
Electronic Communications of the EASST
Volume 11 (2008)

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2008)

Divide and Conquer – Organizing
Component-based Adaptation in Distributed Environments

Ulrich Scholz and Romain Rouvoy

12 pages

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Divide and Conquer – Organizing
Component-based Adaptation in Distributed Environments

Ulrich Scholz1 and Romain Rouvoy2

1 European Media Laboratory GmbH
Schloß-Wolfsbrunnenweg 33
69118 Heidelberg, Germany

ulrich.scholz@eml-d.villa-bosch.de

2 University of Oslo, dept. of Informatics
P.O.Box 1080 Blindern

0316 Oslo, Norway
rouvoy@ifi.uio.no

Abstract: This paper introduces a divide and conquer approach for organizingthe
adaptation of distributed applications in a potentially large number of interacting
middleware instances. In such an environment, a centralistic and static adaptation
reasoningi) is inadequate andii) gives the same priority to all applications. The
divide and conquer method aims at minimizing the interference between runningap-
plications, allowing users to weight the priority of applications, and organizing the
adaptation and the reasoning about the adaptation in a decentralized and flexible way.

Keywords: Adaptive middleware, distributed adaptation reasoning

1 Introduction

This work is concerned with the task of adapting a number of large, distributed applications
in mobile environments subject to frequent context changes. We considerthis problem within
MUSIC [MUS], an initiative to develop a comprehensive open-source platform that facilitates
the development of self-adaptive software in ubiquitous environments. One aim ofMUSIC is
a large-scale deployment of multiple middleware instances. Some of these instances host two
or more applications, some applications are distributed on two or more instances. Furthermore,
the topology of middleware instances and applications is transient—i.e., they can appear and
disappear at any time. For such a collection of middleware instances, users, applications, devices,
connections, and other artefacts related to adaptation, we assign the termtheatre.

Current solutions to the adaptation problem use a centralized and coarse-grained approach,
which is not suited for large theatres: If one part of an application needsadaptation, the whole
application—or even a set of applications—is adapted in combination by a dedicated solver. The
solver considers all alternative configurations of all these applications at once and chooses the
configuration that yields the best utility. This approach is not feasible for large theatres due to
the combinatorial explosion of alternative configurations and because it interferes with parts of
the theatre even if such interference is not required.

As a solution, we propose theDivide and Conquer(D&C) approach to organize the adaptation
tasks of a theatre in a decentralized and distributed way. D&C considers unitsthat are smaller
than single applications and provides techniques that allow the adaptation of partial applications.

1 / 12 Volume 11 (2008)

ulrich.scholz@eml-d.villa-bosch.de
rouvoy@ifi.uio.no


Divide and Conquer – Organizing Component-based Adaptation

In the following, we describe the adaptation problem and introduce the basicD&C ideas (cf.
Section 2). Then we detail these ideas, namely the application packs (cf.Section 3), resource dis-
tribution (cf.Section 4), the decomposition tree (cf.Section 5), and the strategies (cf.Section 6).
Before listing related work (cf.Section 8) and giving concluding remarks (cf.Section 9), we
explain D&C with an example scenario (cf.Section 7).

2 The Adaptation Problem and the D&C Approach

TheMUSIC project’s focus is the adaptation of component-based applications. Applications are
assembled of components—i.e., pieces of code—and several different collections of components,
each called avariant, can realize the same application. Many variants provide the same function
to the user (e.g., participation in a picture sharing community), but often with different non-
functional properties (e.g., quality of service and CPU usage). The degree to which the non-
functional properties of a variant satisfy the user is called theutility of that variant [FHS+06].

Adaptingan application means choosing and commissioning one of its variants, while the
adaptation problemmeans adapting an application such that it has the highest—or a sufficiently
high—utility in a given situation. An adaptation middleware, such asMUSIC, aims at a solution
to the adaptation problem such that every application maintains its functionality and a high utility
despite of changes in the theatre.

Not all variants of an application are valid: They have to satisfyarchitectural constraints
[KRG07]. Two examples for such constraints are the existential dependency between two com-
ponents that holds if choosing one only makes sense if the other is chosen too, and a dependency
where two components are mutually exclusive or require each other. Adaptations can introduce
new dependencies to an application and remove existing ones.

