and economic impact over the years. These platforms address the challenges associated with
conventional development paradigms, and democratize the process of software development by
facilitating the participation of domain experts in the development cycle who have little or no
coding knowledge. This is opposed to traditional hard-coded programming techniques [Was19],
that are beyond the competence of most domain experts. The first meta-level framework of this
category was proposed in 1995 [SMCB96] with immediate industrial applications in the INX-
press product by Siemens-Nixdorf [SMB+96]. Framework thinking combined with a low-code
approach offers support for systematic and rapid generation of application specific complex ob-
jects from collections of reusable components. Considering the costs associated with skilled
human resources and the high maintenance costs of software and IT systems, automation is by
far the most effective way to stay competitive yet deliver high quality solutions.

Model driven development (MDD) with adequate models is an automated approach to the
rapid design of flexible and cost effective applications by means of drag & drop visual inter-
faces. Holistic MDD covers from the conceptual modeling phase to the model-to-code transfor-
mation phase [MCF03]. In this line of thought, the jABC platform [SMN+07] based the design
and development of applications on formal models and its Lightweight Process Coordination.
It accelerated the development process of applications through the concept of reusable building
blocks, orchestrated into analyzable control structures called Service Logic Graphs. Following
similar practices, several model driven platforms were proposed for model checking [LMS06],
early bioinformatics applications [MKNS06, LMS09], fostering collaboration through tool in-
teroperability within the FMICS Working Group on Formal Methods for Industrial Critical
Systems [MKSN06, GM12], to compose and combine heterogeneous planning algorithms in
Plan-jETI [KMS09, MMK+09] and also mobile apps [BH08] and cross platform [HMK13] ap-
plications. Enhancing the model driven paradigm with domain specificity tailors the modeling
environment towards a specific application domain, with the purpose of enhanced productivity,
reduced complexity and increased domain expert participation [NLKS18]. In general, the devel-
opment of DSLs may follow any of the available implementation approaches, and may require a
collection of guidelines, design patterns, model checking and common language design and im-
plementation challenges for reusability [BAGA14]. A comparison of different implementation
approaches of 40 DSLs from very different domains [KMB+08] concluded that the compiler
based approach (42.1%) is the most popular. One of the case study shows a model driven DSL
for the personalisation of travellers’ information that designs information systems by assembly
of pre-existing models using the PERCOMOM method [BKAU14]. Similarly, model driven
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modeling has been applied to the development of distributed control systems for the automatic
transformation of block-based design models to a component-model implementation [TPK07].

The Industry 4.0 revolution [JASG21] covers a broad range of key enabling technologies like
cyber physical systems, digital twins, IoT, AI, AR/VR and big data analytics. The adoption of
these Industry 4.0 technologies pushed manufacturing companies and their suppliers to adopt and
adapt data-driven strategies, with the focus to meet the dynamic needs of “smart” factories and
contribute towards sustainable manufacturing environments. Meanwhile, [BP20] and [SGFP19]
discussed the emerging research and practices on sustainable smart manufacturing and Industry
4.0 with focus on existing low-code development platforms. The paradigm shift in manufacturing
from traditional approaches to smart manufacturing requires in fact an end to end integration and
interoperability at different stages of different business entities, processes and systems [Thr04].
In this context, [MS19] discussed the key role of the Digital Thread in Industry 4.0 to couple the
data and processes and provide traceability in the entire lifecycle, to deliver an integrated smarter
ecosystems.

The Language-Driven Engineering approach of [SGNM19] addresses the issue of adapting
the needs of domain specific languages with the need to contain the cost, expertise and com-
plexities in the development of corresponding baseline tools from scratch. The Cinco [NLKS18]
meta-level platform by the same authors supports a meta-model driven development of graph-
ical domain specific modeling tools, and it also provides automatic code generation capabili-
ties from high level (meta-model) specifications. In the LDE, two high level meta-modeling
languages describe the language elements, syntax and semantics (through the Meta Graph Lan-
guage, MGL) and the rendering style in the graphical editor (through the Meta Style Language,
MSL). Several modeling tools and frameworks developed using Cinco have so far addressed
multiple industrial and academic settings [ZNS19, BFK+16, CKL+16, BDG+15]. In our Dig-
ital Thread platform we chose to work with two specific products generated from Cinco meta-
models: DIME [BFK+16] and Pyrus [ZS21].