Existing adaptive systems usually consider entire applications: If some partof an application
requires an adaptation then the whole application has to be adapted. InMADAM [MAD06] the
unit of adaptation is even wider, as it comprises all applications on a local device and all parts of
these application deployed on other devices. Adapting large units guarantees an optimal utility
but has several drawbacks. One of them is the combinatorial explosion inthe number of variants
that have to be considered. If an application always consists of 5 components and there are 5
variants for each then the application has 55 = 3125 variants. For an application comprising 10
components, or for the combination of 2 applications with 5 components each, there are already
about 10 million of them. Although increasing processing power, restrictionson valid choices of
variants, and heuristics allow solving large adaptation problems, even mediumsized collections
of applications are often infeasible for a global method.

Another reason for the inadequateness of current approaches is that they affect parts of the
theatre that are better left untouched. Adapting an application involves stopping it and re-starting
it after some time. Nevertheless, some application parts, such as video streamreceivers, may not
support to be suspended and resumed dynamically. In addition, users are willing to accept such
interruption of service only if the disruption is very short or they observea clear advantage. As
the adaptation time is often pronounced, adapting large parts of theatres canlead to many such
undesired outages for a user.

In contrast, D&C forgoes globally optimal solutions by adopting a more fine-grained approach

Proc. CAMPUS 2008 2 / 12



ECEASST

towards adaptation. Applications are divided into smaller units, calledapplication parts, and
D&C organizes the adaptation and distribution of collections of such parts, called packs, in a
decentralized and flexible manner. Then, the adaptation of each part is treated independently as
black box by D&C.

Furthermore, current approaches do not distinguish between the application adaptation and its
organization. As a result, the realization of adaptation control requires in-depth knowledge about
the logic of its application and the environment to foresee possible adaptation situations. D&C
provides a clear separation between both aspects of adaptation reasoning.

In detail, D&C comprises five concepts to adaptation organization: (1) the concept of applica-
tion parts and packs, (2) the splitting and merging of packs, (3) the reasoning about pack layout,
(4) the resource negotiation between packs, and (5) the decentralized,flexible coordination of
the adaptation. The first two points are covered by the following section, resource negotiation
by Section 4, and the decomposition tree bySection 5. Reasoning about pack layout is not an
essential part of D&C and we omit it here for space reasons.

3 Packs – Adapting Collections of Application Parts

The D&C units of adaptation arepartsandpacks. Applications are divided into parts that can be
adapted independently or in combination; a pack is a collections of such parts. The handling of
packs—i.e., their adaptation, division, aggregation, and relocation, as well as the organization of
these operations—forms the essence of the D&C approach.

With respect to complexity and autonomy, application parts are positioned between compo-
nents and full applications. Like applications, they are built of components and have their own
utility function. Their overall utility is the product of the ones of their parts. Asfor components,
architectural constraints between parts can restrict their variant spaceat a certain time.

Note that the division of an application into parts and packs does not increase its adaptation
complexity compared to the same application built of components: Adapting all parts in combi-
nation takes the same time as adapting all components in combination and choosing tonot adapt
some parts can only reduce the required effort.

Packs are a purely logical assembly of application parts. Parts in a pack are usually handled as
a whole. In particular, all parts of the same application that are in one pack are always adapted in
combination, eliminating the need for D&C to handle the architectural constraints between these
parts explicitly. Each pack can be adapted independently of other packs and only the applications
of the part in a pack have to be stopped during its adaptation.

The division into packs reflects the results of D&C’s reasoning about which application parts
are likely to be adapted together and which independently. If two application partsa andb of
different applications in the same pack adapt in combination then the adaptationmechanism
considers each element of the cross productpa× pb. The time to adapt them ista · tb, wherepa

andpb are the sets of variants ofa andb, respectively, and the time to establish these sets ista and
tb. In casea andb are in different packs, the elements ofpa andpb are considered independently
and the adaptation time ista+ tb in the worst case. In other words, by placinga andb in different
packs, we go from an exponential alternative space to a linear one.