DIME is an Eclipse based, low-code MDD environment for modeling and deploying complete
web applications. Its one-click generation and deployment in a service oriented manner [MSR05]
is an example of the One Thing Approach (OTA) defined in [MS09]. Being an Integrated Mod-
eling Environment, DIME supports hierarchical modeling, useful for scalability and real life
system design. Its several model types cover the different aspects of an application: the data
model for the data type definitions and persistency, the process models for the business logic
(control flow and data flow), and the GUI models for the Web application’s user interface. The
models pertaining to the application under development are validated dynamically wrt. syntactic
and static semantics both at the model and the project level. This built-in support facilitates the
domain experts in debugging their designs. Warnings and error messages help localize the issues
at design time, even before implementation and deployment, therefore cutting down significantly
the testing effort and costs.

Pyrus is a web-based collaborative graphical modeling environment for no-code data analytics.
Pyrus enables users to comfortably orchestrate and reuse (analytics) functionalities implemented
in Python and available in Jupyter notebooks. Users access Pyrus as an online graphical IDE, dis-
cover pre-implemented functionalities from an established online IDEs as DSLs, and orchestrate
them graphically to produce collaboratively data analytics pipelines. Like DIME, Pyrus follows
the core principles of LDE [SGNM19], OTA [MS09] and eXtreme Model Driven Development
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(XMDD) [MS20]. Hence its users should be able to take design decisions for their pipelines,
i.e. decide “what” the pipeline does, without needing to know how to implement the individual
functionalities (i.e. the “how” to do it at the programming level). In this sense, Pyrus promotes
virtualization, encapsulation and reusability in a low-code/no-code fashion.

3 Extending the Digital Thread Platform

We work towards the creation of a smart manufacturing Digital Thread ecosystem by extend-
ing the domain specific functional capabilities offered by the base platforms DIME and Pyrus
through the systematic integration of various externally provided capabilities. They are inte-
grated in a service-based fashion, as external native DSLs, in order to provide to the Digital
Thread platform a collection of ready to use application domain specific functionalities that may
run on a technologically heterogeneous landscape.

As we are part of the Confirm Smart Manufacturing research centre1, we target here specif-
ically the application domain of advanced manufacturing, in order to offer a comfortable low-
code/no-code web application development in DIME and a dedicated manufacturing analytics
development in Pyrus. In this context, projects routinely face data, processing, workflows and
communications from and to different sources, like tools, machines, data and knowledge bases,
with various service providers, and interfacing with a number of different vendor specific and
(mostly data) abstraction platforms. The case studies are expected to concern a large variety
of devices, data sources, data storage technologies, communication protocols, technologies and
tools for analytics or AI, visualization tools, and more. This level of diversity and heterogeneity
is where the integration of external native DSLs plays a key role.

We are incrementally building a significant ecosystem [MCG+21] of collaborations spanning
various application domains to use all those services in the application design, in a possibly
seamless way. In our first proof of concept [CM21b], we implemented a generic extension
mechanism, in analogy to micro-service architectures [New15], to the two low-code development
environments DIME and Pyrus. The PoCs integrated a generic RESTful service as a DIME
Service Independent Blocks (SIBs) and a cloud-based AWS enterprise service as a Pyrus SIB,
respectively. This was useful to demonstrate the feasibility to an audience of engineers not
accustomed to model driven development, service oriented computing, nor low-code/no-code.
The quality and completeness of the research outcomes are validated via empirical research,
both within the open source community and with the adopters in academia and industry. The
ability to carry out agile modifications on a use case basis is due to the iterative and prototype
driven approach, where at each cycle new improved releases of the previous content are planned
and evaluated, and the content grows from one release to the next. Within the research group, we
follow the three cycle view of design science research [Hev07] methodology, hence reconnecting
to both the design and the relevance cycle.

In general, we see here that the Digital Thread platform successfully connects various elements
of the advanced manufacturing landscape as they are found in large Manufacturing Testbeds,
like those in the Confirm research centre headquarters in Limerick and others at specific industry

1 Confirm (www.confirm.ie) is the SFI national research centre in Smart Manufacturing headquartered at the Univer-
sity of Limerick, with a mission to transform industry to become leaders in Smart Manufacturing
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partner sites. Such facilities include on purpose diverse and redundant categories of equipment
like robots, working tools and machines, building and factory floor infrastructure, as well as a
selection of communication networks. Their aim is in fact to facilitate experimentation, either
between researchers and industrial project partners (as in Confirm) or as a solutions co-design
infrastructure between commercial providers of specific equipment and their customers, as in
ADI’s Catalyst collaboration hub2. In such equipped spaces, the goal is to try out established
and new technologies and their combination, experiment with feasibility and fact-finding, with a
relatively short turn around cycles of individual experiments and testbeds (a few weeks to a few
months), in order to distill use cases, configurations and semi-ready reference applications that
can be easily turned to projects, products and new state of the art. The abstraction from the ”real”
cyber physical systems in the Manufacturing Testbeds to a set of services provided by External
Service providers as External Native DSLs is the key to enabling the kind of modeling and
implementation we envisage.