The aggregation of application parts to packs allows to organize the adaptation and to adjust

3 / 12 Volume 11 (2008)



Divide and Conquer – Organizing Component-based Adaptation

the reasoning effort against the quality of adaptation. On the one hand, the larger the packs on a
machine are,i) the higher the expected utility after their individual adaptation andii) the easier
to find a good resource distribution among them (cf.Section 4). On the other hand, the smaller
the packs—-i.e., the higher the number of packs on the machine—the faster the adaptation of
individual packs. Thus, changing the composition of packs allows the middleware to balance
reasoning time and adaptation quality.

In more details, the motivations for merging two packs are as follows. (1) Optimization of
utility: In case an application was distributed over two or more of the initial packs, the merged
pack might offer a better utility function for this application. (2) Lower resource usage: The
improved utility function can lead to an adaptation that uses less resources, but does not decrease
utility. (3) Decrease the need for and increase the quality of resource negotiation: The fewer
packs there are, the easier it is to distribute resources between them.

Packs are split for two reasons. (1) To minimize adaptation time: Smaller packs have a po-
tential smaller adaptation time. Prerequisites are that resources are sufficient and the new packs
have few architectural dependencies. (2) To change the layout of packs: In a D&C setting, packs
are the unit of relocation.

We assume that the realization of splitting and merging of packs is transparentwith respect to
time and memory. In particular, they do not change the resource consumptionof the involved
packs and packs resulting from a split have the same combined resource usage like the initial
pack. Although splitting and merging packs takes time, we assume that this time is negligible
such that packs can be split and merged without interfering with the applications.

The question of where to split a pack, which packs to merge, and when to doso is a question
of strategies, which we discuss inSection 6.

4 Negotiation: Balancing the Resource Consumption among Packs

Applications on a machine do not run in isolation: They share the device resources. Withre-
source negotiation, D&C tries to prevent the combined adaptation of all applications in case a
single one of them has to adapt. The main idea is that each pack is assigned a specific amount of
every resource under negotiation. When changes in the theatre trigger an adaptation, the affected
packs adapt locally within the allocated resource budgets. The hope is thatsuch a local adapta-
tion of packs result in new variants that are “good enough”, while the other packs can remain
untouched. Currently, we assume that an estimate within ±20% of reported utilityvalue suffices.

4.1 Weighting the Priority of Applications

D&C gives the user additional control about the resource distribution. Itallows her/him to rate
applications according to her/his interests by assigning a number between 0 (irrelevant) and
1 (highly important). The priority is independent of the utility and the current variant of the
application, thus an adaptation does not change it. Priority and utility allow the middleware to
find the applications that mostly contribute to the user satisfaction: These are those having the
highest product of application priority× current application utility.

Note that the priority of one application is independent of other applications.As an effect, the

Proc. CAMPUS 2008 4 / 12



ECEASST

memory
< 20 < 40 ≥ 40

CPU< 100 0.0 0.0 0.0
CPU< 200 0.0 v3, 0.3 v5, 0.4
CPU≥ 200 0.0 v3, 0.3 v6, 0.7

happinessv3
mem(x) =











0.0 if x < 20

0.3 if 20≤ x < 40

0.4 if 40≤ x

happinessv3
CPU(x) =

{

0.0 if x < 100

0.3 if 100≤ x

Figure 1: Example of happiness functions. The table on the left give the utilities (and associated
variants) of an application part for different assignments of resources. The two functions on the
right are the happiness functions for variantv3 with CPU less than 200 units.

sum ofpriority values for a user’s applications can result in a number higher than 1. The reason
is that we expect the user to manually set the priority and we do not expect her/him to normalize
the values.

4.2 Happiness – Estimating Utility

Resource negotiation is based on estimating the utility of packs given an allocated resource
budget. Optimal utility values and assignment of resources require global adaptation reasoning.
Because the aim of resource negotiation is to decide whether adaptation reasoning is necessary,
it can only be based on estimates. D&C estimates utility byhappiness functions.

Let us first detail happiness functions for application parts. Assume thata partp depends on
resource typesR that D&C negotiates and other context informationC that is not negotiated by
D&C. If the context inC remains unchanged, then the utility ofp depends on the amount of
resources inR that it can consume. Each variantv of p has a fixed utilityuv if its resource needs
are met by the assignment toR; if not, the partp is not able to run properly. To find the optimal
utility of p for a specific resource assignment, we have to explore all variants ofp, rejecting the
invalid ones, and pick the one with the highest utility among the remaining.

ConsiderFigure 1as an example. Assume thatR consists of the resources memory and CPU,
and an application partp has six variants that all require different amounts of these resources and
yield different utilities. With the current contextC, three of these six variants are realizable and
are not dominated by another variant,i.e., there is no other variant that can be realized with the
same resources and that has a higher utility. If, for example,p is assigned 50 units of memory
and 150 units of CPU thenv3 is the optimal variant ofp yielding an utility of 0.3. Now, if the
availability of resources changes, then finding the new optimal variant requires recalculating the
table or its stored copy. But, if we assume that only one resource can change, then it suffices
to store all the different values for memory, given CPU= 100, and all different values for CPU,
given memory= 40. These values are combined to piecewise define thehappiness functions.

Happiness functions of parts can be calculated as by-product of adaptation reasoning. In
particular, if the adaptation reasoning enumerates all variants, then the happiness functions can
be constructed during the search.

Happiness functions for packs are the combination of those of parts. Whilehappiness func-
tions for parts always give the correct results, those for packs only approximate the real utility.
The reason is that two or more parts can adapt individually without an adaptation of the whole

5 / 12 Volume 11 (2008)



Divide and Conquer – Organizing Component-based Adaptation

≥ 80% of last
part utility

inititaion

failure

success
pack utility
< 80% of last

< 80% of last

≥ 80% of

< 80% of last part utility
combined utility

≥ 80% of last pack utility

local adaptation of
part within its pack

assignment of
resources

global adaptation,
adaptation of pack
individual

pack estimates new

pack utility

last pack utility

Figure 2: Life cycle of a resource negotiation node. Note that only the regular state transitions
are shown. The figure does not show transitions taken in exceptional situations,e.g., when new
packs are established and when large amounts of free resources become available. Transitions
labeled with “80%” refer to estimates compared to the last calculated utility.

pack. Although each new happiness function is correct for the given resource assignment, a
change of this assignment itself is not considered. Therefore, the packhappiness functions after
a global adaptation can differ from the locally adjusted ones.

4.3 Distributing Resources

The life cycle of a resource negotiation node is shown inFigure 2. It is an interplay of global
and local adaptation. The automaton starts with a global adaptation of all participating packs. If
it fails then local adaptation cannot find a solution either and the resource use on the considered
device has to be reduced,e.g., by pack relocation. On success, the resulting initial resource
assignments are handed to the packs. The automaton changes to the lower right state, where
parts that are affected by a context change adapted individually. If theestimate by the happiness
function indicates that the result is insufficient, then the automaton visits the states clockwise and
the scope of adaptation widens: First the pack utility is estimated, then the whole pack adapts,
and finally a global adaptation is performed. If in any of the states the current utility estimate is
“good enough”, then the automaton goes into the lower right state again.

For reasons of readability,Figure 2does not show three transitions of the automaton that
connect the upper right state from the remaining three. These state changes are taken if an
increase in the amount of free resources results in a combined expected utility of the packs that
exceeds 120% of the current value, if a pack is relocated onto the machine, and after starting up
an application. For reasons of brevity, we also left out the handling of priorities in the explanation
of resource distribution.

5 Decomposition Tree: Controlling the Organization of Packs

D&C organizes the adaptation of applications in a theatre in a distributed and self-organized way
without using a central controller. This organization is performed by a so-calleddecomposition
tree—i.e., a weakly-connected,directed acyclic graph(DAG) with a single root. We use the term
“tree” instead of DAG because, usually, we do not regard pack nodesas part of the graph.

Proc. CAMPUS 2008 6 / 12



ECEASST

nn1 nn2 nn3 nn4

tn2 tn3

tn1

b2a1 a2 b1p1 a3 p2

d1 d2

Figure 3: A decomposition tree. Square nodes denote packs while negotiation nodes have a
diamond shape. The remaining tree nodes are depicted circular. The packs and the nodes are
hosted by two devicesd1 andd2, separated by the dotted border.