3.1 The DIME platform architecture

The current architecture of the Digital Thread platform is based on DIME as its underlying Inte-
grated Modeling Environment and is shown in Fig. 1. The DIME Modeling Layer provides the
essential modeling capabilities, like the specific modelling languages for the user interfaces, the
data model and the process models. This is the standard DIME distribution that is accessible on-
line at https://scce.gitlab.io/dime/content/introduction. We adopt the DIME modeling languages
as they are, with no changes nor extensions. Our goal here is to keep the modeling language as
stable as possible, not creating any branch that may give rise to incompatibilities across syntactic
and semantic expressive power and capabilities. This modeling language layer constitutes the
modelling grammar of the Digital Thread Platform.

Seen from our users’ perspective, the core of the Digital Thread platform concerns the Process
Layer and it is going to be used as a no-code platform for application development. Given an ap-
plication under development, its process model consists of the set of possibly hierarchical DIME
process models that collectively describe the control flow and data flow of the business logic
for this application. The main process is usually an orchestration of a number of sub-processes,
plus some individual atomic functionalities that are provided as SIBs. The overwhelming ma-
jority of these processes and SIBs reside in the Process Layer, where we distinguish Common,
External Native and Process DSLs. Common DSLs come with the default DIME distribution.
These built-in DSLs are application independent and cover the basic helper operations in build-
ing business logic, like e.g. string and arithmetic operations. External native DSLs are the set
of services, technologies and platforms that reside outside the standard DIME distribution. Their
capabilities are accessed at runtime via network protocols in the context of the Digital Thread
platform. Process DSLs implement the domain specific generic and hierarchical workflows as
orchestrations of common and external native DSLs. Our extension of DIME for the Digital
Thread platform concerns a) the External Native DSLs: this is where the domain specific vocab-
ulary extension takes place by adding devices, external programs, and AI/reasoning, and b) the
Process Layer, which collects over time a number of domain specific Process DSLs, including

2 ADI’s Catalyst is an R&D collaboration hub for customers looking to get to market faster, generate revenue more
efficiently, and strengthen and evolve their ecosystem. https://www.analog.com/en/about-adi/incubators/catalyst.html
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the (few) Common ones provided by DIME itself.
Accordingly, each domain specific DSL consists of

• a number of atomic SIBs that provide a set of individual capabilities as the smallest units
usable in the models, and

• a number of predefined processes that offer coarser grained capabilities, that are used in
the hierarchical models.

The External Service Providers layer shows a list of technologies and frameworks that are
either already integrated (solid arrows) with the platform or work in progress (dotted arrows).
External Native DSLs organize the integration and publishing of these external technologies
as individual graphical DSLs. A possible organization principle is according to the different
verticals, e.g. IoT, persistence, analytics etc. REST services [CM21b], Data analytics with R
libraries [MCG+21] and the MongoDB no-SQL database were integrated as services, while R,

Figure 1: Architecture Overview of the Digital Thread Platform - DIME
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seen as a programming language, and the EdgeX Foundry middleware integration and interop-
erability platform had to be integrated as platforms [CM21a], which is the more general but also
more complex integration form. EdgeX Foundry [EFF22] serves as an edge middleware for the
IoT - abstracting and mediating between physical sensing and actuating ”things” and our infor-
mation technology (IT) systems. It is therefore particularly interesting for our platform, as it
eliminates the cumbersome work of integrating each device individually into the Digital Thread
Platform. MongoDB is also very useful as it handles the flexible and semi-structured nature of
data schemas.