Physically, the nodes of the tree are data structures manipulated by the middleware instances;
some part of the data constitutes the internal state of the node. The tree is distributed and there
is no central middleware instance that has complete knowledge about all nodes. Nodes are
controlled by rules and a node being active means that its rules are matched against its internal
state. The physical decomposition of the nodes allows several nodes to beactive simultaneously.

Logically, the decomposition tree represents the result of the organization at a certain point in
time. The nodes of the tree are annotated with local information about the organization process,
which is the internal state of the node, such as the node’s parent and children, information about
the node’s device, and past decisions. The collection of all such internal states is the current state
of the D&C method.

Operationally, the nodes dynamically change the tree according to rules. Ona certain context
change,e.g., the appearance of a new middleware instance, nodes become active andupdate
the tree until a new final form is reached and activity ceases. Thus, the partitioning reflects the
evolution of the application configuration. Usually, only a few nodes are active and activity is
deliberately handed from node to node.

5.1 Nodes of the Decomposition Tree

The nodes of the DAG are of one of the three types:tree node, negotiation node, andpack node.
The root is always a tree node and tree nodes can have children of all three kinds. Negotiation
nodes are restricted to have pack nodes as children and pack nodes are always leaves of the DAG.

Each device has one negotiation node that distributes its system resources; a pack on a device
is automatically child of this node. D&C uses a predefined list of resource types that a device
can offer, such as memory and CPU usage. Each application has a directnegotiation node that
holds information about the dependencies between the application’s parts.Different resource
and application negotiation node have no direct relation to each other.

Figure 3illustrates a decomposition tree that controls five application parts belonging to two
applications: Applicationa is divided into partsa1 to a3 and applicationb is divided into parts
b1 andb2. Partsa1, a2, andb1 form packp1 that is under control of the nodetn2 while the pack
p2, consisting of partsa3 andb2, is handled by nodetn3. Negotiation nodesnn2 andnn3 handle
the direct dependencies between the respective packs. Nodetn1 is the root of the decomposition

7 / 12 Volume 11 (2008)



Divide and Conquer – Organizing Component-based Adaptation

tree, tn2 and tn3 are leaf nodes (negotiation nodes and pack nodes are not consideredregular
nodes of the distribution tree). The packs and the nodes are distributed over two devicesd1 and
d2, denoted by the dotted border. The resources ofd1 are negotiated by nodenn1, while nn4 does
the same for deviced2.

5.2 Working of the Decomposition Tree

The operations of the decomposition tree can be divided into three classes:Atomic operations,
complex operations, and strategies. Atomic operations are realized directly by the middleware.
Each node has available a set of atomic operations used to examine and alter the decomposition
tree. Examples are the migration of its children to another node or the participation in a process
for electing a common root node. Strategies decide which complex operation toperform in which
situation (cf.Section 6).

Complex operations correspond to reactive actions to apply on the decomposition tree. They
are composed of basic operations of one or more nodes. Examples are “Join two decomposition
trees” and “React to a failing negotiation node”. Different compositions can result in similar
complex operations (e.g., for the first example) and for the same purpose there can be complex
operations with different outcomes (e.g., for the second).

We have realized four classes of complex operations. (1) Operations that organize the adapta-
tion of applications: These are the splitting and merging of packs and their re-distribution. (2)
Operations resulting from changes in the status of an application: A starting application gets its
own pack on the machine it is started on. On termination, application parts are removed from
their packs. If a new application part is created as a result of an adaptation—i.e., not by the
replacement of one part by another—then it is placed in a new pack. If a pack becomes empty
because of the termination of an application or because of an adaptation, then it is removed. (3)
Operations that handle the sudden disappearance of a connection or ofa device. (4) Decomposi-
tion tree maintenance operations: These balance the tree, split nodes that have too many children,
and merge those with too few.

6 Strategies: Selecting the Adaptation Heuristics

The previous sections explained techniques that allow to reason about and to control the orga-
nization of the adaptation of theatres, the principles of this reasoning are given bystrategies.
They are implemented by rules and each node has its own rule-based control loop. Strategies
are currently under investigation and we develop a simulator to identify and compare different
strategies.