Figure 2: Architecture Overview of the Analytics Platform - Pyrus

3.2 The Pyrus platform architecture

The current architecture of the Analytics platform is based on Pyrus as the underlying web-based
collaborative graphical modeling environment and is shown in Fig. 2. In it, the Ecore component
displays to the users a collection of default DSLs as well as external DSLs. This way, the users
can access the SIBs of those DSLs and orchestrate them graphically in a data flow fashion.
The default SIBs come with the standard distribution of Pyrus and cover the basic data analytics
needs. The other DSLs are added as a result of functions discovery from the Jupyter Hub instance
that serves as the execution server. The Pyrus SIBs are usually in Python. However, the Python
functionality of advances and domain specific DSLs, like the Smart manufacturing analytics in
our case, are implemented in the JupyterHub space as normal Python code. From the perspective
of developing a DSLs, annotation are added at the top of the python functions in a simple SIB
declaration language. Pyrus reads them and with that information it presents them to the users
as a SIBs in the corresponding DSL. From an integration point of view, the External Service
Providers layer shows the external technological stack under integration in this fashion. The
many popular libraries and frameworks that are currently supported in Pyrus range from AI/ML
libraries, cloud services [CM21b] and cloud databases like many AWS services, MongoDB etc.

For functions discovery and the pipeline executions, Pyrus communicates with Jupyter over
the ZeroMQ protocol. The Palette component of Pyrus provides a list of standard input/output
holders to attach variable values at runtime. The Canvas is the drawing board, shared by one
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or more users, used to develop pipelines with the help of SIBs and I/Os from the Ecore and
Palette components. Indeed Pyrus supports a collaborative, synchronous co-design online, in the
browser.

3.3 Overcoming heterogeneity

The External Native DSLs Layer handles the integration and interoperability with the outer
world. It abstracts its inherent heterogeneity from the users by providing to them the nice, easy
and uniform presentation in terms of individual SIBs, palettes with DSLs, and collections of
processes. The design and implementation of the External Native DSLs is the difficult task that
we as experts have to accomplish, in order to provide uniformity and simplicity to users who
work within the process and modeling layers.

The External Native DSLs in fact provide a series of different technology verticals ranging
from external IT platforms, domains like robotics, vendor specific technologies, execution en-
vironments, and overarching services like privacy, authentication, and more. The central prop-
erty of simplicity here hinges on autonomy and reusability: once integrated, all these disparate
functionalities will be presented as a collection of SIBs. These SIBs are families of built-in
modeling classes that reference executable implementations running in the appropriate plat-
forms/containers. Based on prior integration experience and the appropriate extension mech-
anisms, we have discussed in [CM21a] two distinct integration alternatives: services and plat-
forms.

The expectation with service integrations is that the services are already deployed on servers,
thus accessible and ready to use over a public/private network. The integration mechanism then
follows the principles of native library services interfaces: the required functionality is embedded
as a family of SIBs that are ready to be used as a drag and drop modeling components. In DIME,
the signature of each new functionality with a correct syntax is added to a file with extension
.sib and the SIB definition consists of a SIB name, the list of its inputs and outputs and the
fully qualified path of the Java implementation to be invoked when used in a model. In Pyrus,
instead, the annotations for SIBs are added on top of each of the python functions in a file with
.py extension.

The additional challenge associated with platform integration is the need to prepare the exter-
nal execution platform in such a way that it serves the needs of the underlying application. Such
platforms are in different runtime environments, with their own technological infrastructure that
may vary across the technologies and the deployments. Mostly the infrastructure is prepared
and deployed in separated docker containers, so that the different environments stay isolated, are
flexible, scalable and accessible over standard protocols, and deliver the required functionalities.
The case studies presented next in Sect. 4 discuss small workflows that provide examples of end
to end implementation of various stages of manufacturing analytics and predictive maintenance.

4 Smart Manufacturing Case Studies

Manufacturing analytics and predictive maintenance are two important capabilities for the suc-
cess of smart manufacturing operations. They use a collection of tools and techniques to detect
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anomalies and potential defects in the processes and the equipment before these reach a point of
failure. The use of data-driven proactive maintenance methods also helps operators to plan the
maintenance schedules for the equipment. In the following we discuss how we implemented the
core of these applications as DSLs in DIME and Pyrus. While these are small examples, they
are sufficient to constitute blueprints, i.e., reference examples that the adopters can then use as
starting point, and adapt and enrich as needed. We searched on purpose for simple examples
that are complete, in order to showcase the essence of the respective applications with minimal
complexity.

4.1 Manufacturing Analytics: a Process DSL in DIME

The DSL for manufacturing analytics in DIME aims to show Confirm users how to analyse
datasets and visualize them in web applications. The dataset used in this specific example is
taken from the Kaggle repository [kag22] and consists of historical data from hundred different
manufacturing units. It contains a list of failures, voltage consumption, and rotation cycles across
different sensors and components, together with the unit type.

Figure 3: Hierarchical Process Model for Manufacturing Analytics

Fig. 3 (left) shows an excerpt of the Manufacturing Analytics process model, consisting of two
hierarchical SIBs: the process SIB (DSL DA 1C) and the GUI SIB (Show visualization page).
The body of the process SIB is shown in Fig. 3 (right): its control flow proceeds from the Start
with a list of inputs and reaches the SIB read CSV, that reads the content of the data file and
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passes it to the generate summary SIB with a parameter indicating the attribute for which a
summary is desired, in this case the age column. Its execution computes various model fitting
functions, providing a result file. The subsequent plotRhistogram SIB, which has a list of other
required parameters for content and layout, computes the histogram of the given column. We
see here the control flow displayed as solid arrows, and the data flow displayed as dotted arrows.
This explicit representation of both flows enables a simple visual validation. As the models
are also formal models (specifically, Kripke Transition Systems, KTS) [MSS99], they are also
amenable to data flow analysis and formal verification, e.g. by means of model checking for
temporal logics [Eme90, SMC+96].

The SIBs in the workflow expose the input and output ports for communication with peer SIBs
and other (nested or encapsulating) processes. All the analytical computations are executed inter-
nally on an R infrastructure reached over the TCP/IP protocol. We reuse here our previous plat-
form integration of R. After successful execution, the control is transferred back to the parent SIB
and the results are passed to the application’s GUI through the GUI SIB Show visualization page
that displays them in the web application’s interface model.

Figure 4: Manufacturing Analytics DSL: Interface Model (left) and web page (right) for a Man-
ufacturing Analytics page

Fig. 4 (left) shows a segment of the GUI model for this page and Fig. 4 (right) the corre-
sponding rendered webpage. On the left we see how the model treats the display data received
from process models. There are three interface blocks: an image display for the summary, an
image display for the plot, and an action button to enable the download. While the atomic SIBs
in Fig. 3 are our (DSL) extensions to DIME, the GUI models are implemented fully within the
GUI DSL provided by the basic DIME distribution to all its users, as we explained in Sect. 3.1.
A uniform GUI language across all the DIME applications is a great advantage for the human
comprehension of the Web applications and their ease of maintenance, even across application
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domains. In Fig. 4 (left) we also see that the image placeholders are protected with Guard SIBs,
to ensure only properly authorised access to the data.

Users of the Web application see only the webpage shown in Fig. 4 (right): this is the generated
web interface, displaying a summary of different model fitting functions concerning the age of
the machines in the considered machine pool (between 0 and 20 years old, with a mean age
slightly above 11 years), and a histogram detailing the failure count for machines in dependence
of their age. For example, in this case older machines (>13 years) fail more often than younger
ones, the worst performing machines are 10 and 13 years old, and it may be the case that the
machines aged 11, 12 and 13 (if there are any), which have very low failure counts, may have
undergone recent successful maintenance/ reconditioning.

Figure 5: Hierarchical Process SIB for Maintenance Analytics

The hierarchical workflow presented in Fig. 3 and Fig. 4 is easily encapsulated as a single
process SIB for maintenance analytics: the Feature Maintenance Analytics shown in Fig. 5. It
is a complex, self-contained building block that is reusable inside other processes that require
this kind of data analysis and display. The corresponding code is generated at web application
deployment time with DIME’s fully automated model-to-code transformation facility.

The workflows we developed for this descriptive analysis are actually reusable across different
domains: the manufacturing content is fully determined by the dataset under consideration. If
we used a healthcare dataset, or an education related dataset, the same workflow would produce
a dashboard for those other application domains. In this sense, we succeed in creating a library
of transdisciplinary DSLs, that can be easily reused even across communities.
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Figure 6: Correlation Matrix: Python function annotation in Jupyter and its visualization in Pyrus

4.2 Proactive Maintenance Planning: a DSL in Pyrus

The second case study concerns a DSL for predictive maintenance of machines and it is imple-
mented in Pyrus. This time we do not create the functions from scratch, but instead encapsulate
and reuse pre-existing, externally developed back-end python scripts for the creation of graphi-
cal DSLs. The dataset used in this example stems from the beverages manufacturing industry: it
contains a list of equipment and instruments used to develop certain products. The dataset and
python scripts are taken from the github repository [git22]. Fig. 6 (left) shows a snippet of the
Python code for the correlation matrix in Jupyter, the added annotations for Pyrus integration on
top, and on the right how it appears listed as one of the drag and drop components once imported
in Pyrus. This illustrates the case of integration of external Python libraries, as is the case for
example for scikit [sci22] and many other popular libraries like Matplotlib for numerical plotting,
Numpy, Pandas, SciPy etc.