In detail, each node has an internal state that holds all the knowledge that the node has about
the theatre. For example, a tree node knows about its parent, its children, itshosting middleware
instance, and its past decisions. The internal state is updated either by oneof its rules or by the
middleware. The rules are condition-action pairs that match the internal state tostate changes
and to atomic operations as explained inSubsection 5.2.

Strategies control the organization of the adaptation—i.e., which packs to split and where,
which packs to merge, and when to relocate a pack. Regarding the decomposition tree, strategies

Proc. CAMPUS 2008 8 / 12



ECEASST

have to determine the overall structure of the tree and the location of the tree nodes. They also
handle effects that result from the localness of the reasoning within the decomposition tree: For
example, independent decisions can yield to a deadlock. Here, strategieshave either to prevent
these situations or have to provide a mechanism that overcomes the problem. Other problems
are desired states of the tree that are not reachable by other states and oscillating tree behavior.

An example for a strategy is the following: When splitting a pack, we have two choices: (1)
Do not separate parts of the same application,e.g., {a1,a2,b1,b2} → {a1,a2},{b1,b2}. This
option can result in a linear reduction of the adaptation time. It does not increase the structural
negotiation effort and does not decrease the utility of the applications. (2)Separate parts of the
same application,e.g., {a1,a2,b1,b2} → {a1,b1},{a2,b2}. This option can result in an expo-
nential reduction of the adaptation time but might decrease the utility of the applications. One
strategy is to always try the first option if possible and try the second one only with packs where
all contained parts are from the same application.

7 Use Case: The InstantSocial Scenario

The following InstantSocial(IS) scenario [FHS08] demonstrates the capabilities of the D&C
approach in organizing the adaptation in larger theatres. One general aimof adaptive middle-
ware systems, and thus an aim of D&C, is to be transparent to the applications and to the user.
Therefore, we report two views: the user view typed in normal font andsystem view typed in
cursive.
Paul is visiting a large rock festival. During a Björk concert, he is not ableto take a good shot,
others could have done better.

An adaptation is triggered and restructure the IS decomposition tree with other discovered IS
nodes using a strategy which maximizes the quality of the pictures.

Paul is willing to share his pictures with others. He instructs his PDA to look out for other visitors
with the same interest. Unfortunately, the Internet connection is down and there is no immediate
success.

The decomposition tree is configured with a strategy that maximizes Björk-related multimedia
content. For the time being, the decomposition tree is restricted to a single node(Paul’s PDA)
due to the lack of connectivity.

Back at his tent, Paul listens to some music when his PDA notifies him about the presence of
a media sharing group. He happily joins, gives high priority to this application,and a moment
later his display shows a selection of pictures, each representing a collection of shots. He browses
through the content, selects the ones he likes, and begins to download.

The PDA runs a MP3 player with high priority and IS with low. After a picture sharing com-
munity becomes available, the priorities get reversed. Thus, the negotiation group sharing
resources between the MP3 player and IS is updated and the adaptation process allocates
more resources to IS in order to list and download the content provided by the community.
Among the adaptations performed, the media replicator and ontology components of IS are
replaced by similar services provided by two other PDAs.

Suddenly, the current download aborts prematurely: One of the group members has left without
prior notification. But only some of the pictures of this user disappear, others are still available.

9 / 12 Volume 11 (2008)



Divide and Conquer – Organizing Component-based Adaptation

The connection to the weak PDA is lost and the IS decomposition tree adapts with the help
of theMUSIC middleware. The current download aborts, but some of the Björk pictures have
been seamlessly replicated, so their availability does not change.

Some time later, Paul notices that the selection he sees becomes more precise: Some topics he
does not care about are no longer shown and some others, unusual but interesting ones, appear.
He checks the Internet connection and yes, the festival’s Wifi network isup again.

The Internet connection is re-established. The decomposition tree adapts IS by replacing the
ontology component on Paul’s PDA by a much accurate one at a remote server. The selections
are re-evaluated. Unnoticed by him, Paul’s PDA now hosts a media replicator component.

He decides to see the next concert and indicates his wish to leave the group. The PDA asks him
to wait a few seconds. After getting the acknowledge, Paul returns to the stage for some more
good music.

Some of the pictures kept on Paul’s PDA are moved to the remaining media replicator. After
success, Paul is notified and his community service terminates.