Figure 7: Pyrus Data Pipeline for Correlation Matrix display within a Predictive Maintenance
DSL

The Pyrus pipeline shown in Fig. 7 is very basic: it calculates the correlation matrix expressing
the association and dependency of various industrial components, like the Blower, the Labeller,
the Palletizer, etc., on each other. In the Pyrus modeling canvas, the required constant nodes
on the left concern two strings: they define the dataset path (beverage.csv) and the delimiter (a
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Figure 8: Heat Map for the Beverage Industry

Figure 9: Pyrus Data Pipeline for Predictive Maintenance DSL

comma) in the CSV. The first connected computational SIB is table load csv: it reads the dataset
and passes it to the pm.correlation matrix SIB. This SIB computes the correlation matrix and
displays the result as the heat map shown in Fig. 8.
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Figure 10: Predictive Maintenance: Plot of the corrected vs. original behaviours

Similarly, Fig. 9 shows a second data pipeline, useful to monitor and correct some of the
equipment parameters (i.e., reduce the blower speed if it exceeds 22000 rps (radians per sec-
ond)) and plot them before and after implementing the corrective measures. The first SIB,
table util.load csv loads the dataset like in the previous example. The second and third SIBs,
table util.sub table and pm.change index, filter the required columns, provided as inputs as a list,
and apply database indexing on the selected column (here, the time column) for performance
optimization in further data accesses. Finally, the pm.speed correction SIB plots the behaviour
of the Blower (or any other monitored machine, as this is a parameter) over time vs. the tuning
parameter subject to the corrective measure. Here, for example, Fig. 10 shows the Blower speed
before (blue plot line) and after the correction (yellow plot line).

All the implemented functionalities can be used within Pyrus as no-code drag and drop com-
ponents. After connecting the correct data flow, users can this way execute the pipelines for
their specific scenario, and obtain the resulting plots like shown in Fig. 10 without any need of
programming. This capability gives domain experts the opportunity to concentrate solely on the
composition and parameter optimization of the individual functions in no-code fashion, without
having any deep expertise in Python coding. Finally, the creation of a hierarchical workflow with
prior connectivity of data flow is in progress.

5 Conclusions and Next Steps

We addressed here the principles, the architecture and the individual aspects of the growing
Digital Thread platform we are incrementally building, which conforms to the best practices
of coordination languages. Manufacturing analytics and predictive maintenance are both im-
portant capabilities for the success of smart manufacturing operations. In this regard, we have
extended the capabilities of platforms in the vertical domains of persistence, IoT and analyt-
ics to support core operations of smart manufacturing. DSLs with a family of SIBs are added,
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with small examples that address the individual knowledge, terminology and concerns of indi-
vidual stakeholders or small groups of stakeholders, yet are sufficient to constitute blueprints for
easy adoption and modification. Following the philosophy of thinking in units of functionality
for simplicity [MFS11] and reusability, and using hierarchy for scalability to larger and more
complex systems [Mar04b, Mar19], we are also moving from individual reusable SIBs to fea-
tures, intended here as ready-made workflows, where a collections of SIBs are packaged into
task-specific sub-workflows that are ready to use as a hierarchical SIBs.

The quality and completeness of the research outcomes are validated via empirical research,
both within the open source community and with the adopters in academia and industry. The
ability to carry out agile modifications is due to the iterative and prototype driven approach,
where at each cycle new improved releases of the previous content are planned and evaluated, and
the content grows from one release to the next. The capability of rapid development with built-in
checks makes these tools a success in our teaching of agile development to undergraduates and
postgraduates. In addition, we used these topics as a teaching case study for Masters students,
who further extended the collection of Pyrus capabilities and carried out a number of academic
case studies.

The next steps include performance improvements of the baseline architecture, refactoring
some of the implemented integrations and enriching the list of services and technological inte-
grations. Over time, we expect reuse to be increasingly the case, reducing the new integration
and new development effort to a progressively smaller portion of the models and code needed
for at least the most standard applications. We also expect more categories and best practices of
integration to emerge, in order to produce highly reusable External native DSLs.
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