The potential gains of using D&C in this example are numerous. Its distributed nature allows
applications to handle the frequent changes in the theatre gracefully: First, Paul’s InstantSocial
application cannot provide useful service because it is alone. But after other InstantSocial nodes
become available, the social group is set up automatically. Arbitrary, unanticipated changes alter
the offered functionality but keep the group operational. A centralized control mechanism would
fail in such situations.

The use of packs allows InstantSocial to make full use of the available resources by control-
ling which application parts are to be adapted in combination and which are not: Some part
of the weak PDA’s InstantSocial application is hosted by Paul’s PDA but they run with little
interference.

The fine-grained control over the priority of applications allows Paul to search for a picture
sharing group while listening to high quality music. When the group becomes available, the
music is played with less quality. But Paul is distracted anyway, so he does not realize it.

8 Related Work

The Greedy approach [BHRE07] is another way of improving the adaptation organization. It
adapts applications one by one, beginning with the one that offers highestexpected utility. Each
application is given the remaining available resources until they are used up. The Greedy ap-
proach reduces the overall adaptation time by adapting individual applications and has the poten-
tial of yielding a high overall utility.

DACAR [DM07] uses rule-based policies to monitor an environment, to deploy applications,
and to react to changes in the environment. The use of generic rules allowsthe developer to
formulate fine-grained policies that allow to reason about and verify the rule base. Neverthe-
less, the control mechanism ofDACAR requires an entity with complete knowledge about the
environment and the applications, which poses an error-prone bottleneck in dynamic theatres. In
contrast, D&C builds on distributed, incomplete knowledge that is more suitable in this case.

SAFRAN [DL06] is a framework for building self-adaptive, component-based applications that
separates the application logic from the adaptation. It is very high level and, in principle, allows

Proc. CAMPUS 2008 10 / 12



ECEASST

for the implementation of techniques similar to the distribution tree. AlthoughSAFRAN sup-
ports distributed adaptation by allowing each component to decide upon whichreconfiguration
to operate, it does not support the coordination of adaptations that are carried out and can lead to
unstable behavior, in certain cases.

In [BT08], authors introduce a distributed architecture for coordinating autonomous agents.
The proposed approach definessupervisorsas coordinating entities forclustersof autonomous
agents. Supervisors can interact to aggregate and analyze context data retrieved by agents. Each
supervisor is responsible for implementing system-wide adaptations on agentsassociated to its
cluster. According to authors, the clusters can be dynamically created andupdated using dedi-
cated techniques [EDN07]. If, similarly to D&C, this approach tackles the coordination of large
theatres, the proposed decomposition is rather static and does not support application driven
organization of the topology.

According to [MK], D&C is a combination of meta-level control-based planning and social
law-based design: Applications adhere to the distribution of resources provided by the nego-
tiation nodes because of social laws. It is also control-based planning because each node in
the decomposition tree “is guided by high level strategic information for cooperation”. Minsky
et. al.[MU00] develop principles of law-governed interactions, of which many hold forthe D&C
approach, too. The main difference to D&C is that they assume independentagents with their
own priorities—i.e., whose decisions have to be controlled whether they are within the law—
while in D&C the agents—i.e., the nodes—follow the law by design.

9 Conclusions and Future Work

This work proposes the Divide and Conquer (D&C) approach for organizing the adaptation of
a theatre—i.e., of a number of large, distributed applications in mobile environments with fre-
quent context changes. This organization is independent of the application logic and relieves the
application developer from providing the organization himself.

D&C considers packs—i.e., collections of parts of applications—and thus gives the middle-
ware a more fine-grained control over the adaptation than what is achievable by operating with
full applications. By dividing the overall task of adapting the theatre into the tasks of adapting
individual packs, D&C allows the adaptation middleware to parallelize the required work.

By allowing the user to assign priority to applications, D&C enables to balance theperceived
quality of service according to her/his needs. The realization of this balance is independent of
the application logic and does not require provisions by the developer.

D&C uses distributed reasoning activities to decide upon and to change the division, as well
as to react to expected and unexpected changes in the theatre. This approach yields a more
decentralized and flexible organization of the adaptation as achievable by centralized reasoning.

Although the work on D&C is ongoing and the algorithms and heuristics of D&C arenot rig-
orously validated, we believe that they will overcome the shortcomings of a global adaptation
approach. We currently develop strategies that tell how and when the different options of orga-
nizing the adaptation should be applied. We plan to investigate if and how the results of other
rule-based approaches to distributed adaptation could be applied in a D&C setting, e.g., the rules
of DACAR andSAFRAN. Currently, we are developing a simulator that allows to investigate and
compare different strategies.

11 / 12 Volume 11 (2008)



Divide and Conquer – Organizing Component-based Adaptation

Acknowledgements: The work is funded by the Klaus Tschira Foundation and by the Euro-
pean Commission for theMUSIC project (# 035166). The authors would like to thank Yun Ding,
Frank Eliassen, Gunnar Brataas, Eli Gjørven, and Bernd Rapp for their helpful comments.

References

[BHRE07] G. Brataas, S. Hallsteinsen, R. Rouvoy, F. Eliassen. Scalability of Decision Models
for Dynamic Product Lines. InProceedings of the International Workshop on Dy-
namic Software Produc Line. Sept. 2007.

[BT08] L. Baresi, G. Tamburrelli. Loose Compositions for Autonomic Systems. In 7th In-
ternational Symposium on Software Composition (SC). LNCS 4954, pp. 165–172.
Springer, Budapest, Hungary, Mar. 2008.

[DL06] P.-C. David, T. Ledoux. An Aspect-Oriented Approach for Developing Self-Adaptive
Fractal Components. In5th International Symposium on Software Composition.
LNCS 4089, pp. 82–97. Springer, 2006.

[DM07] J. Dubus, P. Merle. Applying OMG D&C Specification and ECA Rulesfor Au-
tonomous Distributed Component-Based Systems. In Kühne (ed.),International
MoDELS Workshop on Models @ Runtime (MRT’06). LNCS 4364, pp. 242–251.
Springer, 2007.

[EDN07] R. M. Elisabetta Di Nitto, Daniel Dubois. Self-Aggregation Algorithms for Auto-
nomic Systems. In2nd International Conference on Bio-Inspired Models of Network,
Information, and Computing Systems (BIONETICS). Budapest, Hungary, Dec. 2007.

[FHS+06] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjørven. Using Architec-
ture Models for Runtime Adaptability.IEEE Software23(2):62–70, Mar./Apr. 2006.

[FHS08] L. Fraga, S. Hallsteinsen, U. Scholz. “Instant Social” – Implementing a Distributed
Mobile Multi-user Application with Adaptation Middleware. In 1stDisCoTec Work-
shop on Context-Aware Adaptation Mechanisms for Pervasive and Ubiquitous Ser-
vices (CAMPUS). EASST, this volume. 2008.

[KRG07] M. U. Khan, R. Reichle, K. Geihs. Applying Architectural Constraints in the Model-
ing of Self-adaptive Component-based Applications. InECOOP Workshop on Model
Driven Software Adaptation (M-ADAPT). Berlin, Germany, July/Aug. 2007.

[MAD06] MADAM IST. Theory of Adaptation. Deliverable D2.2 of the project MADAM: Mo-
bility and adaptation enabling middleware, Dec. 2006.

[MK] A. Mali, S. Kambhampati. Distributed Planning. unpublished.

[MU00] N. Minsky, V. Ungureanu. Law-governed Interaction: A Coordination and Control
Mechanism for Heterogeneous Distributed Systems.TOSEM9(3):273–305, 2000.

[MUS] IST MUSIC project.www.ist-music.eu.

Proc. CAMPUS 2008 12 / 12

www.ist-music.eu

	Introduction
	The Adaptation Problem and the D&C Approach
	Packs -- Adapting Collections of Application Parts
	Negotiation: Balancing the Resource Consumption among Packs
	Weighting the Priority of Applications
	Happiness -- Estimating Utility
	Distributing Resources

	Decomposition Tree: Controlling the Organization of Packs
	Nodes of the Decomposition Tree
	Working of the Decomposition Tree

	Strategies: Selecting the Adaptation Heuristics
	Use Case: The InstantSocial Scenario
	Related Work
	Conclusions and Future Work

